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The analysis of interpretations of the experimental data on the
emission spectra of excitons in double quantum wells is carried
out. Features of both the spatial distribution of the emission and
its behavior depending on the temperature and the pumping in-
tensity are explained by the appearance of the condensed phase of
excitons caused by their interaction. The explanation does not in-
volve the Bose–Einstein condensation of excitons. The spatial dis-
tribution of the exciton density in the condensed phase depends on
the exciton lifetime and is a consequence of self-organization pro-
cesses in the non-equilibrium system. The distribution of excitons
over trapped and free states and its influence on the emission spec-
tra are investigated. The hydrodynamic equations for interacting
excitons are obtained. The existence of soliton-like states (au-
tosolitons) outside of the spinodal decomposition region is shown.

1. Introduction

While seeking the Bose–Einstein condensation of exci-
tons in double quantum wells, the several non-trivial ef-
fects were observed. The very large exciton lifetime is
a special feature of excitons in double quantum wells in
the presence of an electric field directed in parallel to
the normal to the quantum well plane [1]. The effect
occurs due to the separation of electrons and holes into
different wells, which causes a very weak overlapping of
their wave functions and the damping of the mutual re-
combination. The large lifetime allows one to create a
high concentration of excitons at small pumpings and to
study a manifestation of the effects of exciton-exciton in-
teraction. Excitons with electrons and holes localized in
different wells are called “indirect excitons.” The nonzero
dipole moment of indirect excitons should causes their
mutual repulsion, which complicates the creation of the
condensed phase of excitons. These properties and the
fact that excitons have the integer spin and a small mass
suggested the creation of the Bose–Einstein condensed
phase of excitons in double quantum wells and stimu-
lated the search for this phase. The investigations gave
a number of new results. In the emission spectra of in-
direct excitons from a double quantum well based on
AlGaAs, the narrow band with unusual properties was

observed and studied [2–4]. The band appears at the
some threshold pumping. The temperature dependence
of the emission intensity at a fixed pumping is described
by a straight line, which crosses the abscissa axis at the
temperature, at which the emission intensity is equal to
zero, i.e., at the temperature which is the threshold tem-
perature at the given pumping. At a fixed temperature
and a low pumping, the dependence of the emission on
the pumping is ultralinear. The authors [3, 4] built a
phase diagram “threshold pumping–temperature”. The
phase diagram has the peculiarity: the dependence of the
threshold pumping on the temperature does not tend to
zero as T → 0.

The nontrivial results were found for a spatial distri-
bution of the exciton emission from a quantum well. In
works [5,6], the appearance of a ring was observed in the
emission from a double quantum well outside the laser
spot, in which the excitons were excited, was observed.
The ring radius exceeded significantly the exciton dif-
fusion length. The explanation of the appearance of a
ring was given in [7, 8] under the assumption that holes
are captured by the well more effectively than electrons,
and, in addition, there are donors in the crystal, which
create some concentration of free electrons. As a re-
sult, a region rich by holes arises in the quantum well
in a vicinity of the laser spot. Outside of this region,
the quantum well is enriched by free electrons. On the
boundary of the region, the processes of recombination
take place, which causes the creation of excitons on the
ring and the appearance of a spatial distribution of the
emission in the form of a ring.

Intriguing facts appear under the investigation of the
spatial distribution of the exciton density. Different spa-
tial inhomogeneous structures were observed in the emis-
sion of indirect excitons at the pumping greater than
some critical value. For example, the separation of the
emission ring into fragments periodically localized along
the ring was observed in [5]. In work [9], the excitation
of the quantum well was carried out through a window
in a metallic electrode. The authors found out a peri-
odic structure in the luminescence spectrum in the form
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of islands situated along the ring under the ring perime-
ter.The number of islands grew with the window radius.

The indirect excitons can be created not only in dou-
ble quantum wells, but also in a wide quantum well in
the presence of a strong electric field. The electric field
divides electrons and holes between different sides of the
quantum well. As a result, the excitons with charges
strongly separated in the space and with a large life-
time are created [10]. On such dipole excitons in a wide
quantum well, the effects similar to those on excitons
in double quantum wells were observed [11]. Recently,
Timofeev and coauthors [12] presented examples of the
structures in the emission spectra for different forms of
windows in the electrode: a rectangle, two circles, and
others. In work [13], the authors created an additional
periodic potential for excitons, by choosing the form of
the electrode. It was found that, besides the periodic
structure imposed by external conditions, the partition
of the emission into fragments was observed in the di-
rection, where the potential is almost uniform. This di-
rection is perpendicular to that, along which the system
has a periodic potential.

The phenomena of the symmetry loss and the cre-
ation of structures in the emission spectra of indirect
excitons stimulated a series of theoretical investigations
[14–19]. The authors of work [14] considered the instabil-
ity, which arises under the variation of level occupations
by particles with the Bose–Einstein statistics. Namely,
the growth of the occupation of a level with zero moment
should stimulate the transitions of excitons to this level.
But the density of excitons was found greater, and the
temperature was found lower than the values observed
on the experiments. Some authors explain the appear-
ance of the periodicity by the Bose condensation of ex-
citons [15, 16]. A suggestion to describe the system by
a nonlinear Schrödinger equation was advanced in [17],
and a possibility of the Mott transition in systems was
discussed in [18]. In these works, the main efforts were
applied to the ascertainment of the basic possibility for
the formation of a periodicity without a specific applica-
tion of the results to the explanation of other properties
of the systems (the dependence of properties on a pump-
ing, temperature, and other parameters).

The another approach was developed in works [20–
24, 28] for an explanation of the experiments concerning
the excitons in double quantum wells. The approach is
based on the following assumptions.

1. There exists the condensed phase of indirect ex-
citons caused by the attractive interaction between ex-
citons. As was already mentioned, there is the dipole-
dipole repulsion interaction between excitons. But the

simple calculations show that, at not very far distances
between quantum wells, when the dipole moment of an
exciton is not too large, the exchange and van der Waals
interactions exceed the dipole-dipole repulsion at cer-
tain distances between excitons. The existence of the
attractive interaction between excitons is confirmed by
the calculations of biexcitons [25–27] and by studies of
many-exciton systems [20].

2. The finite value of the exciton lifetime plays an im-
portant role in the formation of a spatial distribution of
exciton condensed phases. As usual, the exciton lifetime
exceeds significantly the duration of the establishment
of a local equilibrium. For this reason, the lifetime of
excitons is suggested to be equal to infinity in the so-
lutions of many problems. But, taking the finiteness of
exciton lifetime into account is necessary in the study
of the spatial distribution of phases in two-phase sys-
tems, because the exciton lifetime is less than the time
of the establishment of the equilibrium between phases.
The last time is determined by slow diffusion processes
and is great. Just the finite exciton lifetime restricts
the maximal size of the condensed phase of excitons and
causes the correlation in positions of separate regions of
the condensed phases. Thus, the created spatial struc-
tures are non-equilibrium, and they are a consequence of
the processes of self-organization in non-equilibrium sys-
tems. The appearance of a instability and the creation of
a periodic distribution of the exciton density at high den-
sities of excitons with attractive interaction were shown
in work [30] from the viewpoint of self-organization pro-
cesses.

The theory developed in works [20–24, 28] has ex-
plained almost all features of the manifestation of in-
direct excitons. So, the behavior of a narrow band
observed in [4] as a function of the pumping and the
temperature was considered in [21]. Works [20, 22–24]
present the explanation of the spatial distribution of the
exciton density founded in [5, 9] and its dynamics at
variations in the pumping and temperature. The ex-
perimental “threshold–temperature” phase diagram [3,5]
was explained in [21]. While developing the theory, two
approaches of the theory of phase transitions were used:
the model of nucleation (Lifshitz–Slyozov) and the model
of spinodal decomposition (Cahn–Hilliard). These mod-
els were generalized for particles with a finite lifetime,
which is of importance for the interpretation of experi-
mental results. The involvement of Bose–Einstein statis-
tics for excitons is not required for the explanation of
experiments. Moreover, the condensation under consid-
eration occurs in the real space, and it is not the Bose–
Einstein condensation. The theory explains all observed
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results except two ones presented below, which were not
considered jet in the framework of the presented theory.

1) It was shown experimentally in work [31] that the
maximum of the frequency dependence of the emission
from the region between the islands is lower, than the
maximum of the emission frequency from the islands, so
from the region, where the exciton density is large. The
difference of the frequencies is small, it is less than the
width of the emission band. But, on the base of these
data, the authors drew conclusion that there is the re-
pulsion interaction between excitons. This result con-
tradicts the main assumptions of of the model of works
[20–24, 30] about the presence of attractive interaction
between excitons, which causes the creation of the con-
densed phase.

2) In works [12, 32, 33], a coherence was observed in
the emission spectra from different regions of an island
of the condensed phase [33] or even from different islands
[12, 32]. The coherence was revealed in the interference
of the emission from different spatial points.

Effect 2 is not considered in the presented paper. For
its explanation, a microscopic model of the condensed
phase is needed. But the following qualitative expla-
nation can be given. In experiments, the interference
of electromagnetic waves is observed, rather than that
of wave functions. Since the electromagnetic wave and
the scattered field are coherent, the interference of the
emission from two islands can occur as a result of the su-
perposition of the electromagnetic field emitted by some
island and the same field scattered by another island.
It was shown in [34–36] that the strong correlation be-
tween densities at different points takes place in the case
where the condensed phase exists. It is a reason for the
interrelation of the wave emitted from some point and
the wave scattered by other region. We mention a sharp
maximum of the Fourier transformation of the correla-
tion function. But the quantitative calculations require
the data on a microscopic model of the condensed phase
of excitons, particularly, the numerical value of the po-
larizability is needed.

The explanation of effect 1 is given in the next section.

2. Distribution of Excitons over Localized and
Delocalized States

As we mentioned already, the periodically situated is-
lands were observed in the emission spectrum from the
ring outside the laser spot [5]. According to [31], the fre-
quency of the emission from the region with large exci-
ton concentration (from islands) is higher than that from
the region with lower concentration (from the region be-

tween islands). Based on this result, the authors of work
[31] made conclusion that the interaction between exci-
tons is repulsive, and, therefore, the formation of the
condensed phase by the attractive interaction is impos-
sible. This contradicts the main assumption of works
[20–24], though these works explain many experiments.
We now remove this contradiction, taking the presence
of localized excitons into account. Residual donors, ac-
ceptors, and defects create the random fluctuating po-
tential, which can be a reason for the appearance of lo-
calized levels. Till now, the explanation of the creation
of localized states is not determined definitely, but their
existence is confirmed by the presence of an emission in
the region of the frequencies less than the frequency of
the exciton band emission. At a low temperature and
a small pumping, the main part of the band consists of
the emission from defect centers. According to works
[4, 5], the band width of the emission in a vicinity of
the bottom of the indirect exciton band in double quan-
tum wells on the base of AlGaAs has an order of (1.5–2)
meV. By the Timofeev group [4], the narrow band with
width of the order of (0.2÷0.3) meV was discovered on
the short-wave side of the spectrum. The band appears
at increasing the pumping, and it is related to the exciton
condensed phase. In the works by Butov et al. [5, 31],
this narrow band was not observed, and the emission
spectra of localized and delocalized states are not sepa-
rated. So, in [5,31], the shape of the joint emission of the
condensed phase and localized states is investigated. Let
us consider the relation between the contribution to the
emission band from free excitons and excitons localized
on defects.

The exciton states (free and localized) are distributed
over levels after the creation of electrons and holes by an
external irradiation and their subsequent recombination
and relaxation. As usual, the relaxation time is much
less than the exciton lifetime. Thus, it may be suggested
that the excitons are in the state of quasithermodynam-
ical equilibrium. But such an equilibrium cannot be es-
tablished for deep localized states at low temperatures,
because the transitions from the low levels to upper ones
have a low probability. Therefore, we assume that the
free excitons are in the state of thermodynamical equi-
librium, and we will find the distribution of localized
excitons from the kinetic equations. Let us consider the
distribution of free and localized excitons under condi-
tions of a steady-state irradiation. In the calculations,
we assume that 1) the defect center can capture only
a single exciton, 2) the temperature is so low that the
region of the exciton band population (the value of or-
der of κT ) is much less than the bandwidth, which is
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formed by free excitons and the excitons trapped by de-
fects; then the system of excitons can be described by
the density of free excitons n, that is the number of ex-
citons in unit area of a quantum well. The system of
localized states will be described by the density of lo-
calized excitons in unit interval of the energy – nl(E).
The energy distribution of defect levels will be described
by the function ρ(E), which determines the number of
levels in unit area and in unit interval of the energy. The
defect levels are occupied due to the transitions of exci-
tations from the free exciton states to the defect ones.
The inverse processes from the defect states to the ex-
citon band take place as well. At small concentrations
of defects, we can neglect the transitions of excitations
between defect states. The system of kinetic equations
for the level population has the form

dn

dt
= G− n

τex
−
∫
Wex,l(E)n(ρ(E)− nl(E))dE

+
∫
Wl,ex(E)nl(E)ncEdE, (1)

dnl(E)
dt

= −nl(E)
τl(E)

+Wex,l(E)n(ρ(E)− nl(E))−

−Wl,ex(E)nl(E)ncE , (2)

where τex and τl(E) are the lifetimes of the free and
trapped excitons, respectively, G is the pumping (the
number of the excitons created for unit time and in unit
area of a quantum well), Wex,l(E) and Wl,ex(E) are the
probabilities of the direct and inverse transitions in unit
time from the exciton band to the defect levels with the
energy E at a single exciton in unit area. The factor
(ρ(E) − nl(E)) in formula (1) corresponds to the fact
that the transitions are possible only on the free states
of defect levels. The last term in formula (1) describes
the transitions from defect states to the exciton band.
The probability of this transition is proportional to the
transition probability for a single exciton, the population
of defect levels, and the density of excitons in a defect
ncE . At a single exciton in the defect, the value of ncE
is inversely proportional to the surface area occupied by
the defect.

Let us consider the energy distribution of excitations
under a steady-state irradiation. For that, let us to sub-
stitute the value nl(E) obtained from Eq. (2) into Eq.
(1). As a result, we obtain the equation for the exciton
density,

nL + n = Gτex, (3)
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Fig. 1. Dependence of the density of free (solid line) and trapped
(dashed line) excitons on the pumping. The parameters of the
system: T = 2 K, Nl = 0.0032 ncE , Wex,lτexncE = 10000; α =

300 (eV)−1

where nL is the total number of excitons localized on
defects,

nL = nτex

0∫
−∞

Wex,l ρ(E)dE
Wex,l(n+ ncE exp(E/κT ))τl(E) + 1

. (4)

In this formula, we took the connection between the
direct and inverse processes into account: Wl,ex =
Wex,l exp(E/κT ), where the energy of a defect level E is
reckoned from the bottom of the exciton band (E < 0).
Further calculations need the information about the nu-
merical values of the coefficients in Eq. (3). To obtain
a qualitative picture of the distribution of excitations,
we consider the following model. The dependence of
the energy spectrum density of defect states on the en-
ergy has exponential form, namely ρ(E) = αNl exp(αE),
where Nl is the density of defect centers, the matrix el-
ement of the transition from an exciton state to a defect
Wex,l does not depend on E, and the lifetimes of excita-
tions for different defects coincide, τex = τl. The results
of calculations of the exciton density and the density
of trapped excitons are presented in Fig. 1. The val-
ues of parameters are shown in the capture to the fig-
ure.

At the size of a trap of 10−6 cm, the parameter ncE
has the order of 1012 cm−2. The concentration of de-
fects for the parameters chosen in calculations (see Fig.
1) equals 3.2×109 cm−2. The width of the band created
by traps has the order of 0.003 eV. At a small pump-
ing, the emission band is determined by the emission
from traps. At a high pumping, the occupation of the
trap levels become saturated. According to Fig. 1, the
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Fig. 2. Distribution of excitations in the traps and in the states
of the exciton band. The thick line a corresponds to the energy
per single exciton in the condensed phase. On the right b), the
upper line describes the emission from islands (emission of both
the condensed phase and trapped excitons), the low line describes
the emission of trapped excitons

concentration of excitations is of the order of 2 × 109

cm−2 under the saturation. At high concentrations and
under the attractive interaction, the excitons create the
condensed phase. The energy per single exciton in the
condensed phase decreases as compared with the energy
of free excitons (the thick line in Fig. 2).

Therefore, it is favorable for excitons to create the
condensed phase, but the gain of energy (the value
of the order of 0.0002 eV) is less than the band-
width. However, because the exciton density in is-
lands is larger than the density of excited states of
traps, and the emission energy of excitons is higher
than the emission energy of traps, the energy of the
emission from the islands is shifted to a short-wave
side. However, the excitons cannot leave the condensed
phase (islands) and move to the traps (to the states
with lower energy), since the levels of traps are occu-
pied. Thus, the emission frequency of the condensed
phase is larger than the emission frequency of the gas
phase, even at the attractive interaction between exci-
tons.

It should be noted that, in work [5], the emission band
from the condensed phase is wider than the band that
was observed in work [4], where another method of cre-
ation of excitons was applied. Maybe, this is related
to the fact that, in work [5], the excitons were created
in the region of the p − n transition: from one side,
the electrons approach this the region, and the holes
move to the region from other side. The excitons are
situated in a space between the regions rich by elec-
trons from one side, and by holes from another side. To
combine into excitons, electrons and holes should surely
go through the region of the condensed phase. There-
fore, this region contains the charges, which create an
electric field and cause the broadening of the emission
band.

3. Hydrodynamics of Excitons in the
Condensed Phase

The hydrodynamic equations of excitons were obtained
and analyzed in work [37]. We will obtain the hydro-
dynamic equations of excitons in the condensed phase
generalizing the Navier–Stokes equations. The system is
characterized by the exciton density n ≡ n(r, t) and the
velocity of the exciton liquid u ≡ u(r, t). The equation
of continuity is rewritten in the form

∂n

∂t
+ div(nu) = G− n

τex
. (5)

In the comparison with the typical equation of a liquid,
the presented equation for excitons contains the terms
that describe the pumping and the finite lifetime of ex-
citons.

The equation of motion of a unit volume of the exciton
liquid reads

∂mnui
∂t

= −∂Πik

∂xk
− mnui

τsc
, (6)

where m is the exciton mass, Πik is the tensor of the
exciton flux density,

Πik = Pik +mnuiuk − σ′ik, (7)

where Pik is the pressure tensor, σ′ik is the viscosity stress
tensor.

In comparison with the typical Navier–Stokes equa-
tion, the braking of the exciton liquid by phonons and
defects is introduced in Eq. (6) using the scattering time
τsc. In Eq. (6), we neglected a change of the momentum
caused by the creation and the annihilation of excitons.
Indeed, the change of the momentum per unit time and
in unit volume owing to the disappearance of excitons
has the order of mnu/τex. Since τex � τsc, this value is
much less than the last term in formula (6). The change
of the momentum due to the addition of new excitons
by a pumping is small too.

Introducing the coefficients of viscosity and using Eq.
(5), Eq. (6) can be rewritten in the form

ρ

(
∂ui
∂t

+
(
uk

∂

∂xk

)
ui

)
= −∂Pik

∂xk
+ ηΔui+

+(ς + η/3)
(

∂

∂xi

)
divu− ρui

τsc
. (8)

Let us consider the tensor of pressure. To find the
connection of the tensor with other parameters, it is nec-
essary to use the equation of state. We suggest that the
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state of local equilibrium in the system can be described
by the free energy depending on the spatial coordinate.
Let us present the functional of the free energy in the
form

F =
∫
dr
(
K

2
(∇n)2 + f(n)

)
. (9)

The first term in the integrand describes the energy
of innhomogeneities.

At the given presentation of the free energy, the pres-
sure tensor is determined by the formula [38]

Pαβ =
(
p0 −

K

2
(∇n)2 −KnΔn

)
δαβ +K

∂n

∂xα

∂n

∂xβ
,

(10)

where p0 = nf ′(n) − f(n) is the equation of condensed
state.

In view of (10), we rewrite Eq. (8) in the form

∂ui
∂t

+ uk
∂ui
∂xk

+
1
m

∂

∂xi

(
−KΔn+

∂f

∂n

)
+ νΔui+

+(ς/m+ ν/3)
(

∂

∂xi

)
divu +

ui
τsc

= 0. (11)

Equations (5) and (11) are the hydrodynamic equations
for the exciton system. Equation (11) differs from the
hydrodynamic equation investigated in [37] by the pres-
ence of the third term, which describes the condensed
phase. We consider the case where the condensed phase
exists. It follows from the estimations made in work
[37] that the terms with the viscosity coefficients can be
omitted. Then, for processes slowly varying in time in
the linear approximation in the velocity, we obtain the
velocity u from Eq. (11). Substituting it in Eq. ((5), we
obtain

∂n

∂t
+ divj = G− n

τex
, (12)

where

j = nu = −τscn
m

∇
(
−KΔn+

∂f

∂n

)
, (13)

or j = −M∇µ, where µ = δF/δn is the chemical po-
tential of the system, M = nD/κT is the mobility, and
D = κTτsc/m is the diffusion coefficient of excitons.

Therefore, the equation for the exciton density reads

∂n

∂t
= DΔn+

D

κT
(−KnΔ2n−K∇n ·∇nΔn)+

+
D

κT
∇ ·

(
n
∂2f

∂n2
∇n

)
+G− n

τex
. (14)

Just in the form of (14) in the model of spinodal de-
composition, we investigated the spatial distribution of
the exciton density under the condensation of excitons
at various dependences f on n [22, 23, 34, 39, 40]. Un-
der some restrictions imposed on the functional F, the
uniform solution is unstable, and the spatial structure
arises in the system. For the system under study, the
instability appears if the function f(n) has a minimum
corresponding to the condensed phase. In the above-
mentioned works, the examples of such functions were
given. Here, we analyze another dependence f(n), which
is often used in the theory of phase transitions. We
choose the density of free energy in the form

f = κTn(ln(n/na)− 1) + a
n2

2
+ b

n4

4
+ c

n6

6
, (15)

where a, b, and c are constants. The existence of the
condensed phase requires that the value of b be nega-
tive. Three last terms describe the exciton-exciton in-
teraction, and the first term was introduced in order to
describe the system at small exciton concentrations.

Let us introduce the dimensionless parameters ñ =
n/no, where no = (a/c)1/4, b̃ = b/(ac)1/2, and r̃ = r/ξ,
where ξ = (K/a)1/2 is the coherence length, t̃ = t/t0,
where t0 = κTK

Dnoa2 , D1 = κT
ano

, G̃ = Gt0n0, τ̃ex = τ/t0.
As a result, Eq. (12) is reduced to the form (we drop
the symbol ∼)

∂n

∂t
= D1Δn−nΔ2n−∇(n∇Δn)+nΔn(1+3bn2+5n4)+

+(∇n)2(1 + 9bn2 + 25n4) +G− n

τex
. (16)

At a steady-state uniform pumping, Eq. (16) has the
uniform stationary solution n = Gτex. By the conven-
tional method with the linearization of Eq. (16) with
respect to small deviations from the uniform solution,
we obtain that the uniform solution is stable, if the ex-
citon density is less than some critical value nc, which is
determined by solving the equation

(D1/nc + 1 + 3bn2
c + 5n4

c)/nc + 2/
√
ncτex = 0. (17)

The critical value of the pumping equals Gc = ncτex.
At a higher pumping, a periodic structure arises. The
wave number kc of the structure and the lattice period
λc are determined from the relation

kc = 2π/λc = 1/(ncτex)1/4, (18)
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Fig. 3. Spatial dependence of the exciton density at various values
of the pumping: G = 0.0056 for the continuous line, G = 0.007 for
the periodic line, and G = 0.00924 for the dashed line. D1 = 0.03,
b = −1.9

and nc depends slightly on τex. Therefore, the lattice
period is proportional to (τex)1/4). This result was ob-
tained in work [30]. At the pumping larger than the
threshold value (G > Gc1), the periodic distribution of
the exciton density appears. In Fig. 3, the stationary
value of exciton density for a one-dimensional system
n(r, t) ≡ n(z, t)) for three values of pumping is pre-
sented. The periodic solution exists in the some interval
of the pumping Gc1 < G < Gc2.

The solution presented in Fig. 3 is obtained from Eq.
(16) under the initial conditions n(z, 0) = 0 and the
boundary conditions n′(0, t) = n′(L, t) = n′′(0, t) =
n′′(L, t) = 0, where L is the size of the system. The
problem was solved also at different boundary condi-
tions. Generally speaking, at a great size of the sys-
tem, the structure of the solution (the period and the
amplitude of the superlattice) does not depend on the
boundary conditions at some distance from the bound-
ary. At the given parameters, the periodic solution ex-
ists at 0.0056 < G < 0.0092. Outside of this region, the
solution describes a uniform system: the gas phase at
the pumping less than the lower boundary value and the
condensed phase at the pumping greater than the upper
boundary value.

For a proof of the main equation (14) the last term in
Eq. (6), which describes the loss of the momentum of
excitons due to their scattering on phonons and defects,
is of importance. Just this term describes the processes,
which cause a decay of the exciton flux. From the view-
point of the possibility of the appearance of superfluid-
ity, the situation for excitons is more complicated than
that for liquid helium and for the atoms of alkali met-

als at ultralow temperatures. In the last systems, the
phonons are the intrinsic component of the spectrum of
the system. The interaction between phonons are the
interaction between of atoms of the system and causes
no change of the total momentum of the system and
its motion as the whole. Phonons and defects for exci-
tons, are external subsystems, which brake the motion
of excitons. Therefore, to create the exciton superflu-
idity state, it is necessary that the value of τsc grow
significantly. It is possible for exciton polaritons, which
weakly interact with phonons; we note that there is a
certain experimental evidence of the superfluidity [41].
For the indirect excitons, there is no microscopic theory
of the condensed phase and elementary excitations in it.
Therefore, it is not shown the possibility to remove the
effects of external factors (phonons, defects). So, the
question about the existence of the superfluidity for in-
direct excitons remains open. As for the explanation of
the experimental spike [42] in the emission of indirect
excitons after the switch-off of a pumping, it is ambigu-
ous. According to work [42], the effect occurs due to
a stimulated population of levels caused by the Bose–
Einstein statistics of excitons. But the spike can appear
as a result of the increase in the exciton lifetime due to
the removal of Auger processes (see calculations in [21]).

Thus, the peculiarities observed at large densities of
indirect excitons can be explained by the phase transi-
tions in the system of particles with attractive interac-
tion and the finite value of the lifetime without involve-
ment of the Bose-Einstein condensation.

4. Exciton Autosolitons

As was shown, at n < nc1(G < Gc1), the uniform so-
lution of Eq. (16) is stable. But, in some limits of a
pumping at G < Gc1, there exists a stationary solution
localized in space for the exciton density distribution.
For example, with the parameters used in calculations
of the exciton distribution in Fig. 3, the threshold value
of the pumping equals Gc1 =0.0056789; but, at a steady-
state pumping, there is the spatial nonuniform solution
of Eq. (16) at G < Gc1 in the form of an isolated spike.
It can be obtained, by solving Eq. (16) at the pumping,
which consists of a constant value G0 and an additional
pulse dG with maxima at the some point of the space
and at some time moment:

dG = s exp[−w(z − z0)2] exp[−p(t− t0)2]. (19)

Here, s, w, and p are parameters. Formula (19) describes
a pulse of the pumping, which acts during some time
interval with the maximum at the point z0.
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Fig. 4. Spatial dependence of the exciton density at the pumping
G = 0.0055 < Gc1; D1 = 0.03, b = −1.9

The solution of Eq. (16) obtained under the applica-
tion of the addition pulse (19) in the region z0 = L/2,
has the form presented in Fig. 4 at t→∞.

The solution exists as t → ∞, i.e., at the times when
the action of the addition pulse is already absent. The
shape of the spike n(z) does not depend on the parame-
ters s, w, and p, except cases where at least one of these
parameters tends to zero and becomes less than some
value. In addition, the solution in the form presented in
Fig. 4 arises also, if the additional pulse is absent, but
there is some distribution of the exciton density at the
initial time t = 0:

n(z, 0) = s0 exp(−w(z − z0)2). (20)

We can verify by direct calculations that the solution
presented in Fig. 4 in the form of a localized distribution
of the density is stable. We call the state that describes
this solution by an excitonic autosoliton. The coordinate
dependence of the exciton density will be designated by
nas(z). The autosolitons exist in the some region of the
pumping Gcas < G < Gc1. The solutions in the form of
an autosoliton exist side-by-side with the uniform solu-
tions.

The excitonic autosolitons correspond to solitary so-
lutions of the nonlinear equations for excitons (16). The
name “autosoliton” is introduced according to [43]; it
underlines that the solitary waves arise in the dissipative
system in a contrast to “solitons” which appear in conser-
vative systems. The solutions in the form of autosolitons
are degenerate: if there is a solitary solution nas(z), then
nas(z − z0) will be also a solution at arbitrary z0 (in an
infinite medium). But, if there is an external field in the
system, which creates a spatially variable additional po-
tential for excitons, the solitary excitation moves. Thus,
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Fig. 5. Spatial dependence of the exciton density at G = 0.0095 >

Gc2; D1 = 0.03, b = −1.9

at the linear spatial dependence of the additional po-
tential energy of excitons, the term δV = −dz should
be added in the formula of the free energy (15).In this
case, Eq. (16) has a solution in the form of autowaves
nas(z−vt), where v is the autowave velocity. For periodic
solutions at G > Gc1, such autowaves were investigated
in work [40].

Localized solutions exist also in the some region, where
the pumping is greater than the value, at which the pe-
riodic structures arise. The solutions exist under an ad-
ditional pumping pulse in the form (19), but at s < 0.
The example of such a solution is presented in Fig. 5.
These structures are appear in the form of a dip and can
be called antiautosolitons.

To explain the appearance of the autosoliton-type so-
lution, we recall that the phase transition are investi-
gated. As is known, there exists the region between a
spinodal and a binodal, in which the creation of a nu-
cleus of the new phase is needed for the phase transition.
The size of the nucleus should exceed some critical value.
The above-obtained criteria for the appearance of a uni-
form solution at n < nc1 from the equation (17) under
small fluctuations determine, in fact, the boundary of the
spinodal. The existence of nonuniform solutions in the
form of autosolitons at the pulses larger than some crit-
ical value corresponds to the appearance of the nucleus
outside of the spinodal boundary. Since we are studying
the non-equilibrium processes for unstable particles, the
spinodal and binodal regions depend on the lifetime of
particles. In addition, for stable particles, a radius of the
new phase increases with time. For example, according
to the Lifshitz–Slyozov theory [44], the radius grows as
t1/3 in a three-dimensional system. In a contrast, for the
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particles with the finite lifetime, the shape of the density
distribution of particles does not depend on the time.

It should be noted that, in the approach of nucleation-
growth to the condensation of excitons with a general-
ization onto unstable particles [20–24], the existence of
the condensed-phase islands outside of the spinodal re-
gion is taken into account automatically, because this
approach consider fluctuations, which are not presented
in Eq. (16).

5. Conclusions

In this work, several problems of the theory of indirect
exciton condensation in quantum wells on the base of Al-
GaAs are considered, and the analysis of the experimen-
tal data on the spectra of indirect excitons in quantum
wells is fulfilled.

In particular, it is shown that the results of the ex-
periment [31] where the emission spectrum from the
condensed-phase region is shifted to the short-wave side
as compared with the emission spectra from the gas-
phase region, do not contradict the model with an at-
tractive interaction between excitons. It is taken into
account that the emission spectrum is formed both by
excitons of the condensed phase and by excitons trapped
on defects, whose population is saturated with increase
in the pumping.

In the model of spinodal decomposition, the solutions
in the form of solitary states (exciton autosolitons and
antiautosolitons) are found. In the model of nucleation-
growth, the solutions correspond to nuclei of the con-
densed phase in the gas phase and to nuclei of the gas
phase in the condensed phase.

The hydrodynamic equations for excitons are con-
structed with regard for the interaction between exci-
tons. Difficulties of the formation of the superfluidity
state of excitons caused by the presence of phonons and
defects are analyzed. It is follow from the analysis ful-
filled in the work that there are no experimental data
obtained under investigations of indirect excitons in the
quantum wells on the base of AlGaAs, which cannot be
explained without an involvement of the Bose–Einstein
condensation of excitons.

The models considered in the work are phenomenolog-
ical. As we underlined earlier [22,23], the used approach
is valid also, if the condensed phase is an electron-hole
liquid. In the spinodal approach, the quantity n in the
equation for the exciton density (14) should be consid-
ered as the density of electron-hole pairs. The model
of nucleation-growth, which we used, by studying the
exciton condensation in [20–24], is similar to the meth-

ods used in [45–47] in the investigation of electron-hole
droplets in germanium and silicon. But, in contrast
to works [45–47], we took into account the correlation
in the spatial positions of droplets (islands in the two-
dimensional case), which allows us to describe the var-
ious structures, mutual positions of droplets, their con-
centration, and other properties observed in quantum
wells on the base of AlGaAs.
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КОНДЕНСАЦIЯ ЕКСИТОНIВ У КВАНТОВИХ ЯМАХ.
САМООРГАНIЗАЦIЯ ПРОТИ БОЗЕ-КОНДЕНСАЦIЇ

В.Й. Сугаков

Р е з ю м е

Проведено аналiз iнтерпретацiї експериментальних даних по
спектрах випромiнювання екситонiв з подвiйних квантових ям.
Особливостi у просторовому розподiлi випромiнювання та в
його поведiнцi залежно вiд температури та iнтенсивностi на-
качки пояснюються з точки зору iснування конденсовної фази
екситонiв, зумовленої взаємодiєю мiж екситонами, а не їх бозе–
ейнштейнiвською конденсацiєю. Структура просторового роз-
подiлу густини екситонiв у конденсованiй фазi залежить вiд
часу життя екситонiв i є наслiдком процесiв самоорганiзацiї
в нерiвноважних системах. Залежно вiд накачки дослiджено
розподiл екситонiв по делокалiзованих та локалiзованих станах
i його вплив на спектри випромiнювання. Знайдено рiвняння
гiдродинамiки екситонiв, яке враховує взаємодiю мiж ексито-
нами. Показано iснування екситонних солiтоноподiбних станiв
(автосолiтонiв) за межами областi спiнодального розпаду.
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