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The application of the conventional theory of macroparameter fluc-
tuations has been shown to go beyond the framework of the ther-
modynamic description in a number of cases. The principles of
the theory of quantum-thermal fluctuations of effective macropa-
rameters and their correlations have been formulated. The the-
ory satisfies the applicability conditions of equilibrium thermo-
dynamics and is based on effective macroparameters, which take
the integral stochastic action of the environment into account
at any temperatures. The correlator of conjugate macroparam-
eters, namely, the effective entropy and the effective tempera-
ture, has been calculated. The correlator was found to be pro-
portional to the effective action which characterizes the stochas-
tic environment. The pair correlators for the conjugate effective
parameters “entropy–temperature” and “coordinate–momentum”
have been demonstrated to depend linearly on the effective action,
with their minimum values being determined by Planck’s constant.

1. Problem of Accounting for Quantum Effects
in the Macroparameter Fluctuation Theory

In the last years, the necessity in the application of ther-
modynamics to relatively small objects (nanoparticles,
nuclear spins, and so forth), which are in the thermal
equilibrium at low temperatures, has been recognized.
Thus, a necessity to attentively analyze the fundamen-
tals of thermodynamics arose.

The equilibrium thermodynamics is known to be based
upon four principles (laws). Among them, the zeroth
law, which introduces the fundamental idea of thermal
equilibrium between an object and its macroenviron-
ment (called a thermostat), is primordial. In the clas-
sical thermodynamics, all macroparameters are deter-
mined rigorously, so that the zeroth law looks like a con-
dition for the “strict equality” between the temperatures
of the object, T , and the thermostat, T0,

T = T0. (1)

This relation is equivalent to understanding the tem-
perature, which is measured on the Kelvin scale, as a
conditional “marker” for the thermal equilibrium.

In statistical thermodynamics [1–5], including the
macroparameter fluctuation theory, every macroparam-
eter A of the object, including the temperature, is re-
garded as a random variable characterized by fluctua-
tions δA around its average value 〈A〉. To preserve the
terminology used in the traditional thermodynamic de-
scription, the additional requirement is put forward si-
multaneously, namely, the relative dispersion of an arbi-
trary macroparameter A is confined by the condition1

D(A)
〈A〉2

6 1. (2)

Here,

D(A) ≡ 〈(δA)2〉 = 〈A2〉 − 〈A〉2

is the dispersion of macroparameter A calculated by av-
eraging over a distribution typical of the macroparame-
ter fluctuation theory [1–3]. Below, for convenience, we
use the standard deviation ΔA =

√
D(A).

In this case, the concept of thermal equilibrium ob-
tains a generalized meaning. It is understood that the
object temperature can also fluctuate (a “soft” equilib-
rium condition) owing to the thermal stochastic action
by the thermostat, which is characterized by the Boltz-
mann constant kB. This means that a requirement simi-
lar to inequality (2) is imposed on the magnitude of ΔT
as well. At the same time, the temperature of the ther-
mostat, as a system with the infinite number of degrees
of freedom, does not fluctuate, i.e. ΔT0 = 0.

1 In the cases where the denominator in Eq. (2) is nullified, Bo-
goliubov’s quasiaverage [6] rather than Gibbs’s average has to
be used.
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As a result, the zeroth law in the statistical thermo-
dynamics is expressed as a collection of two conditions,

T = T0 ±ΔT ;
(ΔT )2

T 2
0

6 1, (3)

where ΔT is the standard deviation from 〈T 〉, and
(ΔT )2, according to the notations in formula (2), is the
temperature dispersion. Hence, only the average tem-
perature of the object, 〈T 〉, coincides now with the tem-
perature of thermostat, T0.

As is known, in the standard fluctuation theory [2, 3],
expressions for dispersions of arbitrary macroparame-
ters can be obtained on the basis of the distribution
with the modulus Θ. Involving phenomenological re-
sults, the quantity Θ is usually written down in the form
Θ = kBT0. We attract attention to the fact that this ex-
pression implies that a model consisting of a collection of
classical oscillators is implicitly used for the thermostat.
Below, we refer to it as the classical model.

In particular, A. Einstein also found formulas [1] for
the temperature dispersion,

(ΔT )2 =
1

kBCV
Θ2 =

kB

CV
T 2

0 , (4)

and the dispersions of the object’s internal energy U at
a constant volume V ,

(ΔU)2 =
CV

kB
Θ2 = kBCV T

2
0 , (5)

where

CV (T, V ) =
∂U

∂T

∣∣∣∣
V

is the heat capacity of the object.
It is of interest to elucidate which are the objects,

for which the expression obtained above satisfies the in-
equality in condition (2). The answer is contained in a
specific expression for the heat capacity. For instance,
for the macroscopic objects consisting of atoms, U ∼ N
and (CV ) ∼ N , where N has an order of the Avogadro
number. Hence, the dispersion (ΔT )2 ∼ 1

N . Accord-
ingly, (ΔU)2 ∼ N . Therefore, condition (2) is satisfied
for the relative dispersions of internal energy and tem-
perature in such objects at high temperatures, if N � 1.

At the same time, we attract attention to the fact that,
for example, in the case of a single classical oscillator
(N = 1), for which U = kBT and CV = kB, and which
is in equilibrium with the thermostat, we have

(ΔU)2

〈U〉2
= 1;

(ΔT )2

〈T 〉2
= 1.

Thus, the condition of macroscopicity (N � 1) is not
strictly mandatory, while carrying out calculations in the
framework of classical statistical mechanics and in the
high temperature range.

A different situation arises at relatively low tempera-
tures, when quantum-mechanical effects manifest them-
selves. In this case, the main attention is still given to
the heat capacity

(CV )qu =
∂Uqu

∂T

∣∣∣∣
V

,

but, for its calculation, the internal energy Uqu is ap-
plied, which is calculated now in the framework of the
quantum statistical mechanics. At the same time, the
model of thermostat does not undergo changes and re-
mains classical. On this route, the satisfactory results
can still be obtained for systems of particles with N � 1
(except for, maybe, the region of ultralow temperatures).
However, there emerge the problems for the equilibrium
thermal radiation (where the concept of the number of
particles is absent) and a single quantum-mechanical os-
cillator.

Let us demonstrate the aforesaid using the quantum-
mechanical oscillator as an example. Its internal energy
is equal, according to A. Einstein [7], to

Uqu =
~ω

exp{2κ ω
T } − 1

=
~ω
2

exp{−κ ω
T }

sinh(κ ω
T )

, (6)

and the heat capacity is

(CV )qu = kB

(
~ω
kBT

)2 exp{2κ ω
T }

(exp{2κ ω
T } − 1)2

=

= kB

(
κ
ω

T

)2 1
sinh2(κ ω

T )
, (7)

where the notation

κ = ~/2kB,

was introduced. In accordance with the general formula
(5), the dispersion of the internal energy of a quantum-
mechanical oscillator at the replacement of (CV ) by
(CV )qu looks like

(ΔUqu)2 = kB(CV )quT
2 =

(
~ω
2

)2 1
sinh2(κ ω

T )
=

= ~ωUqu + U2
qu = exp

{
2κ

ω

T

}
U2

qu, (8)
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and the relative dispersion of its internal energy reads

(ΔUqu)2

U2
qu

=
~ω
Uqu

+ 1 = exp
{

2κ
ω

T

}
. (9)

A similar result is obtained for the relative dispersion
of the thermal radiation energy in the spectral interval
(ω, ω + Δω) in the volume V ,

(ΔUω)2

U2
ω

=
~ω
Uω

+
π2c3

V ω2Δω
=

π2c3

V ω2Δω
exp

{
2κ

ω

T

}
. (10)

Those facts evidently testify to the inapplicability of
the selected method of calculation; namely, the relative
dispersions of internal energy (9) and (10) do not satisfy
condition (2) for the thermodynamic description to be
applicable. Note that this circumstance did not draw
a special attention of researchers. A.I. Anselm [8] was
probably the only who marked it. In this connection,
he pointed out that “the conventional thermodynamics
is not applicable as the temperature falls down”. This
means that the statistical thermodynamics considered
as a macrotheory cannot be based exclusively upon the
quantum statistical mechanics as a microtheory.

In our opinion, all that originates from the fundamen-
tal credo of quantum statistical mechanics, according
to which the quantum-mechanical and thermal actions
of the environment can be taken into consideration in-
dependently. In this connection, the standard routine
consists in that the quantum-mechanical characteristics
of a system of microobjects are determined firstly (at
T0 = 0), and only then the system is embedded into a
classical thermostat with the distribution modulus kBT0.
At the same time, formula (6) for a quantum-mechanical
oscillator and an analogous formula for the internal en-
ergy of the thermal irradiation, which are confirmed by
experiment, testify that those two types of stochastic
action manifest themselves, as a rule, jointly and nonad-
ditively.

In order to overcome the arisen problems, we de-
veloped a theory [8–11], which is based on a com-
bined account of the quantum-mechanical and thermal
stochastic actions by the environment. The theory de-
nies the classical model of thermostat in favor of the
quantum-mechanical one, including the case of heat ca-
pacity calculations. Moreover, in this case, the intro-
duction of a different “marker” for the thermal equilib-
rium state is required. The matter is that the Kelvin
temperature used for such purposes in the quantum sta-
tistical mechanics turns out noninformative in the re-
gion, where the quantum-mechanical and thermal effects
jointly manifest themselves, because this characteristic

reflects only the thermal stochastic action (in terms of
the Boltzmann constant). In addition, it is adopted to
be equal to zero in quantum mechanics, where, neverthe-
less, the stochastic action (although being already of the
quantum-mechanical type in terms of Planck’s constant)
takes place by essence.

Purely intuitive considerations stimulate us to adopt
the expression that follows from the Planck formula for
the energy of quantum-mechanical oscillator UPl, as a
new “marker”; namely,

T ≡ UPl

kB
=

~ω
2kB

coth
~ω

2kBT
= κω coth

κω
T
, (11)

where the notation κ = ~/2kB introduced earlier is used.
We define this quantity as the effective temperature. It
is important that, at the Kelvin temperature T = 0, the
effective temperature has a nonzero minimum,

T min = κω 6= 0. (12)

In the general case, according to formulas (11) and
(12), the effective temperature is a two-parameter func-
tion T = f(T, ω). It can be reduced to a one-parameter
function only in the limiting cases T = 0 and T � T min,
i.e., where T ≈ T min and T ≈ T , respectively. Its si-
multaneous dependence on the Planck and Boltzmann
constants allows one to assert that, in view of the re-
lation κ = ~

2kB
, the stochastic action of the “thermal”

type cannot be ignored even at the Kelvin temperature
T0 = 0.

On this basis, we constructed a theory of fluctuations
for macroparameters and their correlations, which is pre-
sented below. In so doing and keeping preserved all
traditional relations between thermodynamic quantities
coupled with the temperature, we introduced the corre-
sponding effective macroparameters, which are the same
functions of the effective temperature.

2. Effective Temperature and Effective Internal
Energy Fluctuations

To calculate the dispersions of macroparameters taking
the stochastic action of the quantum-mechanical type
into account at any temperatures, let us use the results
of work [9], which is a macrodescription in the framework
of a theory called by us the modern stochastic thermo-
dynamics [11]. It is based on the Gibbs distribution in
the space of macroparameters [5, 12].

To describe the stochastic environment, we introduce
a quantum-mechanical model (a quantum thermostat)
that combines the concepts of vacuum and thermostat.
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It comprises an infinite set of quantum-mechanical nor-
mal modes of all frequencies at any fixed Kelvin temper-
ature, being an analog of equilibrium thermal radiation.
The effective temperature of the object (11) is supposed
to fluctuate as well with a characteristic frequency ω, so
that the zeroth law reads

T = T0 ±ΔT (13)

in the developed theory, where T0 is the effective tem-
perature of the thermostat, and ΔT is the standard de-
viation of the effective temperature of the object under
the equilibrium conditions.

From the modern viewpoint, the primordial principle
of the fluctuation theory of macroparameters is the prin-
ciple of entropy maximum in the thermal equilibrium
state. The exponential Gibbs form for the distribution
in the space of macroparameters follows from it [12],

dW (E) = ρ(E)dE =
1
Θ

exp{− E
Θ
}dE . (14)

Here, E is a random value of the internal energy of a
macroobject, which depends on the macroparameters
that characterize the type of its interaction with the en-
vironment.

One should bear in mind that, in the initial version
of the macroparameter fluctuation theory, the distribu-
tion modulus corresponded to the classical model of ther-
mostat with the Kelvin temperature T0. Since the de-
veloped theory uses the quantum-mechanical model of
thermostat, the corresponding distribution modulus is
expressed in terms of the effective thermostat tempera-
ture T0 like kBT0. As a result, the standard formula for
the macroparameter fluctuation distribution [1–3] and
the expressions for the dispersions of any macroparam-
eters, which follow from it, remain formally invariable,
but they are expressed now in terms of effective macropa-
rameters. Therefore, the dispersion of the effective tem-
perature of a macroobject, instead of formula (4), looks
like

(ΔT)2 =
kB

CV
T2

0, (15)

CV ≡
∂U
∂T

(16)

is the effective heat capacity of the object. Accordingly,
for the dispersion of the effective internal energy, instead
of formula (5), we obtain

(ΔU)2 = kBCV T2
0. (17)

In other words, all expressions (13)–(17) preserve their
earlier forms in the new theory. In this way, the concept
of the equilibrium state between an object and a stochas-
tic environment remains also invariable. However, this
equilibrium is now a generalized concept, which involves
the existence of two nonadditive types of stochastic ac-
tion in the integral concept of effective temperature T.

Now, let us apply the results obtained to the study
of a macroobject that can be represented as a quantum-
mechanical oscillator2. For this object, U ≡ UPl, and the
effective heat capacity CV = kB. Then formula (15) for
the effective temperature dispersion looks like

(ΔT)2 = (T0)2,

and the relative dispersion of the effective temperature
of this object obeys condition (3) now. It is the differ-
ence of this quantity from the dispersion of the Kelvin
temperature of the same object in the quantum statisti-
cal mechanics. Accordingly, the relative dispersion of its
internal energy, with regard for the general formula (17)
and the formulas CV = kB and U = kBT0, reads

(ΔU)2

U2
=
kBCV (T0)2

(kBT0)2
= 1, (18)

and condition (2) is also satisfied.
To make a more detailed comparison between the for-

mulas obtained here and those known from the quantum
statistical mechanics, let us express the dispersion of the
effective internal energy of a quantum-mechanical oscil-
lator in the form

(ΔU)2 =
(

~ω
2

)2 [
1 + sinh−2

(
κ
ω

T0

)]
. (19)

By comparing formulas (19) and (8), where the heat ca-
pacity looks like expression (7), we can present the sec-
ond term in Eq. (19) in the form that reminds the initial
formula (5), but includes an explicit dependence on the
Kelvin temperature T0,

(ΔU)2 =
(

~ω
2

)2

+ kB(CV )quT
2
0 . (20)

Expression (20) evidently differs from expression (9) by
an additional term, which can be written down in the
form(

~ω
2

)2

=
~
2
ρω(ω, 0)ω2, (21)

2 Note that the scope of problems, which can be solved with the
use of this model, is wide enough, because the potential energy
can be approximated by a parabola in a vicinity of its minimum.
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ρω(ω, 0) ≡ ∂U
∂ω

∣∣∣∣
T=0

=
~
2

(22)

is the spectral density of the effective internal energy at
T0 = 0. Then, formula (20) reads

(ΔU)2 =
~
2
ρω(ω, 0)ω2 + kB(CV )quT

2
0 . (23)

It is worth to note that, in contrast to the quantum-
statistical formula (8) valid for quantum-mechanical os-
cillators, formula (23) of the developed theory contains
an additional term, which reveals itself at T0 = 0 as well.
Really, in the limit T0 → 0, the second term in formula
(23) disappears, so that

(ΔU min)2 =
~
2
ρω(ω, 0)ω2 = (U min)2 =

(
~ω
2

)2

6= 0. (24)

In the quantum statistical mechanics, on the contrary,
(ΔUqu)2 → 0 at T0 → 0. Hence, in the theory developed
here, the validity of condition (2) for the effective inter-
nal energy both at an arbitrary Kelvin temperature and
at T0 → 0 is essentially associated with the account for
the energy of zero oscillations.

In our opinion, another important result was also ob-
tained in this consideration. It consists in that the zero
energy has not also an exact invariable value, but pos-
sesses a certain “dispersion” or “width”, by fluctuating
within its limits. Naturally, there arises a question: “At
the expense of what does it take place?” The answer is
that, in this case, the system is in the equilibrium contact
with “cold” (in the Kelvin sense) vacuum, which renders
a quantum-mechanical stochastic action. The latter re-
sults in the randomization of the internal energy of an
object even at the absolute zero temperature.

3. Fluctuations of Effective Entropy and Their
Correlation with Fluctuations of Effective
Temperature

Under the thermal equilibrium conditions, besides the
fluctuations of individual macroparameters, δA and δB,
a considerable role is also played by the correlation be-
tween them. The measure of this correlation is known
to be given by the expression σAB ≡ 〈δA, δB〉 referred
to in the general case as the correlator.

Let us analyze the correlation between the fluctuations
of effective macroparameters. In so doing, we are inter-
ested in a nontrivial case of conjugate effective macropa-
rameters. It is known that the concept of conjugate
quantities is one of the key ones in quantum mechanics.

Nevertheless, it is also used in thermodynamics, but, as
a rule, on the basis of heuristic considerations. While
analyzing the thermodynamic potentials (see, e.g., work
[13] by Sommerfeld), it hits you in the eye that they con-
tain some stable combinations of macroparameters, such
as (Ada) or (adA). For instance, the temperature is al-
ways combined with the entropy, and the pressure with
the volume. Physically, those relations reveal themselves
in every pair in the existence of a nonzero correlator be-
tween macroparameter fluctuations, which reflects their
mutual interdependence. This circumstance forms the
initial base to consider the pair of effective quantities
S and T as thermodynamically conjugate, like the pair
coordinate–momentum in quantum mechanics.

To substantiate this statement within the developed
theory, let us calculate the dispersion of the effective en-
tropy and the correlator between the fluctuations of the
effective entropy and the effective temperature. Taking
into account that, at a fixed effective volume V, the fluc-
tuation of the effective entropy is

δS =
δU
T0

∣∣∣∣
V

=
1

T0
CV · δT, (25)

we obtain the following expression for the corresponding
dispersion:

(ΔS)2 ≡ 〈(δS)2〉 =
C2

V

T2
0

〈(δT)2 〉 =
C2

V

T2
0

(ΔT)2. (26)

Taking into consideration the consequence of general for-
mula (15) for the standard deviation of the effective tem-
perature, (ΔT) = (kB)1/ 2

0 T(CV)−1/ 2, and extracting the
square root of expression (26), we obtain that the stan-
dard deviation of the effective entropy reads

ΔS =
C2

V

T0
(ΔT) =

(
kBC2

V

)1/2
. (27)

To derive the required fluctuation correlator σST, let
us use formula (25) once more. We obtain that this
correlator is proportional to the temperature dispersion:

σST = 〈δS · δT〉 =
CV

T0
〈δT · δT〉 =

CV

T0
(ΔT)2. (28)

Taking Eq. (15) into account, the corresponding fluctu-
ation correlator is

σST =
CV

T0

kB

CV
(T0)2 = kBT0, (29)

so that the dependence on the effective heat capacity
disappears. In other words, the correlator of the effec-
tive macroparameters σST is governed only by a param-
eter of the quantum thermostat, namely, by its effective
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temperature, which, in accordance with Eq. (12), does
not equal zero in principle. Therefore, it behaves like a
quantum-mechanical correlator between the variables p
and q in quantum mechanics, which also does not equal
zero. This circumstance comprises an additional argu-
ment to consider the effective macroparameters S and T
as conjugate quantities.

4. Interrelation between the Correlation of
Conjugate Micro- and Macroparameter
Fluctuations and the Effective Action
by the Environment

To elucidate the physical sense of the expression for σST
in the form (29), we address to the (~, k)-dynamics [8,
10]. In so doing, we proceed from Bogoliubov’s idea
[14], according to which only the stochastic action of the
environment can invoke a nontrivial correlation between
fluctuations of the micro- and macroparameters. In the
framework of the (~, k)-dynamics [10], it was found that,
at the microlevel, this action is described by a specific
operator, Schrödingerian,

̂ ≡ δp̂ · δq̂ = σ̂ − i̂0, (30)

where

δp̂ = p̂− 〈|p̂|〉; δq̂ = q̂ − 〈|q̂|〉;

σ̂ ≡ 1
2
{δp̂, δq̂}; ̂0 ≡

i

2
[p̂, q̂] =

~
2
Î ,

and Î is the unit operator.
As a natural measure for the stochastic action by the

environment at the microlevel, we introduced a specific
parameter, the action J , defined as the absolute value
of the averaged Schrödingerian,

J ≡
√

Σ 2 +
~2

4
, (31)

where Σ and ~
2 are the average values for the operators

σ̂ and ̂0, respectively. The quantity

Σ =
∣∣〈ψ∗(q)| σ̂ |ψ(q)〉

∣∣ = ~
2
α

is determined by the phase of the complex wave function

ψ(q) =
[
2π(Δq)2

]−1/4
exp

{
− q2

4(Δq)2
(1− iα)

}
.

A similar form has, e.g., the wave function of a free mi-
croparticle, which describes a smearing of its initial state
in time at the zero Kelvin temperature [15].

However, the meaning of J can be interpreted differ-
ently. It can also be regarded as the absolute value of
“quantum-mechanical correlator” |〈δp|δq〉| for the fluc-
tuations of canonically conjugate quantities, the coordi-
nate and the momentum,

J ≡
∣∣〈 | ̂ | 〉∣∣ = ∣∣〈 | δp̂ · δq̂ | 〉∣∣ = ∣∣〈 δp | δq 〉∣∣. (32)

At the macrolevel and in the equilibrium state with
the quantum thermostat, the applicability region for
definition (32) becomes wider [8, 10, 11]. The role of
the wave function used for averaging the operator ̂ is
played by a complex-valued wave function of warm vac-
uum in the coordinate representation, which depends on
the Kelvin temperature of the quantum thermostat,

ψT0(q) =
[
2π( ΔQ)2

]−1/4
exp

{
− q2

4(ΔQ)2
(1− iαT0)

}
,

(33)

where the parameter

αT0 =
1

sinh(κ ω
T0

)
(34)

is included into the wave-function phase, and

(ΔQ)2 =
~

2mω
coth

(
κ
ω

T0

)
. (35)

is the coordinate dispersion.
As a result, the quantity

J0 =
∣∣〈ψ∗T0

(q)| ̂ |ψT0(q)〉
∣∣ =

=

√
~2

4
α2

T0
+

~2

4
=

~
2

coth
(

κ
ω

T0

)
, (36)

which is equivalent to J , appears as a natural character-
istic of the integral stochastic action at the macrolevel.
The quantity J0 was introduced earlier empirically as
a new effective thermodynamic parameter, the effective
action of the quantum thermostat, typical of stochastic
thermodynamics [9,11]. Its important feature consists in
that it is formally equivalent to other effective macropa-
rameters of equilibrium stochastic thermodynamics and
is genetically coupled with the microdescription through
the wave-function phase depending on αT0 . This cir-
cumstance can be used for the interpretation of deeper
interrelations between two levels of the description of the
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Nature, the quantum-mechanical theory and the thermo-
dynamics. In particular, when comparing Eqs. (34) and
(36), one can see that

ΣT0 =
∣∣〈ψ∗T0

(q)| σ̂ |ψT0(q)〉
∣∣ = ~

2
αT0 . (37)

At the same time, using formula (7) for the heat capacity
(CV )qu, we obtain

ΣT0 =
T0

ω

√
kB(CV )qu. (38)

Hence, the same quantity ΣT0 characterizing the thermal
action in the equilibrium state is strictly coupled with
a nonzero phase of the warm-vacuum wave function at
the microlevel and, simultaneously, with a nonzero heat
capacity at the macrolevel.

In work [8], it was shown that, in the state of equilib-
rium between a quantum-mechanical oscillator and the
quantum thermostat, the quantum-mechanical correla-
tor “coordinate–momentum” looks like

σPQ =
~
2

coth(κ
ω

T0
) = J0, (39)

We emphasize that, in the given context, the quantities
p and q acquire the meanings of the effective macropa-
rameters P and Q of the object in the model of quantum-
mechanical oscillator, which is in the state of equilibrium
with the environment.

Changing over to the microdescription in the limit
T0 → 0, formula (39) can be transformed to the form

σmin
PQ = Jmin

0 =
~
2
, (40)

where the minimum value of σPQ is determined by
Planck’s constant that characterizes the quantum-
mechanical stochastic action. A comparison of formulas
(40) and (36) suggests that, in the general case, the effec-
tive action J0 in the equilibrium state can be presented
in the form

J0 =
1
2

~∗(~, kB) >
~
2
, (41)

where the quantity ~∗ ≡ ~ coth( ~ω
2kBT0

) can be naturally
interpreted as a generalization of the elementary action
~ to the case with T0 6= 0.

While comparing formulas (12) and (36), one can see
that the quantities J0 and T0 are proportional to each
other,

T0 =
ω

kB
J0. (42)

This fact gives grounds to use J0, rather than T0, as a
“marker” of the equilibrium with the environment in all
thermodynamic relations.

We now consider the correlator of fluctuations of the
conjugate macroparameters, the effective entropy and
the effective temperature, typical of the macrodescrip-
tion. Using interrelation (42), we demonstrate that the
correlator σST of the form (29) also depends on J0. Re-
ally, in view of formula (42), relation (29) can be pre-
sented in the form

σST = 〈δ S, δT〉 = ωJ0. (43)

Examining the limiting (at the Kelvin temperature T0 →
0) correlator value σST = ωJmin

0 , we see that, in this
case, it is determined only by a stochastic action of the
quantum-mechanical type,

σmin
ST = ωJmin

0 = Umin
0 =

~ω
2
, (44)

where the energy of zero oscillations stands on the right.
Hence, according to formulas (40) and (44), the min-

imum values of fluctuation correlators for both pairs of
the conjugate variables, (P,Q) and (S,T), are deter-
mined by the same Planck’s constant. As the temper-
ature grows, the correlators σPQ and σST increase syn-
chronously, remaining proportional to each other.

5. Schrödinger uncertainty relations and their
role in the theory of fluctuations of micro-
and macroparameters

It is known that the physical content of the uncertain-
ties relation (UR), introduced for the first time by W.
Heisenberg in quantum mechanics, has been associated
for many years exclusively with the theory of measure-
ments. However, it was found that URs take place in
other theories as well: in the equilibrium thermodynam-
ics, theory of Brownian motion, and so forth. In our
opinion, this circumstance is related to the stochastic ac-
tion of an environment, which implicitly generates URs
in those theories. From this viewpoint, a search for a
universal relation between URs arising at zero and finite
temperatures is quite justified. The analysis of fluctu-
ations of conjugate micro- and macroparameters, which
was carried out above, allows URs to be interpreted in
the framework of the fluctuation theory developed here.

From the mathematical viewpoint, the most general
UR proposed by E. Schrödinger (SUR) is an implemen-
tation of the Cauchy–Buniakowski–Schwarz inequality in
the space of corresponding quantities [15],

UPAB ≡ ΔAΔB > σAB . (45)
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Here, UPAB is the product of standard derivations (the
“uncertainties product ”). The standard deviations ΔA
and ΔB play the role of a measure for the “uncertain-
ties” of random variables, the macroparameters A and
B. Accordingly, σAB is the correlator of fluctuations of
those quantities.

For conjugate micro- and macroparameters, the
nonzero correlator of fluctuations imposes a restriction
on the mutual behavior of standard deviations of those
quantities. To show the fundamental character of similar
restrictions, the left- and right-hand sides in relation (45)
should be calculated independently, both in the micro-
and macro-theories.

To calculate the quantity UPST, which is typical of
the macrotheory, we use formulas (27) and (15). As a
result, we obtain that this quantity does not depend on
the effective heat capacity and looks like

UPST ≡ (ΔS)(ΔT) = kBT0. (46)

Comparing formulas (46) and (29), we notice that,
in the state of equilibrium between the object, which is
simulated as a quantum-mechanical oscillator, and the
quantum thermostat, two different physical quantities,
UPST and σST, have identical values. Therefore, the
SUR “effective entropy–effective temperature” becomes
an equality in this case, i.e. it is saturated.

UPST = σST. (47)

If V 6= const owing to the growing ΔS at a immutable
σST, the discussed SUR is transformed into an inequality,
so that, in the general case, we have

UPST > σST. (48)

Now, let us take into account that the correlator σST
can be presented in the form (43). It is equivalent to
the statement that mutual restrictions on the uncertain-
ties ΔS and ΔT for an object in the equilibrium state
are dictated by the integral stochastic action of the en-
vironment, which is characterized by the quantity J0.
Therefore, in the equilibrium state, the SUR “effective
entropy–effective temperature” takes the form

UPST = ωJ0 = ω
~∗

2
= UPl. (49)

We should emphasize that the left- and right-hand sides
of this SUR were obtained in the framework of the
macrotheory, in which the expression for the Planck en-
ergy UPl is taken from the experiment. In the limit
T0 → 0, relation (49) looks like

UPmin
ST = ωJmin

0 = Umin
Pl =

~ω
2
, (50)

where the energy of zero oscillations stands on the right.
To calculate the quantity UPPQ typical of the mi-

crotheory in the case of a quantum-mechanical oscilla-
tor, i.e., in the state of equilibrium with a quantum-
mechanical thermostat, we use the expressions

ΔP =

√
~mω

2
coth

(
κ
ω

T0

)
,

ΔQ =

√
~

2mω
coth

(
κ
ω

T0

)
,

which are contained in the wave functions of warm vac-
uum in the momentum and coordinate representations,
respectively. Then we obtain

UPPQ =
~
2

coth
(

κ
ω

T0

)
. (51)

Comparing formulas (51) and (36), we obtain the SUR
“coordinate–momentum” for a quantum-mechanical os-
cillator in the state of equilibrium with the quantum
thermostat,

UPPQ = J0, (52)

with the minimum value Jmin
0 = ~/2.

Note that, in contrast to SUR (49), both the left-
and right-hand sides in SUR (52) were derived in the
framework of the microtheory. The saturated form of
this SUR is associated with the fact that the averaging
of the corresponding operators of stochastic action was
carried out with the use of the wave function depend-
ing on the temperature. The fact that both SURs (49)
and (52) are governed by the same macroparameter, J0,
is a substantial confirmation of the overlapping of those
theories, which are traditionally referred exclusively to
either micro- or macrodescriptions of the Nature.

It is worth demonstrating an interesting consequence
of such an overlapping. It is known that the restric-
tion imposed on the value of UPPQ from below, which is
equal to ~/2, allows one to introduce, in the framework
of the microtheory, elementary cells 2π~ in dimensions in
the “coordinate–momentum” phase space, which is a ba-
sis of the quasiclassical approximation in the quantum-
mechanical theory. Following the analogy found above,
it is also possible to introduce the “effective entropy–
effective temperature” phase space in the framework of
the macrotheory. The restriction on UPST equal to 1

2ω~∗
at an arbitrary temperature means that this space is also
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partitioned into elementary cells of 2πω~∗, the dimen-
sions of which, however, increases with the temperature.

In this connection, there emerges a tempting idea to
treat the theory of fluctuations of macroparameters in
the framework of equilibrium stochastic thermodynam-
ics as a quasiclassical theory in the phase space of the
variables (S,T). In its turn, the quasiclassical approxi-
mation in the quantum-mechanical theory can be treated
as a theory of fluctuations of microparameters in the
phase space of the variables (p, q). Such an interpre-
tation allows the mathematical apparatus of the cor-
responding theories to be combined in the framework
of a synthetic theory, which would substantially cover
both the traditional thermodynamics and the traditional
quantum-mechanical theory.

6. Conclusions

To summarize, we have proposed an approach, which al-
lows the main paradox of the standard theory of fluctu-
ations of macroparameters to be overcome. The para-
dox is associated with the fact that the conventional
method of taking the quantum-mechanical effects into
account leads to that the results obtained go beyond
the scope of the thermodynamic description. As a re-
sult, on the basis of the quantum-mechanical model of
thermostat and the microdescription within the (~, k)-
dynamics, a theory of quantum-thermal fluctuations of
effective macroparameters and their correlation has been
developed, with the corresponding thermodynamic de-
scription being preserved.

It has been demonstrated that the effective action,
which is regarded as a macroparameter that reflects the
stochastic influence of the environment, is responsible
for the formation of corresponding dispersions and cor-
relators. We also found that the uncertainties product
of conjugate macroparameters, the effective entropy and
the effective temperature, which characterizes the area
of an elementary cell in the phase space, is confined from
below by the energy of zero oscillations when approach-
ing the absolute zero temperature.

In addition, we have showed that the correlators of the
pairs of conjugate effective macroparameters (S,T) and
(P,Q) in the equilibrium state are proportional to each
other at any Kelvin temperature and linearly depend on
the same macroparameter, the effective action J0 of the
quantum thermostat.

At last, we have demonstrated that the minimum val-
ues of UPPQ and UPST are determined by the same world
constant; it is Planck’s constant. It allows the theory of
fluctuations of effective macroparameters to be regarded

as a quasiclassical theory in the phase space of the vari-
ables (S,T), and the quasiclassical theory in the phase
space of the variables (p, q) as a theory of microparam-
eters fluctuations.
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КВАНТОВО-ТЕПЛОВI ФЛУКТУАЦIЇ ЕФЕКТИВНИХ
МАКРОПАРАМЕТРIВ ТА ЇХ КОРЕЛЯЦIЇ

О.Д. Суханов, О.Н. Голубєва, В.Г. Бар’яхтар

Р е з ю м е

Показано,що використання стандартної теорiї флуктуацiй ма-
кропараметрiв удеяких випадках приводить до виходу за
межi термодинамiчного опису. Сформульовано основи теорiї
квантово-теплових флуктуацiй ефективних макропараметрiв
та їх кореляцiї, узгодженої з умовами застосовностi рiвнова-

жної термодинамiки i заснованої на ефективних макропара-
метрах, що враховують цiлiсний стохастичний вплив оточен-
ня за будь-яких температур. Обчислено корелятор спряжених
макропараметрiв – ефективної ентропiї та ефективної темпера-
тури – i встановлено його пропорцiйнiсть ефективному впливу,
що характеризує стохастичне оточення. Продемонстровано, що
корелятори пар спряжених ефективних параметрiв “ентропiя–
температура” i “координата–iмпульс” лiнiйно залежать вiд ефе-
ктивного впливу, а їх мiнiмальнi значення визначаються ста-
лою Планка.

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 10 1129


