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The coplanar electrons and holes in a strong perpendicular mag-
netic field at low temperatures form magnetoexcitons when the
Coulomb interactions between electrons and holes lying on the
lowest Landau levels play the main role. However, when the elec-
trons and hole layers are spatially separated, and the Coulomb
electron-hole interaction diminishes, a two-dimensional electron
gas (2DEG) and a two-dimensional hole gas (2DHG) are formed.
Their properties under conditions of the fractional quantum Hall
effect can influence the properties of 2D magnetoexcitons. These
properties are discussed in the present review.

1. Introduction

The theory of two-dimensional (2D) magnetoexcitons
was developed in a number of papers including the in-
vestigations of their Bose–Einstein condensation, optical
properties, and collective elementary excitations [1–8].
The actual developments in exciton physics are based
on the previous achievements in this field, including
the contribution of the Institute of Physics (IOP) of
the National Academy of Science of Ukraine (NASU)
situated in Kiev, where, due to the initiative of Aca-
demicians A.S. Davydov and A.F. Prikhot’ko, the in-
vestigations in the field of exciton physics were orga-
nized on a large scale many years ago. It is sufficient
to mention the group of that time collaborators and of
former collaborators at the IOP NASU in the compo-
sition of A.S. Davydov, A.F. Prikhot’ko, M.S. Brodin,
V.L. Broude, A.F. Lubchenko and E.I. Rashba together
with their colleagues E.F. Gross, A.A. Kaplyanskii, and
B.P. Zakharchenya from A.F. Ioffe Physico-Tehnical In-
stitute of the Russian Academy of Sciences. In 1966, all
of them were awarded by the Lenin prize of the former

Soviet Union, the highest distinction in USSR, for their
outstanding scientific achievements in exciton physics.

The present review was written in the honor of Aca-
demician M.S. Brodin celebrating the eightieth anniver-
sary of his birthday.

2. The Ginzburg–Landau Theory of the
Fractional Quantum Hall Effect

Describing these questions, we will follow the collective
monograph [9] devoted to the fractional quantum Hall ef-
fect (FQHE) and the candidatus scieritiarum thesis writ-
ten by Enger [10] in a clear and accessible way, as well as
many published papers cited below. The Landau theory
for the second-order phase transition is based on the in-
troduction of an order parameter [11] φ(rt), by assuming
that the free energy is a regular function of φ at least
near the critical point. In the case of superconductors
and superfluids, the role of order parameter is played by
the condensate wave functions. The theory was elabo-
rated by Ginzburg and Landau [12] for superconductors
and by Ginzburg and Pitaevskii [13] for liquid helium.
The microscopic foundations in the latter case were pro-
posed by Pitaevskii [14] and Gross [15] and were ex-
plained in the monograph by Nozieres and Pines [16].
The microscopic theory of superfluidity was firstly pro-
posed by Bogoliubov in the model of weakly interacting
Bose gas [17]. The density of the Helmholz free energy
f(r) expanded in the small order parameter φ has the
form

f(r) = f0 + α |φ|2 +
β

2
|φ|4 +

~2

2m
|∇φ|2 . (1)

ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 10 1037



S.A. MOSKALENKO, M.A. LIBERMAN, B.V. NOVIKOV et al.

In the case of superconductors, it is necessary to include
the effect of an applied electromagnetic field. This can
be made, by substituting the canonical momentum p̂ =
−i~∇ by the kinetic momentum

p− q

c
A(r), (2)

where A is the vector potential, and q is the charge of a
Cooper pair, q = −2e.

The density of the Gibbs free energy including also
the density of the magnetic field energy looks as

g(r) = f0 + α |φ|2 +
β

2
|φ|4 +

+
1

2m

∣∣∣∣(−i~∇+
2e
c

A
)
φ

∣∣∣∣2 +
B2

2µ0
, (3)

where B = rotA. Minimizing the total Gibbs energy
G =

∫
g(r)dr with respect to φ and A gives

1
2m

(
−i~∇+

2e
c

A
)2

φ+ αφ+ β |φ|2 φ = 0,

1
µ0

∇×B =
ie~
m

(φ∗∇φ− φ∇φ∗)− 4e2

mc2
|φ|2 A. (4)

They are the Ginzburg–Landau (GL) equations, where
µ0 is the magnetic permeability.

The Ginzburg–Pitaevskii–Gross equation for the
Bose–Einstein condensate wave function φ(r, t) is

i~
∂φ(r, t)
∂t

= − ~2

2m
Δφ(r, t) + λ |φ(r, t)|2 φ(r, t). (5)

Separating the space and time parts φ(r, t) = e−iµtφ(r),
and choosing the chemical potential µ = λρ0, one can
transform (5) into the equation

− ~2

2m
Δφ(r) + λ

(
|φ(r)|2 − ρ0

)
φ(r) = 0, (6)

which is known as Gross–Pitaevskii equation or non-
linear Schrödinger equation. As was mentioned in [9,
18], the GL theory is needed also for the FQHE to bet-
ter understand this phenomenon.

The FQHE is a remarkable example of the quantum
effects observable on a macroscopic level similarly as su-
perconductivity and superfluidity. All these phenomena
have a ground state with a non-zero density of particles.
In all three cases, there are quasiparticle excitations in
the form of vortices. But there are some aspects of the

FQHE, which are not present in the GL theories of su-
perconductors and superfluids. First, there is a gap in
the spectrum of collective elementary excitations, which
leads to the incompressibility of the FQHE systems. The
second important difference is related to the properties
of vortices in the FQHE case. They play the role of
single-particle excitations and have a finite creation en-
ergy, as opposite to the vortices in the superfluid He-II
with an extensive creation energy of a vortex propor-
tional to ln(R/a), where R is the radius of the system
and a is the vortex core.

In addition, the FQHE vortices have fractional charges
[18]. In a number of papers, some versions of the GL
theory for the FQHE were proposed starting with the
Lagrangian of the system containing the supplementary
term known as Chern–Simons term. It describes the
gauge vector potential generated by the vortices; they
are induced, in turn, by flux quanta created by the ex-
ternal magnetic field B. Instead of the Gibbs free energy,
the action of the system is studied.

Girvin [18] and Girvin and MacDonald [19] proposed,
for the first time, a phenomenological version of the GL
theory, by writing the action S in the form

S =
∫
d2r
{ ∣∣∣(−i~∇+

e

c
A1(r)ψ(r)

)∣∣∣2 +

+i(ψ∗(r)ψ(r)− n0)φ(r)−

− iθ

8π2
(φ∇×A1 + A1 ×∇φ)

}
, (7)

where

A1 = A + a (8)

is an effective summary vector potential composed from
the physical external vector potential A generating the
magnetic field B = rotA and from a gauge vector po-
tential a created by the vortices. The effective field A1

represents the frustration arising in the system, when
the density of particles ρ(r) = |ψ(r)|2 deviates from the
quantized Laughlin’s density n0 [20], which determines
the fractional filling factor ν = 1/m with m integer. The
density n0 is named the flux density being determined
by the magnetic field B through the magnetic length l in
the form n0 = 1/m2πl2, where l2 = ~c/eB. The equa-
tion of motion for the vector A1 in a static case looks
as

θ∇×A1 = (ψ∗ψ − n0), θ = 2π/m. (9)
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The proposed phenomenological GL theory allows one to
understand that the creation energy of a single vortex is
finite, and that the vortex has a fractional charge. The
difference between the FQHE and ordinary superfluidity
was explained by the strong phase fluctuations induced
by the frustration.

Zhang, Hansen, and Kivelson [20] derived their field-
theory model starting from the microscopic Hamilto-
nian. They constructed the GL theory similar to that by
Girvin, but with one difference concerning the Chern–
Simons term, which contains only the gauge field a(r)
[20]. As in the previous papers [19], it was confirmed
that the disturbances of the localized density moving the
system away from the good filling fractions lead to the
creation of single-particle excitations. These quasiparti-
cle and quasihole excitations have the form of vortices
with static nonuniform finite-energy solutions. Side by
side with the single-particle excitations, the collective el-
ementary excitations were discussed in [20]. To this end,
the Lagrangian was expanded up to terms quadratic in
δφ and δa about the constant solutions corresponding
to vacuum expectation values. The fluctuating values
δφ and δa were represented in the form of plane waves
with vector q. The dispersion relation was found in the
form [20]

ω2(q) = (eκB)2 +
1
4
κq2(κq2 + 8λn0). (10)

It has a gap at the point q = 0 proportional to the
external magnetic field B. For negative λ, but for a suffi-
ciently small parameter |λ| /κ, the dispersion curve has a
roton-type behavior with the same shape, as was derived
by Girvin, MacDonald, and Platzman [21]. The GL
theory developed in [20] describes the incompressibility,
fractional charge, and fractional statistics of quasiparti-
cles. But, being a coarse-grained version of the FQHE, it
makes errors on the magnetic length scale. It treats the
gauge field in the mean-field approximation and repro-
duces correctly the long-wavelength effects of the quan-
tum Hall systems excluding such details as the descrip-
tion of a vortex core. The idea that the long-wavelength
effects of the physical magnetic field are cancelled by the
gauge field was also suggested by Laughlin [22] and in
[23, 24].

3. Point Vortices in the Conditions of FQHE

Because the vortices play an important role in the un-
derstanding of the FQHE, some information about them
is needed. The explanations presented below beginning
with classical hydrodynamics and going on to quantum

vortices have been gotten from Enger [10] and Myklebus
[25] theses. An ideal fluid without viscosity is described
in classical hydrodynamics by the continuity equation

∂ρ

∂t
+∇(ρv) = 0 (11)

and Euler’s equation

∂v
∂t

+ (v ·∇)v = −∇p

ρ
, (12)

where ρ, p, and v are the density, pressure, and veloc-
ity field, respectively, at each point of the liquid. The
vorticity is defined in 3D hydrodynamics as ω = ∇× v.
If the liquid is not only ideal but also isentropic, with
constant entropy along it, the vorticity ω obeys a sup-
plementary continuity equation. If ω = 0 at all points
of the fluid, it is called irrotational with a potential flow.
In this case, one may introduce the velocity potential φ

v = ∇φ, ω = ∇× v = 0. (13)

In physical fluids, the vorticity is localized in small
areas. Outside of the vortices, the majority of a fluid is
irrotational. In a 3D liquid, the vortex is a tube with
strength κ defined as

κ =
∫
ωdσ =

∮
vdl. (14)

The Helmholtz theorem establishes that the same par-
ticles take part in the vortex formation in all the time
and that the strength is the same in all the times, as well
as along the tube.

In the case of a 2D fluid, the notion of point vortex
with zero area is introduced. The velocity field generat-
ing such a vortex may be represented by the expressions

v =
κ

2πr
eθ =

κ

2π

(
−i

y

r2
+ j

x

r2

)
;

eθ = j cos θ − i sin θ; er = i cos θ + j sin θ;

∇ = i
∂

∂x
+ j

∂

∂y
=

∂

∂r
er +

1
r

∂

∂θ
eθ. (15)

Here, κ is the vortex strength, whereas the unit vectors
i, j, er, and eθ correspond to the rectangular and polar
2D coordinates. Following [26], we must take the defini-
tion of a curl in the 2D space into account, namely that
the curl of a vector is a scalar and the curl of a scalar is
a vector as follows:

ω = Curlv = ∇×v = εij∂ivj ; (CurlS)i = εij∂jS, (16)
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where εij is an antisymmetric tensor with the properties
ε12 = −ε21 = 1; ε11 = ε22 = 0.

These rules lead to the vorticity of a point vortex with
the velocity field (15)

ω(r) = Curlv =
κ

2π
Δ ln r = κδ(2)(r). (17)

The velocity field created by a point vortex has a sin-
gularity. It is irrotational or potential almost in the
whole space except at the origin at the point r = 0.
For this reason, the vortex area is zero. Nevertheless,
the summary vorticity due to singularity (17) is finite.
In the same way, the circulation of the vortex is also
finite as follows:∫
ωd2r = lim

r→∞

∮
κ

2πr
eθdl = κ; dl = rdθeθ. (18)

A fluid containing a point vortex will have potential flow
almost everywhere. A point vortex in an incompressible
liquid has the energy∫
mv2

2
d2r =

mκ2

2π
ln
R

a
, (19)

where R is the length scale of the whole system and a
is the core radius. A classical system of N point vor-
tices in an incompressible liquid has the kinetic energy
associated with each vortex and the interaction energy
between them. This interaction does not come from the
electric charge of vortices, because they are neutral. For
two vortices with guiding centers R1 and R2, it is useful
to define a guiding center of a pair Rgc and its relative
coordinate Rrel in the form

Rgc = R1 + R2; Rrel = R1 −R2. (20)

The equations of motion for a pair of vortices with
equal strengths κ1 = κ2 = κ are

Ẋgc = Ẏgc = 0;

Ẋrel = − κYrel

πR2
rel

;

Ẏrel =
κ

π

Xrel

R2
rel

. (21)

These equations describe a circular motion around a
fixed point named as a stationary guiding center with an
angular velocity Ω depending on the constant separation
distance of the vortices |Rrel| as follows:

Ω =
κ

π |Rrel|2
. (22)

For a pair of vortices with opposite vorticities κ =
κ1 = −κ2, i.e. for a vortex-antivortex pair, the equations
of motion are

Ẋgc =
κ

π

Yrel

|Rrel|2
;

Ẏgc = −κ
π

Xrel

|Rrel|2
;

Ẋrel = Ẏrel = 0. (23)

The vortices will not move relative each other, but
will follow a straight line perpendicular to the vector
Rrel connecting the vortices [10].
This picture is exactly the same as the structure of a 2D
magnetoexciton moving with wave vector k perpendicu-
lar to the vector d connecting the electron and the hole
in the pair with a constant distance d = kl2 at a given
k.

Now we will discuss the quantum vortices following
[10, 25]. The existence of quantum vortices was sug-
gested for the first time by Onsager [27], who proposed
that the circulation in the superfluid He-II is quantized
with the quantum of circulation h/m. The quantum vor-
tices in He-II were discussed by Feynman [28], whereas
a quantized line was observed by Vinen [29]. The quan-
tization of the vorticity in He-II can be explained in the
frame of the GL theory. The velocity field of a superfluid
described by the wave function

φ =
√
ρeiS (24)

can be written as

v =
~
m

∇S. (25)

The circulation around a close path C becomes

κ =
∮

vdl =
~
m

∮
∇Sdl =

~
m
δS, (26)

δS is a change in the phase of the wave function, as one
moves around the close path C. But the wave function
must be single-valued. For this reason, δS must be an
integer multiple of 2π. This means that

κ =
~
m

2πs, s = 0,±1,±2.... (27)

The vorticity of a quantum vortex has discrete values
with the quantum h/m. This definition of vorticity dif-
fers from the classical hydrodynamics, ω = ∇× v. The
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only rotational invariant wave function having property
(27), being written in polar coordinates, has S = sθ

φ(r) = f(r)eisθ. (28)

It produces the same velocity field as a classical point
vortex

v =
~s
mr

eθ =
κ

2πr
eθ. (29)

The kinetic energy

E =
∫

1
2
mv2d2r =

~2π

m
s2 ln (R/ξ) (30)

is expressed now through the coherence length ξ instead
of the core radius a. The cutoff at ξ is used to avoid the
logarithmic divergence near the vortex core.

Inserting the vortex function (28) into the Ginzburg–
Pitaevskii–Gross equation, Myklebust [10, 25] obtained
the equation for the function f(r),

d2f

dr2
+

1
r

∂f

∂r
+
(

2− s2

r2

)
f − 2f3 = 0, (31)

depending only on s2. As distinct from He-II, the Bose–
Einstein condensate in superconductors is formed by
Cooper pairs with the charge q = −2e instead of the neu-
tral atoms. The type-II superconductors allow the mag-
netic field to penetrate in metals forming quantized vor-
tices, while the magnetic field cannot penetrate at all in
the type-I superconductors [30]. The quantized vortices
do exist in the form of filaments named Abrikosov’s lines.
They have a mixed electron and electromagnetic field
origin and were described for the first time by Abrikosov
[31] on the base of the GL theory with a nonzero elec-
tromagnetic field A. It was shown that the magnetic
flux through a vortex tube is quantized with the flux
quantum φ0∫

Bdσ =
∮

Adl = nφ0; φ0 =
2π~c
|q|

. (32)

The total energy per unit length of the vortex tube is
finite and equals

E =
(
φ0

4πλ

)2

ln
λ

ξ
; λ > ξ, (33)

where λ is the penetration length of the magnetic field
into the II-type superconductors, as was introduced by
F. London and H. London [32], whereas ξ is the cor-
relation length between the electrons in a Cooper pair.

Girvin [18] suggested that the contribution of the elec-
tromagnetic field to the resultant current density j(r)
determined in the case of FQHE as

j(r) =
1
2
{ψ∗(r)(−i~∇)ψ(r) + ψ(r)(i~∇)ψ∗(r)}+

+
e

c
Aψ∗(r)ψ(r) (34)

will reorganize the point vortex state in such a way that
its resultant circulation at great distances r → ∞ will
be zero∮

j(r)dl = 0. (35)

This is possible only under the condition that the mag-
netic flux through the vortex surface will be quantized
in the form∫

rotAd2r =
∮

Adl = −mφ0; φ0 =
2π~c
|e|

. (36)

This value, being multiplied by n0 |e| /c, compensates
exactly the circulation arising from the electron part of
the current density∮

1
2
{ψ∗(r)(−i~∇)ψ(r)+ψ(r)(i~∇)ψ∗(r)} dl=2π~mn0,

(37)

since the wave function ψ(r) has the form

ψ(r) =
√
n0f(r)eimθ; f(r)→ 1; r →∞. (38)

The number of magnetic flux quanta m must be op-
posite to the magnetic quantum number of the electron
wave function. The creation energy of such point vortex
is finite and no extensive as in the case of a pure elec-
tron vortex. As was mentioned by Girvin and MacDon-
ald [19], the isolated vortices cost only a finite energy.
They can be excited thermally by one. Earlier, it was
necessary to create a vortex-antivortex pair with finite
creation energy for a pair as a whole, but with an exten-
sive energy for each of them. Only in the last case, the
Kosterlitz–Thouless phase transition is possibly related
to the unbinding of the vortices in pairs.

4. Gauge Transformations and Statistical
Gauge Field

Girvin and MacDonald [19] revealed a hidden symme-
try of the Laughlin’s ground state wave function [33]de-
scribing the FQHE of a 2D one-component electron gas
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(OCEG). This wave function is

ψ(z1, ..., zN ) =
∏
i<j

(zi − zj)m exp

[
−1

4

∑
k

|zk|2
]
. (39)

The filling factor of the lowest Landau level (LLL)
is a fractional number ν = 1/m, with integer m > 1.
zk = xk+ iyk are the complex coordinates of particles in
the symmetric gauge. Under the interchange of any two
particles, the wave function (39) is antisymmetric at odd
values of m and symmetric at even values, describing the
fermions and the bosons, respectively. But changing the
phase of the wave function (39) with the use of a singular
gauge transformation

ψnew(z1, ..., zN ) =

= exp

−im∑
i<j

arg (zi − zj)

ψ(z1, ..., zN ) =

=
∏
i<j

|zi − zj |m exp

[
−1

4

∑
k

|zk|2
]
, (40)

we have obtained a bosonic-type wave function at any in-
teger values of m > 1. The off-diagonal matrix elements
of the density matrix ρ(z, z′) calculated with function
(39) are short-ranged with a characteristic scale given
by the magnetic length, whereas those calculated with
the wave function (40) ρ̃(z, z′) have a slowly decreasing
behavior with the power law |z − z′|−m/2. The singular
gauge density matrix ρ̃(z, z′) has an off-diagonal long-
range order (ODLRO). The physical origin of this dif-
ference is related to the presence of the vortices induced
around each particle under the influence of the magnetic
flux quanta, as was explained by Stormer [34].

The presence of vortices can be demonstrating by a
more simple example proposed by Enger [10] with the
wave function ψ(z) of two particles depending only on
their relative coordinate z. It is supposed that ψ(z)
obeys the anyon statistics. After the particle interchang-
ing, it becomes

ψ(eiπz) = eiθψ(z);
θ = π(2n+ 1) for fermions,
θ = 2πn for bosons, (41)

n = 0,±1,±2... .

A gauge transformation eiη(z) transforms the wave
function ψ(z) into another bosonic-type wave function

eiη(z)ψ(z) = φ(z) = φ(eiπz). (42)

To satisfy this requirement and the equalities

eiη(e
iπz)ψ

(
eiπz

)
= eiη(z)ψ(z) = eiη(e

iπz)eiθψ(z), (43)

the function η(z) must satisfy the equation

θ = η(z)− η
(
eiπz

)
;

η(z) = − θ
π

arg z = − θ
π

arctan
y

x
. (44)

The transformation of the wave function (42) must be
accompanied by the transformation of the electromag-
netic field Aµ [10]

e

~c
Aµ →

e

~c
Aµ + ∂µη(z) =

e

~c
(Aµ + aµ) ;

µ = 0, 1, 2. (45)

In such a way side-by-side with the electromagnetic
potential Aµ, the supplementary gauge potential aµ cre-
ated by the vortices appears:

e

~c
aµ(r) = ∂µη(r);

aµ(r) =
~c
e
∂µη(r) = −~cθ

πe
∂µ arctan

y

x
. (46)

The statistical gauge vector potential has the form

a =
~cθ
πe

Curl ln r =
~cθ
πe

∇× ln r,

ai =
~cθ
πe

εij∂j ln r; i, j = 1, 2. (47)

This vector potential is created by the vortices arising
near each particle. It leads to the magnetic field strength
[26]

b(r) = Curla(r) = ∇× a(r) = εij∂iaj =

= −~cθ
eπ

Δ ln r = −2~cθ
e

δ(2)(r);

Δ ln r
2π

= δ(2)(r). (48)

The magnetic flux created by this magnetic field is∫
b(r)d2r = −2π~cθ

e
= − θ

π
φ0; φ0 =

hc

e
. (49)
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It equals −(2n + 1)φ0, when the initial particles de-
scribed by the function ψ(z) are fermions, and −2nφ0

for the bosonic wave function ψ(z). This result shows
that the initial fermion particles, each of them attaching
an odd number of flux quanta, transform themselves into
a composite bosons described by the new wave function
φ(z) which obeys the Bose statistics. The effective mass
m and the charge e remain the same at least in the given
approximation, but the composition and the statistics of
final quasiparticles are changed. It is said that the elec-
tron attached an odd number of flux tubes, though such
tubes do not exist in reality. We can say that, in our case,
the initial particles are fermions or electrons, whereas the
final quasiparticles are bosons. Formula (48) can be gen-
eralized to any number of particles, which create, in a
common way, the resultant magnetic field

b(r) = −2~cθ
e

N∑
i=1

δ2(r− ri) = −2θ~c
e

ρ(r), (50)

where ρ(r) is the density of particles.
As was mentioned above, Zhang, Hanson, and Kivel-

son [20] have generalized the Ginzburg–Landau theory,
by introducing the supplementary Chern – Simons [35]
term related with the influence of a statistical gauge field
into the Lagrangian. The Lagrangian of the Ginzburg–
Landau–Chern–Simons (GLCS) theory in the form pre-
sented by Enger [10] looks as

L = i~φ∗
(
∂t +

ie

~c
(A0 + a0)

)
φ+

+
~2

2m
φ∗
(

∇ +
ie

~c
(A + a)

)2

φ−

−λ
2

(φ∗φ− ρ0)
2 +

µ

2
eξνσaξ∂νaσ. (51)

Here the following denotations are used: ξ, ν, σ = 0, 1, 2;
∂0 = 1

c∂t, ∂i = {∂1 = ∂x, ∂2 = ∂y}. The tensor εξνσ has
the components different from zero only for different val-
ues of ξ, ν, σ. They change the signs at any permutations
of two indexes as follows:

ε012 = 1, ε021 = −1, ε102 = −1, ε120 = 1 and so on.
(52)

The external electromagnetic 2D vector potential A
and the scalar potential A0 are represented as Aξ =
(A0,A). aξ is the statistical gauge potential with three

components, two of them a = (a1, a2) generate the sta-
tistical “magnetic” field, and the third component a0

gives rise to the statistical “electric” field. Two param-
eters m and e of Lagragian (51) are the effective mass
and the charge of the final quasiparticles obeying the
Bose statistics. They can differ from the mass and the
charge of initial particles. The λ and ρ0 parameters are
typical of the GL theory, while µ is the Chern–Simons
parameter [28]. Variations of (51) with respect to φ∗

gives[
i~∂t −

e

c
(A0 + a0)

]
φ = − ~2

2m

[
∇ +

ie

~c
(A + a)

]2
φ−

−λ (φ∗φ− ρ0)φ. (53)

It is a nonlinear Schrödinger equation. The variation
of (51) with respect to a0 gives

µεij∂iaj = eφ∗φ = eρ, (54)

which can be transcribed as

µCurla = µ∇× a = µb = eρ. (55)

If one compares it with expression (46), the parameter
µ can be determined as

µ = −2θ~c
e2

. (56)

For the initial fermion particles with θ = π(2n+1), the
parameter µ of Lagrangian (51) equals − 2π~c

e2 (2n+ 1) =
−(2n+1)φ0

e . The third variation with respect to ai gives

µ

(
∇a0 −

1
c
∂ta
)

= ej(r), (57)

where j(r) is the current density 2D vector defined as

j =
~

2mi

{
φ∗
(

∇− ie

~c
(A + a)

)
φ−

−φ
(

∇ +
ie

~c
(A + a)

)
φ∗
}
. (58)

Equation (57) states that the statistical “electric” field

ε = −∇a0 +
1
c

∂

∂t
a (59)

is related to the particle current density j(r).
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The energy density of the GLCS system in a purely
static external magnetic field (A0 = 0) equals

E =
~2

2m

∣∣∣∣(∇− ie

~c
(A + a)

)
φ

∣∣∣∣2 +
λ

2
(ρ− ρ0)2. (60)

The simple solution of these equations can be ob-
tained, by setting

φ(r) =
√
ρ0e

iS(r). (61)

It must obey the equation

∇S +
e

~c
(A + a) = 0. (62)

In the case S = const, we have

A + a = 0. (63)

This means that the corresponding magnetic fields
B = ∇ × A and b = ∇ × a cancel each other. The
final quasiparticles named composite bosons [36–38] feel
no net magnetic field and behave themselves as bosons
interacting with one another via the φ4-type interaction.
The notion of composite particles (CPs) consisting from
electrons and attached magnetic flux quanta was intro-
duced firstly by Wilczek [36].

As was mentioned above, the collective elementary
excitations of the described ground state are the plane
waves. Their dispersion law has a gap, which means that
the system is an incompressible quantum liquid, which
cannot be excited by a very small perturbation [20, 21].

Above, we have discussed the case where the initial
wave function ψ(z) with the Fermi statistics was trans-
formed into another wave function φ(z) obeying the
Bose statistics, by using a singular gauge transforma-
tion. Read [39–42] investigated the system of 2D charged
bosons interacting with a transverse magnetic field and
between themselves. The filling factor of the LLL was
supposed to be one. This means that there is one flux
quantum for each particle. Following Read [39–42], it is
equivalently to say that there exists one vortex for each
particle. In this case, the vortex has a charge of oppo-
site sign in comparison with the initial particles having
the Bose and Fermi statistics. Now, the gauge trans-
formation attaching one vortex to each charged boson
will create composite particles with the zero resulting
charge and with the Fermi statistics. The neutral com-
posite fermions (CFs) will move in the zero magnetic
field. Such system can be described in the frame of the
Fermi-liquid-theory. Another version was considered by
Halperin, Lee, and Read [43]. The starting Hamilto-
nian describes the electrons forming a 2D electron gas

(2DEG) with the filling factor ν of the LLL equal to
one half (ν = 1/2). Now, for each electron, there are
two flux quanta or two vortices, each of them having the
charge −e/2 and the Fermi statistics. Two vortices are
equivalent to one 2-fold vortex with charge −e and the
Bose statistics. The gauge transformation of the wave
function will transform the initial charged electrons into
the composite neutral fermions, each of them consist-
ing from one electron and a 2-fold vortex. The Hamil-
tonian of the system will be changed because, instead
of the external magnetic field, a supplementary gauge
magnetic field will appear. Under well-determined con-
ditions, it cancels exactly the external magnetic field.
The initial charged fermions were converted in neutral
CFs moving in the zero resulting magnetic field. The
fictitious Chern–Simons “magnetic” field created by the
vortices being averaged in the mean-field approximation
cancels exactly the external magnetic field only in statis-
tical sense and under definite conditions. This happens
when the mean density of electrons corresponds to the
fractional integer filling factor. In the present example
with ν = 1/2, the gauge transformation does not modify
the statistics of composite particles (CPs). As was men-
tioned above, they are neutral CFs in the zero magnetic
field. The singular gauge transformations were first in-
troduced by Wilczek [36]. Halperin, Lee, and Read [43]
have introduced the electron creation operator ψ†e(r) and
the creation operator of the CP ψ†(r) containing a gauge
transformation of the form

ψ†(r) = ψ†e(r) exp
[
−im

∫
d2r′θ (r− r′) ρ̂(r′)

]
,

ρ̂(r) = ψ†e(r)ψe(r) = ψ†(r)ψ(r). (64)

Here, θ (r− r′) is the angle between the vector r−r′ and
the x-axis and has the expression

θ (r− r′) = arctan
y − y′

x− x′
. (65)

There is a nonlocal dependence between the functions
ψ†(r) and ψ†e(r). It has a general application and can be
applied not only in the case m = 2, but for any other in-
tegerm = 1, 2, 3, ... Last two versions concerning charged
bosons with ν = 1 and electrons with ν = 1/2, both of
them after the gauge transformations, deal with CFs de-
scribed in the frame of the Fermi-liquid-theory. In both
cases at T = 0, there exists the sharp Fermi sea and the
well-defined Fermi wave vector kF = 1/l. The creation
operator in the coordinate representation (64) can be
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rewritten in the momentum representation as follows:

ψ†(k) =
∫
d2reikrψ†(r). (66)

The single-particle elementary excitations appear in
the form of fractionally charged vortices. They are
fermions and have finite creation energy as was under-
lined by Girvin [18] and Girvin and MacDonald [19].
Read [39–42] argued that the ground states of the sys-
tems under the condition of FQHE with different frac-
tional integer filling factors ν = 1/m with m = 1, 2, 3, ...
contain electrons bound to vortices, since such a binding
lowers the system’s energy. An m-fold vortex carries a
charge −eνm in the fluid, where e is the electron charge,
e = − |e|. The electron-m-vortex composite, named as
CP, has a net charge zero at ν = 1/m and behaves like a
particle in the zero magnetic field. The vortex is sensi-
tive to the density of electrons, which can vary in space
and time even when the external magnetic field and the
average filling factor are fixed. The m-fold vortices are
fermions for m odd and bosons for m even. The compos-
ite boson particles can undergo the Bose–Einstein con-
densation (BEC), because it minimizes their “kinetic”
energy. Just the BEC of CBs is the interpretation of the
Laughlin’s states [33]. The origin of the “kinetic” energy
is the potential energy of the interaction between parti-
cles. In the case of electrons, it is the Coulomb electron-
electron interaction which is not cancelled by the gauge
transformation and the CS gauge potential. It is named
as “kinetic,” because it depends on the wave vector of op-
erators (66). The bound objects such as CPs do, in fact,
have such an effective “kinetic” energy. There is an at-
traction between an electron and an m-fold vortex. For
the electron, it plays the role of a correlation quasihole.
As was shown in (66), the CPs may exist in the form of
plane waves, and the many-particle wave functions also
can be characterized by the wave vector k. A CP with
k = 0 would have the electron exactly at the zeroes of
the wave function or at the center of the vortex, whereas
the CP with the wave vector |k| 6= 0 has the electron
displaced by the distance |k| l2 from their center. One
can say that the electron and its correlation quasihole
or, in another words, the electron and the m-fold vortex
experience a potential V (|k|) due to the Coulomb inter-
action of the electron with other electrons excluded from
the vortex core. All these interactions take place in the
presence of the neutralizing background. The electron
and the m-fold vortex experience the magnetic field of
the same strength. The both components of the pair
will drift in the same direction perpendicular to the vec-
tor connecting their centers, so that their separation re-

mains constant and equal to |k| l2. The energy of a pair
is V (|k|) , and its group velocity is ∂V (|k|) /∂ |k| [39-42].
We can add that this picture coincides with the struc-
ture of a 2D magnetoexciton, where the energy V (|k|)
equals the expression E (|k|) [43]

E (|k|) = 2
∑
Q

WQ sin2

(
[Q× k]z l

2

2

)
;

WQ =
2πe2

ε0S |Q|
e−Q

2l2/2. (67)

Here, ε0 is the dielectric constant, and S is the layer
surface area.

Girvin, MacDonald, and Platzman [21] elaborated the
theory of the collective elementary excitation spectrum
in the case of FQHE, closely analogously to Feynman’s
theory of superfluid helium. The predicted spectrum has
a gap at k = 0 and a deep magneto-roton minimum at
a finite wavevector, which is a precursor to the gap col-
lapse associated with the Wigner instability in crystals.
They supposed the existence of only one branch of the
spectrum of collective elementary excitations. In this
approximation named as the single mode approximation
(SMA), they have constructed the wave functions of the
excited states φk acting with the operator of particle
density ρ̂k on the ground-state wave function ψg in the
form φk = ρ̂kψg. They determined the energy of the
excited state Δ(k) as

Δ(k) =
〈φk (H − E0) φk〉

〈φk φk〉
=

=
〈ψg ρ†k [H0, ρk] ψg〉
〈ψg ρ†kρk ψg〉

=
f(k)
s(k)

, (68)

where f(k) is the oscillator strength, and s(k) is the
static structure factor. The total oscillator strength sum
is saturated by the cyclotron mode contribution, and
f(k) has a dependence of the type |k|4. As was es-
tablished by Lee and Zhang [45], the contributions of
quantum vortices to the dynamical and static structure
factors are important. This leads to the dependence
s(k) ∼ |k|4 as k → 0. In this case, Δ(k) has a gap.
Neglecting the influence of quantum vortices, the de-
pendence s(k) is proportional to |k|2 , and the energy
spectrum is gapless Δ(k) ≈ k2 as k → 0 as the Gold-
stone mode [46]. In conclusion, for the FQHE in the case
ν < 1 with a fractionally filled Landau level, the Pauli
principle no longer excludes low-lying intra-Landau-level
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excitations. They exist side-by-side with inter-Landau-
level excitations. The last excitations have a cyclotron
energy gap [47].

We are studying a coplanar electron-hole (e-h) sys-
tem with electrons in the conduction band and with
holes in the valence band in a strong perpendicular
magnetic field. Earlier, such a system was studied in
a series of papers [1–8, 44]. The most of them were
devoted to the theory of 2D magnetoexcitons. But
there were the papers devoted to another aspects of
these systems. For example, MacDonald, Rezayi, and
Keller [48], as well as Joglekar and MacDonald [49],
have discussed the photoluminescence (PL) spectrum
in the FQHE regime. It was mentioned that the PL
spectrum does not exhibit anomalies associated with
the FQHE. However, when the electron and hole lay-
ers were separated, a new peak in the PL spectrum ap-
pears, when the filling factor exceeds a fraction ν0 at
which an incompressible quantum liquid occurs. The
new peak is separated from the main spectral features
by the quasiparticle-quasihole gap. We are interested in
the distribution of flux quanta in the case of an e − h
system with equal average numbers of electrons and
holes N̄e = N̄h with filling factor ν = N̄e/N , where
N is the total number of flux quanta N = S

2πl2 , S is
the layer surface area, and 2πl2 is the area of the cy-
clotron orbit. In the case of the fractional filling fac-
tor, there is an integer number of flux quanta per each
e − h pair. In this case, the creation of vortices has
not been studied till now. But one can expect that,
in the case of magnetoexcitons, they will be neutral,
whereas, in the case of pure electron and pure hole vor-
tices, their “magnetic” gauge fields will compensate each
other, so that the charge, statistics of particles, and ex-
ternal magnetic field will remain the same in the mean-
field approximation with equal densities of electrons and
holes.

Nevertheless, due to quantum fluctuations and to the
deviations of the electron and hole densities in space and
time from their average values, one can expect the influ-
ence of pure electron and hole quantum vortices on the
physics of magnetoexcitons side-by-side with the influ-
ence of neutral quantum vortices formed by the magne-
toexcitons themselves. The last quantum vortices deter-
mine the Berezinskii–Kosterlitz–Thouless phase transi-
tion [50, 51].
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ДВОВИМIРНI МАГНIТОЕКСИТОНИ В УМОВАХ
ДРОБОВОГО КВАНТОВОГО ЕФЕКТУ ХОЛЛА

С.А. Москаленко, М.А. Лiберман, Б.В. Новиков,
Е.С. Кисельова, Є.В. Думанов, Ф. Чербу

Р е з ю м е

Компланарнi електрони i дiрки в сильному перпендикулярно-
му магнiтному полi за низьких температур утворюють магнiто-
екситони, якщо кулонiвська взаємодiя мiж електронами i дiр-
ками на нижчих рiвнях Ландау вiдiграє основну роль. Але
якщо шари з електронами та дiрками роздiленi просторово
i кулонiвська електрон–дiркова взаємодiя слабшає, утворюю-
ться двовимiрнi електронний i дiрковий гази. Їх властивостi в
умовах дробового квантового ефекту Холла можуть впливати
на властивостi двовимiрних магнiтоекситонiв. Цi властивостi
обговорено в данiй роботi.
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