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Particle diffusion in a frozen isotropic 2D random velocity field is
studied by simulation, and the results are compared with the pre-
diction of a simple model. The model accounts for the effects of
particle trapping and infinite correlation time.

1. Introduction

We are interested in the statistical description of par-
ticles whose behavior is determined by a incompress-
ible homogeneous isotropic velocity field with statisti-
cal properties of a Gaussian process. A similar problem
was studied by Kraichnan in the 1970s [1]. In addition,
we assume that the field is two-dimensional and frozen,
i.e. it does not depend on time. The latter two features
cause the particle trapping, infinite correlation time, and
growing deviation of the distribution function of parti-
cles in the coordinate space from the Gaussian form.
Dispersion manifests a subdidusive regime, and the dif-
fusion coefficient tends asymptotically to zero. It is fol-
lows from the notion that particle orbits along contour
lines of the stream function are closed and the particle
spread would be terminated somewhere. Such subdiffu-
sion is strictly different from the normal diffusion. In his
paper, Kraichnan has noted that “the static diffusion is
a simple and severe test for statistical theories” [1]. He
made conclusion that the direct interaction approxima-
tion (DIA) fails to represent trapping effects which are
inherited from frozen fields.

Later, the diffusion in a random 2D field was consid-
ered as a percolation problem [2]. The theory gives an
asymptotic value of diffusion coefficient. For the field
varying in time, a scaling of the diffusion coefficient on
the Kubo number was found. Then this scaling was sup-
ported by the simulation in some interval of Kubo num-
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bers [3]. However, for a frozen field with infinitely large
Kubo number, the diffusion coefficient is zero.

In the last decade, the problem was studied by the
decorrelated trajectory (DCT) method [4-7]. This in
part phenomenological method assumes the partition of
the ensemble of particles into a set of subensembles ac-
cording to the initial values of velocity and potential in a
starting point of the trajectory. Different groups of par-
ticles are governed by different statistics, and the whole
picture is found as a superposition of subensembles. In
paper [4], this method was applied to the calculation of a
temporal evolution of the diffusion coefficient in a frozen
random velocity field. Qualitatively, it gives expected
curves for the diffusion coefficient which comes through
the maximum and tends asymptotically to zero. How-
ever, no direct comparison with the result obtained by a
numerical simulation was performed there.

For the prediction of the results of a simulation,
we proposed the analytical model that explicitly corre-
sponds to the microscopic equations used in the simu-
lation. In the isotropic homogeneous field, an average
particle displacement is zero due to symmetry, and the
first non-vanishing moment is a dispersion. The analyt-
ical model is formulated in terms of a dispersion. The
model accounts for the effects of particle trapping and
infinite correlation time.

2. Model for Numerical Simulation

We consider a motion of test particles in a frozen
isotropic random velocity field. An incompressible 2D
velocity field is given through a potential (stream func-
tion) ¢(r) as

Vg = _@@(r)v Uy = 74)0(1.)7 (1)
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Fig. 1. Velocity correlation function. NE — simulation, Model —
solution of Egs. (4)—(7) in the analytical model

where r = (z,y) in Cartesian coordinates or (r,6) in
polar coordinates. The potential of the isotropic field is
taken as a superposition of 5V, x N4 waves

5N, Ng

o(z,t) = Z Z @i cos (kircos(¢p; —0) + i + ;). (2)

i=1 j=1

The field intensity is distributed between the partial
harmonics according to the Gaussian,

8 2 1 k2
2 0 i
02 = = — 3
! v Ak2 Ni N, oxp < AkQ) ’ (3)

where k‘z = ’LAk/Nk (Z = 1, 5Nk), (bj = ] 27T/N¢
(j =1, Ng), vo is the velocity amplitude, and Ak is the
spectrum width. Randomness of the field is generated
by random phases o; and «;. The spectrum includes
small wave numbers, and the effect of long correlation
would be noticeable.

Equations (1), (2) describe, in particular, the E x B
drift motion of test particles in plasma with constant
magnetic field directed along the z-axis and with elec-
trostatic random field.

The equations of motion (1) were solved numerically,
and the particle dispersion and the Lagrangian correla-
tion function were found by averaging over realizations.
In the absence of a field, particles do not move. Thus,
the zero approximation does not exist, and the particle
motion is purely diffusive. This distinguishes the prob-
lem of particle diffusion in a velocity random field from
the diffusion in a Langmuir type random field [8,9]. For
the former, more runs are needed to obtain a smooth
curve.
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3. Analytical Model

The equations of our analytical model are the follow-
ing. First, we use the Taylor relation between the time-
dependent diffusion coefficient D(t) and the Lagrangian
correlation function Vg (¢),

D(#) = / Vi () dt. (@)

The particle dispersion (r?) = (22?) + (y?) is related to
the diffusion coefficient by

(r*y =4 [ D(t)dt. (5)
/

The Eulerian velocity correlation function for the
field (1) is of the form

Vi (r?) = (Va(0)Va(r)) =

= vZ exp(—a){(1 — 2a)Ip(a) + 2a1; ()}, (6)
where o = (1/8)Ak?r?. The Eulerian velocity correla-

tion function depends on the coordinate through r2.
We close the system of equations, by assuming

Vi(t) = Ve((r(1)))- (7)
Note that the system of equations (4)—(7) can be reduced
to an equation for an effective particle driven by a force
(r?)
dt?

In the next section, the solution of Eqgs. (4)—(7) is com-
pared with the result of a numerical simulation.

= const - Vg ((r?)). (8)

4. Comparison with Simulation

In Fig. 1, the Lagrangian velocity correlation function
obtained as a solution of Eqs. (4)—(7) is shown in com-
parison with simulation data. It reproduces the simula-
tion curve; however, the approximation given by Eq. (7)
at the initial stage is not too much accurate.

More interesting is the plot of the Lagrangian veloc-
ity correlation function for a longer time (Fig. 2), where
the model solution reproduces the guiding line of fluc-
tuations obtained in the simulation. It is of importance
that the Lagrangian velocity correlation function found
as a solution of the model equation tends to zero, being
negative. The negative tail of the correlation function
reflects the effect of particle trapping and infinitely long
correlation.
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Fig. 2. Velocity correlation function for large time
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Fig. 3. Running diffusion coefficient

Plots for the diffusion coefficient are given in Fig. 3,
and those for the dispersion (second moment of the dis-
tribution function) in Fig. 4. The solution of the ana-
lytical model shows an agreement with the results of the
simulation.

In addition, the evolution of the kurtosis (fourth ir-
reducible moment of the distribution function), which
was obtained in the simulation, is shown in Fig. 5. For
the Gaussian distribution, the kurtosis would be strictly
zero. Its growth indicates a deviation of the distribution
function from the Gaussian form.

5. Discussion and Conclusions

The solution of the model equations (4)—(7) recovers the
temporal dependence of the Lagrangian velocity corre-
lation function, diffusion coefficient, and coordinate dis-
persion (Figs. 1-4). Not too much accurate in some de-
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Fig. 5. Kurtosis obtained in simulation

tails, it gives, nevertheless, in general a reasonable quan-
titative agreement. It should be noted that no fitting
parameters were used, and the only assumption was the
transition from the Eulerian to Lagrangian velocity cor-
relation function given by Eq. (7). This closure of the
model equations is strictly different from the Corrsin ap-
proximation.

The growth of the kurtoisis indicates that a devia-
tion of the distribution function from the Gaussian form
increases with time. Nevertheless, the model that was
formulated in terms of the dispersion shows its ability
to reproduce such important effects as particle trapping
and infinitely long correlation. The trapping effect ter-
minates the particle spread and leads to a subdiffusive
form of dispersion. This implies that the diffusion coef-
ficient should tends asymptotically to zero. In turn, this
means that the Lagrangian velocity correlation function
should have a negative tail. Such negative tail that was
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observed in the simulation is recovered by the solution
of the model equation.

The work is partly supported by DFFD-RFFI project
F40.2/108.
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JIN®Y3Id B 3AMOPOXKEHOMY BUITAJIKOBOMY IIOJII
INBUJIKOCTEN

B.I. 3acenro, A.I. 3azopodnit, O.M. Heprax
PezowMme

Hudy3sito 4acTHHOK y 3aMOPOYKEHOMY i30TPOITHOMY JBOBUMIPHOMY
BUITAIKOBOMY IIOJI HMIBUKOCTE, [0 CIIOCTEPIrajach y YUCJIOBOMY
MOJIEJIIOBAHHI, TOPIBHAHO 3 IepebavdeHHAMU IPOCTOl Mojesti. Mo-
1eJIb BPaXOBY€E 3aXOIJIEHHSI YaCTUHOK 1 HECKIHYEHHO JOBIi 4acoBi
KOPEeJISIIil.
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