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For the problem of two-wave self-diffraction in a nonlocal nonlin-
ear medium considered in the reflection geometry, the steady state
solutions in terms of the tanh function have been found for the dis-
tribution of dynamical grating amplitudes and for the distribution
of intensity maxima in the interference pattern. The solutions for
the mixed-wave intensities turned out to depend on the area under
the curve describing the grating-amplitude distribution function.
The distribution in the form of the tanh function shifts along the
direction of wave propagation, when the ratio of the intensities for
the input waves changes. The dynamical problem is solved numer-
ically for the case of two interacting Gaussian beams. It has been
demonstrated that the shape of output beams can be controlled
by varying the time delay between the input pulses, hence creating
various dissipative solitons, including grating-amplitude distribu-
tions, in the medium bulk.

1. Introduction

A lot of phenomena based on a nonlinear interaction be-
tween waves are known. The scope of their application
includes the formation of beams with different wave-
lengths or frequencies, optical parametrical amplifiers
and oscillators, the wave front inversion, the creation
of holographic images, the treatment of optical signals
and images, and so forth [1].

As has been shown in recent years, besides the gen-
eration of components with different wavelengths or fre-
quencies, amplification, and oscillations, the wave inter-
action can result in the formation of stable space-time
localized states [2–6]. This effect is observed at the wave
diffraction at dynamic gratings, if the exciting “light
grating” of the interference pattern and the dynamical
grating of the refractive index are shifted in space with
respect to each other. Such a situation is realized in
the cases where a nonlinear medium is characterized by
either a nonlocal or an inertial response [7]. The shift
between the light and dynamical gratings brings about a
phase delay between the mixing waves, which reveals it-
self as the well-known effect of energy exchange between
those waves. As a result, the ratio between wave inten-
sities in the nonlinear medium changes, with localized

stable structures being formed at that for both the in-
terference pattern and the dynamical-grating amplitude.
Nowadays, many media characterized by a nonlocal and
nonlinear response have been studied, including optically
nonlinear media, plasma, and the Bose-Einstein conden-
sate [8, 9].

As a rule, a nonlocal response arises, when some trans-
port process invokes a nonlinearity. For instance, it
can be a nonlinearity associated with the heat conduc-
tion in media with a thermal response [10], diffusion of
molecules or atoms that accompanies the propagation of
light beams in atomic vapor [11], or charge transfer in
photorefractive crystals [12]. The nonlocal response in
nematic liquid crystals, which arises owing to a reori-
entation of anisotropic molecules under the light beam
propagation, has been studied as well [13, 14]. Recently,
a nonlocal nonlinearity and the formation of dissipa-
tive optical solitons have been revealed in wide-aperture
lasers with saturable absorption [15, 16].

Two basic geometries of nonlinear wave mixing, the
transmission and reflection ones, are usually considered
in the self-diffraction problems [7]. In the former case,
the space-time localized structure behaves itself as a
bright dissipative soliton [3–5], and its profile is de-
scribed in terms of the sinh function. The corresponding
complex-valued Ginzburg–Landau equation, which de-
scribes the space-time dynamics of a dissipative soliton,
was derived in [5]. The localization degree of a bright
dissipative soliton and the position of its maximum were
found to be controllable, by varying the ratio of the wave
intensities at the input into the medium. The output in-
tensities turned out to be determined by the integral area
under the soliton profile calculated within the medium
boundaries. They were shown to depend very strongly
on the intensity ratio for input waves, because the space-
time localization of a dissipative soliton changes at that.

In the reflection geometry, the profile of the grating-
amplitude distribution has the shape of a dark dissipa-
tive soliton, and it is described by the tanh function.
The motion of such a soliton in the course of the grating
erasure process owing to the two-beam wave mixing was
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Fig. 1. Diagram of the two-beam interaction in a medium with
a nonlocal nonlinear response in the reflection geometry of the
problem. Straight lines mark the interference pattern maxima,
and dashed ones the maxima of the dynamical refractive-index
grating. The curve illustrates the grating amplitude distribution

studied theoretically in work [6]. The authors of work
[17] theoretically showed that the intensities of output
waves in the reflection geometry substantially depend
on the ratio of the intensities of input waves, but not
equivalently. However, no physical interpretation was
given for the results of those calculations.

In this work, we obtained the stationary solutions for
the problem of two-beam wave interaction in the reflec-
tion geometry in a medium with a nonlocal and nonlinear
response. We obtained tanh-like profiles for the curves
describing the dynamical-grating amplitude distribution
and the intensity distribution at the interference pattern
maxima. We showed how one can control the position
of a dark dissipative soliton in the medium and how it
affects the intensities of output waves. We also demon-
strates a capability to govern the pulse profiles, if the
light pulses at the input of the system are Gaussian-like.

The complex-valued Ginzburg–Landau equation is
widely known in many branches of nonlinear physics,
chemistry, and biology, while describing various time- or
space-localized structures [18]. It is regarded as the sim-
plest mathematical model, which allows solutions in the
form of dissipative solitons to be obtained. Dissipative
solitons are known to manifest a lot of unusual prop-
erties, such as stable periodic pulsations, coupled soli-
ton waves, bistability, coupled pairs composed of holes
and fronts, periodic “explosions”, collapses, the forma-
tion of helical waves in two-dimensional systems and sta-
ble threads in three-dimensional ones, and many others
[19]. All those unique properties can find application,
e.g., when using a nonlinear wave interaction, in partic-
ular, in dynamical holography in nonlocal media.

2. Formation of a Non-uniform Distribution of
Intensity Maxima in the Interference Pattern
at the Self-diffraction of Waves in a
Nonlinear Medium

In this section, we consider stationary solutions for
the problem of two-beam wave interaction (TBCI) in

a medium with a nonlocal response. The consideration
is carried out for the reflection geometry of the problem,
and the corresponding TBWI schematic diagram is de-
picted in Fig. 1. In contrast to the previous publications,
stationary solutions were obtained for the dynamical-
grating amplitude and the intensity at the maxima of
the interference pattern. Now, we shall demonstrate
that the non-uniform distributions of those quantities
are formed in the nonlinear medium bulk along the co-
ordinate of wave propagation z. The solutions for the
amplitudes (or, respectively, the intensities) of output
waves are determined by calculating the area under the
distribution curve for the dynamical-grating amplitude
within the medium boundaries.

Consider the TBWI diagram depicted in Fig. 1. Two
input waves, I1 and I2, propagate toward each other in a
nonlinear medium, where they form an interference pat-
tern Im. Under the action of the modulated Im-intensity
distribution and by means of nonlinear optical mecha-
nisms, the refractive index Δn(I) changes. The variation
is also modulated, i.e. a dynamical diffraction grating is
recorded. If the nonlinear medium is characterized by
a purely nonlocal response, the amplitude maxima of
the recorded grating become shifted with respect to the
intensity maxima by one-quarter of the period of the in-
terference pattern. The self-diffraction process consists
in that the mixing waves create a dynamical diffraction
grating and, simultaneously, diffract at this very grat-
ing. The output intensities Iout

1 and Iout
2 are obtained

as a result of the interference between two waves: one
of them propagates in the given direction, and the other
diffracts at the dynamical grating. Since the refractive-
index grating is shifted with respect to the light one,
the well-known effect of energy exchange between mix-
ing waves is observed [7]. If the dynamical grating is
shifted in the z-axis direction with respect to the inter-
ference pattern (this case is depicted in Fig. 1), wave 1
that propagates in the same direction becomes amplified,
because it and the diffracting wave interfere in phase. At
the same time, the intensity of wave 2 diminishes at the
output, because it and the wave diffracting in this direc-
tion interfere in anti-phase.

The maximum amplitude of the recorded grating is
determined by the light intensity in the interference pat-
tern maxima. However, it is known that this intensity
depends on the ratio between the intensities of mixing
waves: Im(z) ∝

√
I1(z)I2(z). Those intensities change

over the bulk of the nonlinear medium owing to the en-
ergy transfer effect. Therefore, the intensity distribution
over the interference pattern maxima Im(z) is not uni-
form along the z-axis. We intend to demonstrate that
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the distributions for both the grating amplitude max-
imum, E(z), and the normalized intensity at the in-
terference pattern maxima, Im(z)

I0(z) , are described by the
tanh function. Formally, this function coincides with the
known solutions for dark solitons [20]. However, in our
case, this function does not describes unstable waves,
solitons, but stable spatially localized structures, which
are referred to as dissipative solitons in the modern lit-
erature [18]. Therefore, we shall use below the term
“dark dissipative soliton” to designate the structure that
is formed in our case. The example of such a structure
is shown in Fig. 2. We obtained that the position of the
inflection point in the tanh functions along the z-axis
depends on the intensity ratio for input waves, I1/I2

The dynamical process of wave self-diffraction in the
reflection geometry is described by a system of equations
that includes [6, 7] an equation for coupled waves,

∂A1

∂z
= −i E

I0
A2;

∂A∗2
∂z

= −i E
I0
A∗1 (1)

and a dynamical equation for grating recording,

∂E

∂t
= γ

A1A
∗
2

I0
− 1
τ
E, (2)

where A1(t, z) and A2(t, z) are the amplitudes of waves 1
and 2, respectively, which change slowly; the asterisk
means the complex conjugation; E(t, z) is the grating
amplitude (in the approximation of small variations of
the refractive index, E ≡ Δε ∼= 2n0Δn, where Δε and
Δn are variations of the dielectric permittivity and the
refractive index, respectively, of the medium induced by
the laser radiation, and n0 is the average refractive in-
dex in the medium); I0(t, z) = |A1|2 + |A2|2 is the total
intensity; Im(t, z) are the interference pattern maxima;
γ = γL + iγN is the nonlinear gain coefficient of the
medium: γL and γN describe, respectively, the local and
nonlocal responses of the medium (according to work
[7], in nonlocal media, γ = 2πΔnmax (cos Φg + i sin Φg),
where Φg describes a shift of the dynamical grating with
respect to the interference pattern maxima, and Δnmax

is the maximally possible grating amplitude in the given
medium); and τ is the relaxation time for the refractive-
index grating. The first integral of system (1), (2) is
Id = |A1|2 − |A2|2 = const.

Let us consider a case of purely nonlocal response,
when the shift between the interference pattern and the
dynamical grating equals one-quarter of the grating pe-
riod, i.e. γ = iγN . Then, system (1)–(2) can be substan-
tially simplified, because it transforms into a system of
real-valued equations, for which the stationary solutions

i
(3)

Fig. 2. Localized structure of a dark dissipative soliton formed at
TBWI

can be found easily. For the stationary system, we have

E = γNτ
Im
I0

(3)

and another first integral is I2
0−4I2

m = I2
d . The solutions

of the stationary system are as follows.
The distribution of grating amplitudes is

E(z) =
1√
2

√
1 + tanh

(
γτ · z − p+

1
2

ln
(

4
I2
d

))
. (4)

Taking Eq. (3) into account, we see that the normalized
intensity at the interference pattern maxima, Im/I0, has
the same distribution, but the distributions E(z) and
Im/I0 are shifted in space with respect to each other by
one-quarter of the period along the z-axis (or, equiva-
lently, by a phase of π/2).

The amplitudes of mixing waves look like

A1(z) = C1e
U(z) + C2e

−U(z),

A2(z) = C1e
U(z) − C2e

−U(z), (5)

where U is the integral area under the distribution curve
for the grating amplitude,

U(z) =

z∫
0

E(z)dz =
1
4

ln
[
1
2

+ ew +
√

(ew)2 + ew

]
, (6)

w = 2γτz − 2p+ ln
(
4/I2

d

)
, U0 = U(z = 0), Ud = U(z =

d), and d is the medium thickness. The constants C1

and C2 are determined from the expressions

C1 = (A2de
−U0 +A10e

−Ud)/(2cosh(Ud − U0)),

C2 = (A10e
Ud −A2de

U0)/(2cosh(Ud − U0)), (7)

where A10 = A1(z = 0) and A2d = A2(z = d) are the
amplitudes of input waves.
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Fig. 3. Grating-amplitude profiles E(z) for various gain coeffi-
cients in the nonlinear medium. The output waves have identical
intensities: I1 = I2 = 0.5

Fig. 4. Gain coefficient for wave 1, Iout
1 /I1, at various ratios I1/I2

between input-wave intensities

The integration constant p can be found from the con-
ditions at the medium boundaries,

E(0) = γτ
A10A2(0)
A2

10 +A2
2(0)

=

=
1√
2

√
1 + tanh

(
−p+

1
2

ln
(

4
I2
d

))
,

E(d) = γτ
A1(d)A2d

A2
1(d) +A2

2d

=

Fig. 5. Stationary distribution of the grating amplitude for input
wave intensities presented in Fig. 4. The nonlinear gain coeffi-
cient of the medium γN τ = 3. The nonfilled interval z = [0,1]
corresponds to the nonlinear medium bulk (d = 1)

=
1√
2

√
1 + tanh

(
γτ d− p+

1
2

ln
(

4
I2
d

))
, (8)

into which the solutions A1 (d) and A2 (0) for the output
waves (see Eq. (5)) should be substituted.

We calculated the grating amplitude profile for various
values of nonlinear response coefficient. The results of
calculations are shown in Fig. 3. Note that the amplifi-
cation of the output signal in a medium with a nonlocal
response depends not only on the medium gain coeffi-
cient, but also on the ratio between the input wave in-
tensities, as is illustrated in Fig. 4. It is evident that
the lower the input intensity of wave 1, the higher is the
gain coefficient. This occurs, because various stationary
profiles of the grating-amplitude distribution are formed
in the medium. In Fig. 5, the plots for the grating profile
are depicted, which correspond to various ratios between
input intensities taken from Fig. 4. One can see that the
inflection point in the function E(z) is located beyond
the nonlinear medium, if the input intensity I1 is low
in comparison with I2 (we adopted that the nonlinear
medium occupies the interval [0, 1]). In this case, the
grating amplitude in the medium is constant. However,
if the ratio I1/I2 increases, the grating amplitude profile
“moves” toward the medium, and a non-uniform distri-
bution E(z) in the medium is observed.

Therefore, our calculations testify that the coefficient
of energy exchange between mixing waves can be con-
trolled not only by varying the nonlocal gain coefficient

1174 ISSN 2071-0194. Ukr. J. Phys. 2011. Vol. 56, No. 11



FORMATION OF DARK DISSIPATIVE SOLITONS

Fig. 6. Transformation of the pulse shape at the medium output, Iout
1 , induced by the interaction between two Gaussian input beams

(I1, I2) in a nonlinear medium with a nonlocal response in the reflection geometry. The time delays between the input pulses: (a) input
beams are synchronized (Δ1 = Δ2), (b) Δ1 < Δ2, and (c) Δ1 > Δ2

of a nonlinear medium, but also by changing the ratio
between the intensities of input waves. In this case, the
distribution of grating amplitudes shifts: the lower the
input intensity of the amplified beam, the more uniform
is the grating amplitude in the medium bulk.

3. Control over Beam Parameters at TBWI

In the previous section, we showed that the position of a
grating amplitude profile changes, by depending on the
ratio between the input intensities of mixing waves. At
the same time, this position – to be more specific, the
coordinate of the inflection point in the tanh-function
profile – governs the magnitude of energy exchange be-
tween the interacting beams and the amplitudes of out-
put beams. Let us apply this idea in order to discover
new effects in the control of beam parameters, when the
beams interact in a nonlinear medium with a nonlocal
response. For this purpose, consider the case where two
Gaussian beams are applied to the input,

I1 = I01 exp

[
− (t−Δ1)

2

τ2
1

]
,

I2 = I02 exp

[
− (t−Δ2)

2

τ2
2

]
,

where I01 and I02 are the maximum intensities, τ1 and τ2
the times that correspond to the half-widths of Gaussian
pulses, and Δ1 and Δ2 the time delays for beams 1 and
2, respectively; and τ is the time. The problem of inter-
action between laser beams providing TBWI is reduced

to the dynamical equations (1), (2) in the case where
the widths of Gaussian beams are much larger than the
relaxation time of the dynamical grating. Therefore, we
choose τ1 = τ2 = 10 and τ = 1. Again, for the sake of
simplicity, let us consider the case where the maximum
input intensities are identical, I01 = I01 = 1.

Figure 6 demonstrates how the profile of Gaussian
beam 1 changes at the medium output, depending on
the time delay between input pulses. In Fig. 6,a, the
input pulses are synchronized, and the output beam has
the same Gaussian profile, but it is amplified owing to
the energy exchange and delayed in time. If the input
pulses are not synchronized, but their relative shift is not
large, so that the pulses overlap, the output beam pro-
file changes. This effect depends on which of the input
pulses is applied first. If it is the pulse in beam 1, the
output beam profile broadens, and it has one maximum.
In the opposite situation, when beam 2 comes earlier
to the input, the Gaussian beam changes its shape car-
dinally: it decays to form two maxima. The origin of
such inadequate behavior lies in the fact that different
dark dissipative solitons are generated in the medium,
depending on different input conditions. This effect of
a beam shape transformation can be used, e.g., in laser
spectroscopy.

4. Conclusions

To summarize, the formation of a non-uniform distri-
bution profile of the dynamical-grating amplitude at
the two-beam wave interaction in a nonlinear media
with a nonlocal response has been considered in the
reflection TBWI geometry of the problem. This dis-
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tribution was found to be described by the tanh func-
tion. The same distribution, to within a constant,
is also inherent to the intensity at the interference
pattern maxima. At the two-beam interaction, the
steady state of this distribution is attained, which is
stable in time. If the intensity ratio for the input
waves varies, the distribution curve does not change
its shape, but moves as a whole in the direction of
wave propagation (the z-axis). Therefore, both the in-
tensity distribution over the maxima of the interfer-
ence pattern and the grating-amplitude profile reveal
the properties of a dark dissipative soliton. The de-
gree of energy exchange between the interacting beams
and the intensities of the output waves are deter-
mined by the integral area under the curve of the
grating-amplitude distribution. In the stationary case
of TBWI scheme, the corresponding solutions were ob-
tained.

The dynamical TBWI problem has been considered
in the case of the interaction between two identical
Gaussian input pulses, which are applied to the input
of the system with a certain time delay. Numerical
calculations demonstrate that the input conditions at
the nonlinear medium boundaries are not equivalent,
if the medium has a nonlocal response. The shape of
the output beam changes, by transforming into a non-
Gaussian one, if the input beams partially overlap in
time. The resulting beam shape also depends on which
of the beams is applied firstly. For instance, if input
beam 2 has a time delay with respect to input beam 1,
we obtained that the former broadens and shifts, but
a single maximum remains preserved. In the opposite
case, i.e. when input beam 1 has a time delay with
respect to input beam 2, the shape of output beam 1
is quite different, namely, it has one minimum and two
maxima. The origin of such a behavior is the forma-
tion of various dark dissipative solitons in the nonlinear
medium.

The results obtained could be of interest for various
applications, which are based on the wave interaction in
nonlinear media with a nonlocal response, such as a sig-
nal transformation, optical switches, holographic inter-
ferometers, laser spectroscopy, and so forth. From this
viewpoint, the subsequent progress in the development of
the proposed approach consists in studying the dynam-
ics of grating recording and the formation of dissipative
solitons for various specific nonlinear media with a non-
local response (liquid crystals, photorefractive crystals,
atomic vapor, various gas media, and others), as well
as in the development of corresponding calculation tech-
niques for specific applications. Experimental researches

on the basis of the proposed theory would doubtless be
of interest.
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УТВОРЕННЯ ТЕМНИХ ДИСИПАТИВНИХ СОЛIТОНIВ
У СЕРЕДОВИЩАХ З НЕЛОКАЛЬНИМ ВIДГУКОМ

С.A. Бугайчук

Р е з ю м е

Знайдено стацiонарнi розв’язки у формi tanh-функцiї для роз-
подiлу амплiтуди динамiчної ґратки та для розподiлу макси-
мумiв iнтенсивностi картини iнтерференцiї при самодифракцiї
двох хвиль у вiдбиваючiй геометрiї в середовищах з нелокаль-

ним нелiнiйним вiдгуком. Розв’язки для iнтенсивностей взає-
модiючих хвиль залежать вiд iнтеграла пiд кривою розподiлу
амплiтуди ґратки. Розподiл за формою tanh-функцiї зсуває-
ться вздовж координати поширення хвиль при змiнi спiввiд-
ношення iнтенсивностей хвиль на входi у середовище. Дина-
мiчну задачу розв’язано чисельно для взаємодiї двох гаусiв-
ських iмпульсiв. Показано, що залежно вiд часової затримки
мiж вхiдними iмпульсами можна управляти формою вихiдних
iмпульсiв, створюючи у середовищi рiзнi дисипативнi солiтони
– розподiли амплiтуди ґратки.
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