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The critical behavior of three-dimensional model systems has been
studied theoretically. The partition function and the free energy
for a one-component spin system have been calculated for a non-
Gaussian distribution of order-parameter fluctuations. A specific
feature of the proposed method of calculation consists in making
allowance for the dependence of the Fourier transform of the in-
teraction potential on the wave vector. Such an approach leads to
a nonzero critical exponent η in the correlation function and the
renormalization of the values of other critical exponents (for the
correlation length, susceptibility, etc.). The calculation of those
exponents was carried out with the use of the renormalization-
group method and on the basis of obtained recurrence relations
for the coefficients of fluctuation distributions in adjacent block
structures.

1. Introduction

The main task for the physics of phase transitions is
to describe relations between macroscopic experimen-
tally measured quantities, by proceeding from the mi-
croscopic parameters of the system and the forces that
act between particles composing the system. The funda-
mentals of the microscopic approach in the phase transi-
tion theory were established in works [1, 2], where ideas
following from the scaling hypothesis [3, 4] were sub-
stantially used. A further development in the micro-
scopic theory of phase transitions was obtained in the
method of collective variables (CVs) generalized to the
case of spin systems [5–7]. For a one-component spin
model, not only the critical exponents for specific heat,
average spin moment, susceptibility, and other charac-
teristics were obtained, but also the explicit expressions
for those characteristics in a vicinity of the phase tran-

sition temperature, Tc, were found and studied as the
functions of the temperature, magnetic field, and mi-
croscopic parameters of the Hamiltonian. Anybody can
come to know more about the CV method and a number
of results obtained on its basis in works [8–12].

At a certain stage of calculations, the theoretical de-
scription of the critical behavior of real systems is re-
duced to a description of a phase transition in the frame-
work of some model. The CV method, the basis of
which with respect to the three-dimensional Ising model
– the basic model for the consideration of phase tran-
sitions – was established in the 1970s–1980s, has been
permanently improved. It is worth noting that the Ising
model, despite its simplicity, has, on the one hand, a
wide scope of realistic applications, and, on the other
hand, it can be considered as a model, which serves as
a standard for studying other models much more com-
plicated by their construction. The development of the
calculation method for main thermodynamic and struc-
tural characteristics of the basic phase transition model
opens a way for the description of more complicated
physical systems. For this reason, the solution for a
three-dimensional Ising-like system, which would be as
much complete as possible, is a key to the description of
the critical behavior of many physical objects. Uniaxial
magnets, simple liquids, binary alloys, micellar systems
– that is not a complete list of objects, which the Ising-
like behavior is inherent to. The critical behavior of the
three-dimensional Ising universality class was discovered
in systems with strong and electroweak interactions ob-
served in high-energy physics.

In the CV method, when calculating the partition
function of a three-dimensional Ising-like system, the
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phase space of CVs ρk is divided into layers {ρk}Bn+1,Bn

corresponding to certain values of the wave vector k
(Bn+1 = Bn/s, where s > 1 is the partition parame-
ter). The partition function is calculated step-by-step,
starting from the layers in the CV phase space that cor-
respond to ρk-variables with large wave vectors k’s and
finishing at ρk with k → 0. In so doing, the Fourier
transform of the interaction potential is replaced by its
average value in every layer. This procedure gives rise to
a zero value of critical exponent η, which characterizes
the behavior of the pair correlation function at T = Tc.

The calculation of the so-called small critical expo-
nent η is not a trivial procedure (see, e.g., researches in
the framework of the nonperturbative renormalization
group (RG) approach [13, 14], which is similar to the
CV method). In this work, we calculated the thermody-
namic characteristics in a vicinity of Tc with regard for
a correction for the averaging of the Fourier transform
of the potential. This correction results in a nonzero
η-exponent value and was not considered in earlier re-
searches (in particular, in [15–18]). The method pro-
posed in this paper for the calculation of the thermody-
namics of a system in the framework of the CV approach
acquires a more general and complete character owing
to the consideration of both the critical exponent of the
correlation function and the changes (in comparison with
the case η = 0) for the coordinates of a fixed point, the
recurrence relations (RRs), and the very coefficients of
thermodynamic characteristics.

2. Statement of the Problem

Let is consider a system composed of N interacting par-
ticles located at the sites of a simple cubic lattice with
period c. The state of each particle is determined by the
eigenvalue of the operator of its spin z-component, which
can be equal to either +1 (the spin is oriented upward)
or −1 (the spin is oriented downward). The Hamiltonian
of the system is written down in the form

H = −1
2

∑
i,j

Φ(rij)sisj − h
∑
i

si, (1)

where si is the operator of spin z-component at the i-
th site, Φ(rij) is the interaction potential, which is ex-
pressed by the exponentially decreasing function

Φ(rij) = A exp(−rij/b), (2)

A is a constant, rij the distance between the i-th and j-th
lattice sites, and b the radius of the effective interaction.
The partition function of the model in the representation

of CVs ρk in the absence of an external magnetic field H
(or at h = µBH = 0, where µB is the Bohr magneton)
looks like

Z = 2N2(N ′−1)/2ea
′
0N
′
∫

exp

−1
2

∑
k≤B′

d′(k)ρkρ−k−

− 1
4!

(N ′)−1
∑

k1,...,k4≤B′
a′4ρk1 · · · ρk4δk1+···+k4

 (dρ)N
′
. (3)

Here, the approximation of quartic basis measure density
[8, 19] was used, B′ = (b

√
2)−1, N

′
= Ns−3

0 , s0 = B/B′,
B = π/c is the boundary of the Brillouin half-zone,

d′(k) = a′2 − βΦ̃(k), (4)

and β = 1/(kT ) is the reciprocal temperature. For the
Fourier transform of the interaction potential (2), we use
the parabolic approximation

Φ̃(k) =
{

Φ̃(0)(1− 2b2k2), k ≤ B′,
0, B′ < k ≤ B, (5)

which does not affect, in essence, the description of
events in a vicinity of the phase transition point. The
major contribution to the thermodynamic and structural
functions is obtained from the wave-vector range with
k → 0. The interval with large values of k forms only
initial values of the coefficients a′0, a′2, and a′4, which do
not influence the values of critical exponents. In approx-
imation (5), we have

a′0 = ln
[

1√
2π

(y′)1/2e(y
′)2/4U(0, y′)

]
,

a′2 = y′U(y′), a′4 = (y′)2ϕ(y′), (6)

where y′ = 21/4
√

3π3/2(b/c)3/2, and the functions U(y′)
and ϕ(y′) are expressed in terms of parabolic cylinder
functions (the Weber functions) U(a, y′) as follows [19]:

U(y′) = U(1, y′)/U(0, y′),
ϕ(y′) = 3U2(y′) + 2y′U(y′)− 2. (7)

The coefficients a′2l depend on the ratio between the po-
tential action radius b and the lattice constant c. In the
case b = c, we obtain

a′0 = −0.921747, a′2 = 0.988929, a
′

4 = 0.021120.

The expression for the partition function (3) is cal-
culated by carrying out the “layer-by-layer” integration
(see, e.g., works [7, 8, 11]). In every n-th layer of
CVs ρk, which corresponds to the wave-vector interval
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Bn+1 < k ≤ Bn, the Fourier transform Φ̃(k) is substi-
tuted by its average value

Φ̃(Bn+1, Bn) = Φ̃(0)− 2Φ̃(0)b2B2
nq̄. (8)

Here, Bn = B′s−n, and the quantity q̄ corresponds to
the average value of k2 in the interval (1/s, 1]. Following
the geometrical way of averaging, which is used in our
present calculations, we obtain q̄ = 3(1 − s−5)/[5(1 −
s−3)]. The RRs arising in the course of integration, read
[7, 19]

dn+1(Bn+2, Bn+1) = dn(Bn+1, Bn)N(xn)−Δn,

a
(n+1)
4 = a

(n)
4 s−3E(xn), (9)

where dn(Bn+1, Bn) = a
(n)
2 − βΦ̃(Bn+1, Bn), Δn =

βΦ̃(0)s−2n(1 − s−2)q̄. As for the functions N(xn) and
E(xn), we have

N(xn) =
ynU(yn)
xnU(xn)

, E(xn) = s6
ϕ(yn)
ϕ(xn)

. (10)

The arguments xn and yn in Eqs. (10) are defined by the
expressions

xn =
√

3dn(Bn+1, Bn)
(
a
(n)
4

)−1/2

,

yn = s3/2U(xn) (3/ϕ(xn))
1/2

. (11)

In the specific case xn � 1, the general RRs (9) are
reduced to Wilson’s RRs [20,21]. The application of RRs
(9) enables the properties of three-dimensional systems
to be studied in the critical region.

Now, while calculating the partition function of the
system, we take the following quantity into account:

ΔΦ̃(k) = q − 2b2βΦ̃(0)k2. (12)

It corresponds to a deviation of the quantity βΦ̃(k) from
its average value βΦ̃(B1, B

′), i.e. we make allowance
for a correction for the Φ̃(k) averaging. In Eq. (12),
q = q̄βΦ̃(0). Below, assuming the quantity ΔΦ̃(k) to be
a small correction for the corresponding average value,
we study its influence on the critical properties of the
system and develop a method for the calculation of the
free energy of the system with regard for the dependence
of the Fourier transform of the potential, Φ̃(k), on the
wave vector.

3. Calculation of the Partition Function of the
System

The result of the integration of the partition function
over those CVs ρk, the indices k of which fall within the

interval B1 < k ≤ B′ (B1 = B′/s), looks like [8, 10, 22]

Z = 2N2(N1−1)/2Q0[Q(P )]N1×

×
∫

exp

−1
2

∑
k≤B1

[d′(k)− d′(B1, B
′)] ρkρ−k

×
×(1 + Δ̂g + · · · ) exp

−1
2
R2

∑
k≤B1

ρkρ−k −
1
4!

(N1)−1×

×R4

∑
k1,...,k4≤B1

ρk1 · · · ρk4δk1+···+k4

 (dρ)N1 , (13)

where N1 = N ′s−3, Q0 = [ea
′
0Q(d)]N

′
is the partial par-

tition function of the zeroth layer in the CV phase space
[19],

Q(d) = (2π)1/2 (3/a′4)
1/4

ex
2/4U(0, x),

Q(P ) = (2π)−1/2s3/4 (a′4/ϕ(x))1/4 ey
2/4U(0, y),

x = xn=0 =
√

3d′(B1, B
′)(a′4)

−1/2,

y = s3/2U(x) (3/ϕ(x))1/2 . (14)

For R2 and R4, we have [22]

R2 = d′(B1, B
′)N(x), R4 = a′4s

−3E(x). (15)

The functions N(x) and E(x) are defined in Eqs. (10).
The operator Δ̂g is given by the expression [11, 22]

Δ̂g =
1

2(2πi)2
∑
l1,l2

(N ′)−1
∑

B1<k≤B′
Δg(k)e−ik(l1−l2)×

×

{(
S4

3!

)2 1
(2πi)6

(N ′)−3
∑

k1,...,k6≤B1

∂6

∂ρk1 · · · ∂ρk6

×

× exp [−i(k1 + k2 + k3)l1 − i(k4 + k5 + k6)l2] +

+2
S4S6

3!5!
1

(2πi)8
(N ′)−4

∑
k1,...,k8≤B1

∂8

∂ρk1 · · · ∂ρk8

×

× exp [−i(k1 + k2 + k3)l1 − i(k4 + · · ·+ k8)l2] +

+
1

(2πi)10
(N ′)−5

∑
k1,...,k10≤B1

∂10

∂ρk1 · · · ∂ρk10

[
2
S4S8

3!7!
×

× exp [−i(k1 + k2 + k3)l1 − i(k4 + · · ·+ k10)l2] +

+
(
S6

5!

)2

exp [−i(k1 + · · ·+ k5)l1−

−i(k6 + · · ·+ k10)l2]
]

+ 2
S6S8

5!7!
1

(2πi)12
(N ′)−6×

×
∑

k1,...,k12≤B1

∂12

∂ρk1 · · · ∂ρk12

exp [−i(k1 + · · ·+ k5)l1−

−i(k6 + · · ·+ k12)l2] +
(
S8

7!

)2 1
(2πi)14

(N ′)−7×
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×
∑

k1,...,k14≤B1

∂14

∂ρk1 · · · ∂ρk14

exp [−i(k1 + · · ·+ k7)l1−

−i(k8 + · · ·+ k14)l2] + · · ·

}
. (16)

Here,

S2 = (2π)2
(

3
a′4

)1/2

U(x), S4 = (2π)4
3
a′4
ϕ(x), (17)

S6 = (2π)6
(

3
a′4

)3/2

ϕ1(x), S8 = (2π)8
(

3
a′4

)2

ϕ2(x),

and the functions ϕl(x) are defined by the relations

ϕ(x) = 3U2(x) + 2xU(x)− 2,
ϕ1(x) = 30U3(x) + 30xU2(x) + 4(x2 − 6)U(x)− 4x,
ϕ2(x) = 630U4(x) + 840xU3(x) + 84(3x2 − 8)U2(x)+
+8x(x2 − 45)U(x)− 8x2 + 120.

The summation over the sites l1 and l2 in formula (16)
is carried out for a lattice with the period c′ = πb

√
2.

The wave-vector magnitudes change within the interval
[0, B′]. The quantity Δg(k) is defined as

Δg(k) =
ΔΦ̃(k)

1− S2(2π)−2ΔΦ̃(k)
. (18)

The operator Δ̂g in expression (13) acts on the function

I(R2, R4) = exp

−1
2
R2

∑
k≤B1

ρkρ−k −
1
4!

(N1)−1×

×R4

∑
k1,...,k4≤B1

ρk1 · · · ρk4δk1+···+k4

 , (19)

in which we will confine the consideration to the first
term in the exponent. This circumstance is associ-
ated with a small contribution from R4 in comparison
with that from R2 (the numerical estimates of the ra-
tio R4/(6R2

2) for various values of RG parameter s are
quoted in work [22], being of the order of 10−4).

The correction inserted by the operator Δ̂g is consid-
ered in the linear approximation in ΔΦ̃(k). In so doing,
we confine expression (16) to the first term, which is
proportional to ∂6

∂ρk1 ···∂ρk6
. In this approximation,

Δ̂(1)
g =

1
2

∑
k1,...,k6≤B1

(
ϕ(x)
2a′4

)2
∂6

∂ρk1 · · · ∂ρk6

(N ′)−4×

×
∑

B1<k≤B′
Δg(k)

∑
l1,l2

exp [−i(k1 + k2 + k3 + k)l1−

−i(k4 + k5 + k6 − k)l2] . (20)

A short remark concerning the consideration of other
terms in expression (16) will be given below.

Operator (20) being applied to function (19) produces
the following result:

Δ(1)
g = −3

4

(
ϕ(x)
a′4

)2

R3
2

∑
l

I1(x̄)I2(x̄)×

×

N ′I2
1 (x̄)− 3R2I1(x̄)

∑
k≤B1

ρkρ−ke
−ikl +

3
2
R2

2s
−3×

×(N1)−1
∑

k1,...,k4≤B1

ρk1 · · · ρk4e
−i(k1+k3)lδk1+···+k4

 . (21)

Here, l = l1 − l2 and x̄ = l/c′. The quantities I1(x̄) and
I2(x̄) are calculated with the help of a transition to the
spherical Brillouin zone and integrating over k ∈ [0, B1]:

I1(x̄) =
1
N ′

∑
k≤B1

e−ikl = δl − Y (x̄),

I2(x̄) =
1
N ′

∑
B1<k≤B′

Δg(k)e−ikl = qt(Y (x̄)−Z(x̄)). (22)

For the functions Y (x̄) and Z(x̄), which are present in
formulas (22), we obtain

Y (x̄) =
1
N ′

∑
B1<k≤B′

e−ikl =
3

(πx̄)3

[
sin(πx̄)−

−πx̄ cos(πx̄)− sin
(πx̄
s

)
+
πx̄

s
cos
(πx̄
s

)]
,

Z(x̄) =
2βΦ̃(0)b2

q

1
N ′

∑
B1<k≤B′

k2e−ikl =

=
3

π2q̄x̄2

{
3
sin(πx̄)
πx̄

− cos(πx̄) + 6
(

cos(πx̄)
(πx̄)2

−

− sin(πx̄)
(πx̄)3

)
− s−3

[
3
sin(πx̄/s)
πx̄/s

− cos(πx̄/s)+

+6
(

cos(πx̄/s)
(πx̄/s)2

− sin(πx̄/s)
(πx̄/s)3

)]}
. (23)

The quantity

t =

〈
1

1−
√

3/a′4U(x)ΔΦ̃(k)

〉
B1,B′

,

where the symbol 〈· · · 〉B1,B′
means the geometrical av-

eraging over the interval (B1, B
′], is determined by the
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formulas

t =

√
ā′4
3

1
U(x)

t0, t0 =
3

1 + s−1 + s−2
+

3a
1− s−3

I0,

ā′4 = a′4(βΦ̃(0))−2, a = q̄ −
√
ā′4
3

1
U(x)

,

I0 =


1

2
√
a

ln
∣∣∣ (1−√a)(s−1+

√
a)

(1+
√
a)(s−1−

√
a)

∣∣∣ , a > 0,

1√
|a|

(
arctan 1√

|a|
− arctan 1√

|a|s

)
, a < 0.

(24)

Note that the separation of the Kronecker symbol δl
in the expression for I1(x̄) (see Eqs. (22)) was pro-
posed in work [8], being an important element of calcu-
lations. This procedure enables one to select the interval
k ∈ (B1, B

′
] from the range of wave vectors k ∈ [0, B′], in

which the correction for the potential averaging is taken
into account. The absence of this procedure in work [23]
brought about the first unsuccessful attempt to calcu-
late the critical exponent η in the framework of the CV
method. In the case s → 1, we have Y (x̄) → 0 and
B1 → B′, so that the quantity I1(x̄) transforms into the
Kronecker symbol δl.

Returning back to Eq. (21), we find

Δ(1)
g = −3

4
qtR3

2

(
ϕ(x)
a′4

)2
{
N ′F0 − 6R2A0×

×1
2

∑
k≤B1

ρkρ−k + 3R2B0
1
2

∑
k≤B1

(c′)2k2ρkρ−k + 3s−3×

×R2
2C0

1
2
(N1)−1

∑
k1,...,k4≤B1

ρk1 · · · ρk4δk1+···+k4

}
. (25)

The quantities F0, A0, B0, and C0 are given by the re-
lations

F0 = −
∑
x̄6=0

Y 3(x̄)(Y (x̄)−Z(x̄))ρ(x̄),

A0 =
∑
x̄ 6=0

Y 2(x̄)(Y (x̄)−Z(x̄))ρ(x̄),

B0 =
∑
x̄6=0

Y 2(x̄)(Y (x̄)−Z(x̄))x̄2ρ1(x̄),

C0 = −
∑
x̄6=0

Y (x̄)(Y (x̄)−Z(x̄))ρ(x̄). (26)

While summing up in Eqs. (26), we take into account
that x̄ is the distance to particles: x̄ = 1,

√
2,
√

3, and so
on. Besides the functions Y (x̄) and Z(x̄), Eqs. (26) also
include the number of particles, ρ(x̄), which are located
at the sites of a simple cubic lattice at the distance x̄
from the coordinate origin, as well as the number of the

same particles, ρ1(x̄) =
∑

Θ ρΘ(x̄) cos2 Θ, which takes
their angular distribution into account. The notation
ρΘ(x̄) is used for the number of particles, for which the
values of cos2 Θ are identical (Θ is the angle between the
axis Oz and the vector directed to the particle). Note
that ρ(x̄) =

∑
Θ ρΘ(x̄). The values of ρ(x̄), ρΘ(x̄), and

ρ1(x̄) can be found in works [11, 22]. The quantities F0,
A0, B0, and C0 are calculated with regard for the averag-
ing correction and give rise to the emergence of a nonzero
critical exponent of the correlation function. The numer-
ical estimates for those quantities are presented in work
[11] for intermediate values of the RG parameter s, close
to the value s = s∗ = 3.5862. The latter, at ΔΦ̃(k) = 0,
corresponds to the average value of the coefficient in the
squared term in the effective measure density, which is
equal to zero at the fixed point. Just such s-values are
optimum for the presented calculation procedure. This
fact is associated with two circumstances. First, at small
s-values, the presence of a unit element in the system
must be taken into consideration. For its separation, the
RRs should be presented in the form of series of pertur-
bation theory with respect to the Gaussian distribution
[21,24]. Second, at large s-values, there emerge the large
intervals of wave vectors, in which Φ̃(k) is averaged. In
this case, the correction βΦ̃(k) − βΦ̃(Bn+1, Bn) is sub-
stantial, so that its account in the linear approximation
is incorrect.

It should be emphasized that the consideration of
the next terms in Eq. (16), which are proportional to
higher orders of operators ∂/∂ρk, does not change the
functional form of expression (25) for Δ(1)

g (see works
[11, 22]). Only the coefficients F0, A0, B0, and C0 be-
come different. In our following calculations, we will
neglect a similar renormalization of those coefficients.

After the successive integration over the zeroth, the
first, ..., the n-th layers in the CV phase space, we arrive
at the following expression for the partition function of
the system in the linear approximation in ΔΦ̃(k):

Z = 2N2(Nn+1−1)/2Q̃0Q̃1 · · · Q̃n[Q(Pn)]Nn+1×

×
∫

exp

−1
2

∑
k≤Bn+1

d̃n+1(k)ρkρ−k −
1
4!

(Nn+1)−1×

×
∑

k1,...,k4≤Bn+1

ã
(n+1)
4 ρk1 · · · ρk4δk1+···+k4

 (dρ)Nn+1 . (27)

In comparison with the results obtained earlier without
taking the correction for the potential averaging into ac-
count (see, e.g., works [8,9,11]), expression (27) includes

84 ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 1



METHOD FOR THE CALCULATION OF FREE ENERGY

new quantities. In particular,

f(xn) = −3
√

3
4
s6U(xn)

U3(yn)
yn

qntn√
ã
(n)
4

F0 (28)

characterizes a correction for partial partition functions,
which now look like

Q̃0 =
[
Q0e

f(x)
]N ′

, Q̃1 =
[
(3/ϕ(y))1/4 e(x

2
1+y

2)/4×

×U(0, x1)U(0, y)ef(x1)
]N1

, . . . ,

Q̃n =
[
(3/ϕ(yn−1))

1/4
e(x

2
n+y2

n−1)/4U(0, xn)×

×U(0, yn−1)ef(xn)
]Nn

. (29)

The arguments of the functions are

xn =
√

3d̃n(Bn+1, Bn)
(
ã
(n)
4

)−1/2

,

yn−1 = s3/2U(xn−1) (3/ϕ(xn−1))
1/2

. (30)

Expression (28) for f(xn), in addition to qn =
q 1+α0

s2
1+α1
s2 · · · · · ·

1+αn−1
s2 , contains the quantity

tn =

√
ã
(n)
4

3
1

U(xn)
s2

1 + α0

s2

1 + α1
· · · s2

1 + αn−1
t
(n)
0 ×

× 1
βΦ̃(0)

, (31)

where

t
(n)
0 =

3
1 + s−1 + s−2

+
3an

1− s−3
I0.

The quantity I0 is described by formula (24), with an
accuracy of a substituted by

an = q̄ −

√
ã
(n)
4

3
1

U(xn)
s2

1 + α0

s2

1 + α1
· · · s2

1 + αn−1
×

× 1
βΦ̃(0)

. (32)

The quantity

αn =
9π2

4
s6U4(yn)q̄tnB0 (33)

determines the correction for potential averaging in the
n-th layer of the CV phase space. Note that, in this
work, we use the notations x0 ≡ x, y0 ≡ y, q0 ≡ q,
t0 ≡ t, and a0 ≡ a.

The coefficients d̃n+1 and ã
(n+1)
4 satisfy the following

RRs:

d̃n+1(Bn+2, Bn+1) = d̃n(Bn+1, Bn)Ñ(xn)−

−q 1 + α0

s2
1 + α1

s2
· · · 1 + αn−1

s2

(
1− 1 + αn

s2

)
,

ã
(n+1)
4 = ã

(n)
4 s−3Ẽ(xn). (34)

The corrections in the expressions

Ñ(xn) = N(xn) (1−G(xn)A0) ,
Ẽ(xn) = E(xn) (1 +K(xn)C0) (35)

for the contribution made by the potential averaging are
given by the terms G(xn)A0 and K(xn)C0 Here,

G(xn) =
9
√

3
2
s6
U3(yn)
yn

U(xn)
qtn√
ũn
,

K(xn) = 27
√

3s3
U5(yn)
ynϕ(yn)

U(xn)
qtn√
ũn
. (36)

In terms of the variables

r̃n =
s2

1 + α0

s2

1 + α1
· · · s2

1 + αn−1
d̃n(0),

ũn =
s4

(1 + α0)2
s4

(1 + α1)2
· · · s4

(1 + αn−1)2
ã
(n)
4 , (37)

RRs (34) read

r̃n+1 =
s2

1 + αn

[
(r̃n + q)Ñ(xn)− q

]
,

ũn+1 =
s

(1 + αn)2
ũnẼ(xn). (38)

For tn (Eq. (31)), we have

tn =

√
ũn
3

1
U(xn)

t
(n)
0

1
βΦ̃(0)

,

t
(n)
0 =

3
1 + s−1 + s−2

+
3an

1− s−3

1∫
1/s

dk

k2 − an
, (39)

where

an = q̄ −
√
ũn
3

1
U(xn)

1
βΦ̃(0)

. (40)

There are two essential differences between RRs (38)
and those obtained in works [11, 25] without regard for
the correction for ΔΦ̃(k). The first of them consists in a
specific substitution of variables (37), which includes the
multipliers (1+α0)(1+α1) · · · (1+αn−1), hence being dif-
ferent from the corresponding substitution without the
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account for the correction. The second difference con-
cerns the transformation of the special functions N(xn)
and E(xn) (10) into the functions Ñ(xn) and Ẽ(xn)
(35). This difference, as we will see further, results in
a shift of the fixed-point coordinates, being associated
with corrections to the critical exponents of thermody-
namic functions.

4. Analysis of Recurrence Relations

As a partial solution, RRs (38) have a new fixed point
(r̃, ũ), which, at ΔΦ̃(k) 6= 0, differs from the fixed point
(r(0), u(0)) for the case ΔΦ̃(k) = 0 [11, 25, 26]. Really,
supposing that

r̃n+1 = r̃n = r̃, ũn+1 = ũn = ũ, (41)

we obtain, from the second equation in (38), the equality

Ẽ(x̃) =
(1 + α(0))2

s
, (42)

and use the latter to find the quantity

x̃ =
√

3(r̃ + q)(ũ)−1/2. (43)

The calculation accuracy for x̃ must correspond to the
approximation used for the derivation of RRs (38).
Therefore, in the linear approximation in ΔΦ̃(k), we ar-
rive at the formulas

x̃=x(0) − K(x(0))C0 − 2α(0)

ψ(x(0))
, ψ(x(0))=

E′(x(0))
E(x(0))

. (44)

Here, the quantity x(0) is the solution of the equation
E(x(0)) = s−1 and characterizes the argument xn at
the fixed point found without regard for the dependence
of the Fourier transform of the potential on the wave
vector. For α(0) and K(x(0)), we obtain

α(0) =
9π2

4
s6U4(y(0))q̄t(0)B0,

K(x(0)) = 27
√

3s3
U5(y(0))
y(0)ϕ(y(0))

U(x(0))
qt(0)√
u(0)

, (45)

where t(0) = tn(u(0), x(0)), and y(0) is defined by the
expression

y(0) = s3/2U(x(0))
(
3/ϕ(x(0))

)1/2

.

Let the coordinates of the fixed point be presented in
the form

r̃ = −f̃βΦ̃(0), ũ = ϕ̃(βΦ(0))2, (46)

where

f̃ = q̄
Ñ(x̃)− 1

Ñ(x̃)− (1 + α(0))/s2
,

ϕ̃ = 3q̄2
[

s2 − α(0) − 1
s2ñ(x̃)− x̃(1 + α(0))

]2
. (47)

Here, the following notations were introduced:

ñ(x̃) = n(x̃)(1−G(x̃)A0),

n(x̃) =
ỹU(ỹ)
U(x̃)

,

G(x̃) =
9
√

3
2
s6
U3(ỹ)
ỹ

U(x̃)
q̄t̃√
ϕ̃
, (48)

as well as t̃ = tn(ϕ̃, x̃). In the linear approximation in
ΔΦ̃(k), we obtain

f̃ = f0

{
1 +

α(0)x(0)/s2

n(x(0))− x(0)/s2
+

+
[x(0)n′(x(0))−n(x(0))]Δx−n(x(0))G(x(0))A0x

(0)

[n(x(0))− x(0)][n(x(0))− x(0)/s2]
×

×(1− s−2)
}
, (49)

ϕ̃ = ϕ0

{
1− 2α(0)/s2

1− s−2
+

+2
[−n′(x(0))+s−2]Δx+n(x(0))G(x(0))A0+x(0)α(0)/s2

n(x(0))− x(0)/s2

}
.

The quantities f0 and ϕ0 characterize the coordinates of
the fixed point without taking the dependence Φ̃(k) on
the wave vector into account [11,19], and Δx = x̃−x(0).
We have

n′(x(0)) = n(x)
[
y′

y
+ y′

U ′(y)
U(y)

− U ′(x)
U(x)

] ∣∣∣∣
x=x(0)

y=y(0)

,

G(x(0)) =
9
√

3
2
s6
U3(y(0))
y(0)

U(x(0))
qt(0)√
u(0)

. (50)

Table 1 exhibits the values of the quantities α(0), Δx, f̃ ,
and ϕ̃ for some intermediate values of the RG parame-
ter s.

Let us linearize RRs (38) in a vicinity of the fixed
point,(
r̃n+1 − r̃
ũn+1 − ũ

)
= R̃

(
r̃n − r̃
ũn − ũ

)
, (51)

and determine the matrix elements for this transforma-
tion. The general expressions for the elements R̃ij of the
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matrix R̃ look like

R̃11 =
s2

1 + α̃
n(x̃) [T (x̃)−G(x̃)A0(Π(x̃) + T (x̃))] ,

R̃12 =
s2

1 + α̃

n(x̃)(ũ)−1/2

2
√

3
[1− x̃T (x̃) +G(x̃)x̃A0×

×(Π(x̃) + T (x̃))] ,

R̃21 =
sE(x̃)

(1 + α̃)2
(3ũ)1/2 [ψ(x̃) +K(x̃)C0×

×(ψ(x̃) + Π1(x̃))] ,

R̃22 =
sE(x̃)

(1 + α̃)2

{
1− 1

2
x̃ψ(x̃) +

1
2
K(x̃)C0×

×[1− x̃(ψ(x̃) + Π1(x̃))]
}
, (52)

where α̃ = αn(ϕ̃, x̃) and the following notations are used:

T (x̃) =
ỹ′

ỹ
+ỹ′

U ′(ỹ)
U(ỹ)

−U
′(x̃)

U(x̃)
=

1
n(x̃)

[
∂n(xn)
∂xn

]∣∣∣∣xn=x̃
yn=ỹ

,

Π(x̃) = −ỹ
′

ỹ
+3ỹ′

U ′(ỹ)
U(ỹ)

+
U ′(x̃)
U(x̃)

=
1

G(x̃)

[
∂G(xn)
∂xn

]∣∣∣∣xn=x̃
yn=ỹ

,

ψ(x̃) = ỹ′
ϕ′(ỹ)
ϕ(ỹ)

−ϕ
′(x̃)
ϕ(x̃)

=
1

E(x̃)

[
∂E(xn)
∂xn

]∣∣∣∣xn=x̃
yn=ỹ

,

Π1(x̃) = −ỹ
′

ỹ
+ỹ′

[
5
U ′(ỹ)
U(ỹ)

−ϕ
′(ỹ)
ϕ(ỹ)

]
+
U ′(x̃)
U(x̃)

=

=
1
K(x̃)

[
∂K(xn)
∂xn

]∣∣∣∣xn=x̃
yn=ỹ

,

K(x̃) = 27
√

3s3
U5(ỹ)
ỹϕ(ỹ)

U(x̃)
q̄t̃√
ϕ̃
. (53)

As was done before, all calculations are carried out in
the approximation of a linear contribution from the cor-
rection ΔΦ̃(k). In this approximation, from Eqs. (52),
we obtain the matrix element

R̃11 = R11(1− α(0)) +R
(1)
11 Δx+R

(2)
11 A0, (54)

T a b l e 1. Calculated values for the quantity α(0)

from Eqs. (45), the shift Δx = x̃−x(0) of the basic argu-
ment xn at the fixed point, the quantities f̃ and ϕ̃ charac-
terizing the fixed-point coordinates (46) with regard for
the correction for the averaging of the potential, and the
eigenvalues Ẽ1 and Ẽ2 of the transformation matrix R̃
from Eq. (51)

s α(0) Δx f̃ ϕ̃ Ẽ1 Ẽ2

3 0.0113 0.2551 0.3635 0.4975 6.8596 0.4109
s∗ 0.0235 0.3332 0.4308 0.6353 9.2168 0.3801
4 0.0330 0.3782 0.4709 0.7261 11.0407 0.3649
5 0.0595 0.5047 0.5143 0.8630 16.1822 0.3381

where

R11 = s2n(x(0))T (x(0)),

R
(1)
11 = s2[n(x(0))T ′(x(0)) + n′(x(0))T (x(0))],

R
(2)
11 = −s2n(x(0))G(x(0))[Π(x(0)) + T (x(0))]. (55)

Here, the derivative T ′(x(0)) is calculated using the for-
mula

T ′(x(0)) =
{
y′′
(

1
y

+
U ′(y)
U(y)

)
+ (y′)2

[
U ′′(y)
U(y)

−

−
(
U ′(y)
U(y)

)2

− 1
y2

]
− U ′′(x)

U(x)
+
(
U ′(x)
U(x)

)2}∣∣∣∣
x=x(0)

y=y(0)

, (56)

in which

y′′ = y′
[
U ′(x)
U(x)

− 1
2
ϕ′(x)
ϕ(x)

]
+y

[
U ′′(x)
U(x)

−
(
U ′(x)
U(x)

)2

−

−1
2
ϕ′′(x)
ϕ(x)

+
1
2

(
ϕ′(x)
ϕ(x)

)2
]
. (57)

Let us write down the matrix elements R̃12 and R̃21 in
the form

R̃12 = R̃
(0)
12 (ũ)−1/2, R̃21 = R̃

(0)
21 (ũ)1/2. (58)

Then, for R̃(0)
12 , we obtain

R̃
(0)
12 = R

(0)
12 (1− α(0)) +R

(1)
12 Δx+R

(2)
12 A0, (59)

where

R
(0)
12 =

s2

2
√

3
n(x(0))[1− x(0)T (x(0))],

R
(1)
12 =

s2

2
√

3

{
n′(x(0))[1− x(0)T (x(0))]− n(x(0))×

×[T (x(0)) + x(0)T ′(x(0))]
}
,

R
(2)
12 =

s2

2
√

3
n(x(0))G(x(0))x(0)[Π(x(0)) + T (x(0))], (60)

and, for R̃(0)
21 , we have

R̃
(0)
21 = R

(0)
21 (1− 2α(0)) +R

(1)
21 Δx+R

(2)
21 C0, (61)

where

R
(0)
21 = s

√
3E(x(0))ψ(x(0)),

R
(1)
21 = s

√
3E(x(0))[ψ′(x(0)) + ψ2(x(0))],

R
(2)
21 = s

√
3E(x(0))K(x(0))[ψ(x(0)) + Π1(x(0))]. (62)
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Here,

ψ′(x(0)) =
{
y′′
ϕ′(y)
ϕ(y)

+ (y′)2
[
ϕ′′(y)
ϕ(y)

−
(
ϕ′(y)
ϕ(y)

)2]
+

+
(
ϕ′(x)
ϕ(x)

)2

− ϕ′′(x)
ϕ(x)

}∣∣∣∣
x=x(0)

y=y(0)

. (63)

The matrix element R̃22 satisfies the relation

R̃22 = R22(1− 2α(0)) +R
(1)
22 Δx+R

(2)
22 C0, (64)

where

R22 = sE(x(0))
[
1− 1

2
x(0)ψ(x(0))

]
,

R
(1)
22 = sE(x(0))

{
ψ(x(0))

[
1− 1

2
x(0)Ψ(x(0))

]
−

−1
2

[
ψ(x(0)) + x(0)ψ′(x(0))

]}
,

R
(2)
22 =

sE(x(0))
2

K(x(0))
{

1−x(0)[ψ(x(0))+Π1(x(0))]
}
. (65)

Note that the quantities R11, R
(0)
12 , R(0)

21 , and R22 in
Eqs. (54)–(65) coincide with the expressions for the ma-
trix elements obtained in works [11, 19] without regard
for the correction for the averaging of the potential. The
contributions to matrix elements R̃ij , which are propor-
tional to R(1)

ij Δx, correspond to a shift of the fixed point
owing to the account for the dependence of the Fourier
transform of the interaction potential on the wave vec-
tor. The terms like R̃(2)

ij A0 and R̃(2)
ij C0 describe a direct

contribution to R̃ij made by the correction for the av-
eraging. The fixed point remains to be the saddle one,
because the following inequalities are satisfied for the
eigenvalues of the matrix R̃: Ẽ1 > 1 and Ẽ2 < 1 (see
Table 1).

Having calculated the eigenvectors and the eigenvalues
of the transformation matrix R̃ from Eq. (51), we obtain
the explicit solutions of RRs (38):

r̃n = r̃ + c̃1Ẽ
n
1 + c̃2R̃Ẽ

n
2 ,

ũn = ũ+ c̃1R̃1Ẽ
n
1 + c̃2Ẽ

n
2 . (66)

Here,

c̃1 = [r′ − r̃ − (a′4 − ũ)R̃]/D̃, R̃ = R̃12/(Ẽ2 − R̃11),
c̃2 = [a′4 − ũ− (r′ − r̃)R̃1]/D̃, R̃1 = (Ẽ1 − R̃11)/R̃12,

D̃ = (Ẽ1 − Ẽ2)/(R̃11 − Ẽ2), r′ = a′2 − βΦ̃(0), (67)

the initial coefficients a′2 and a′4 are given in Eq. (6),
and the fixed-point coordinates r̃ and ũ in Eqs. (46) and

(49). In view of notations (37), we obtain the relations

d̃n(Bn+1, Bn) = s−2n

[
n−1∏
m=0

(1 + αm)

]
×

×
[
r̃ + q + c̃1Ẽ

n
1 + c̃2R̃Ẽ

n
2

]
,

ã
(n)
4 = s−4n

[
n−1∏
m=0

(1 + αm)2
] [
ũ+ c̃1R̃1Ẽ

n
1 + c̃2Ẽ

n
2

]
. (68)

The major difference between solutions (68) and so-
lutions obtained earlier in works [8, 9, 19], in which no
correction for the potential averaging was made, consists
in the presence of multipliers of the type (1 + αm). In
the general case, they depend on the temperature and
the ordinal number of a block structure m. However, in
the case T = Tc, the coefficients d̃n and ã(n)

4 in Eqs. (68)
behave themselves specifically. Since, at T = Tc,

lim
m→∞

αm(Tc) = α(0),

we obtain the following asymptotics for those quantities:

d̃n(Bn+1, Bn) = (r̃ + q)s−n(2−η),

ã
(n)
4 = ũs−2n(2−η). (69)

The quantity η in the exponent powers is given by the
formula

η =
α(0)

ln s
(70)

and corresponds to the critical exponent of the correla-
tion function.

Hence, the account for the correction associated with
the averaging of the Fourier transform of the potential
Φ̃(k) in the course of integration of the partition function
of the system gives rise, for some block structures, to
a change of the asymptotics for the coefficients d̃n and
ã
(n)
4 at T = Tc (in contrast to the case ΔΦ̃(k) = 0, the

exponent powers in Eqs. (69), except for n, also contain
η).

5. Free Energy of the System

The general scheme developed in works [8, 11, 19, 25] to
calculate the free energy was applied to the case where
the correction for the potential averaging was taken into
account. The free energy of the system will be calcu-
lated, by separating the contributions made by the short-
and long-wave modes of spin density oscillations. De-
spite the changes in the solutions of RRs (68), it can be
easily shown that

c̃1 = c̃10τ, (71)
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where τ = (T − Tc)/Tc, and c̃10 is a constant different
from zero at T = Tc. This allows us to determine the
point mτ , where the system goes out from the critical
regime (CR). Analogously to the results of works [11, 19,
25], we use the condition

d̃mτ+1(0) = 0 (72)

to find the exit point from the CR fluctuations at T > Tc.
We obtain the formula

mτ = − ln τ
ln Ẽ1

+m0 − 1. (73)

Here, Ẽ1 is the larger eigenvalue of the matrix of trans-
formation (51) and

m0 =
ln |r̃/c̃10|

ln Ẽ1

. (74)

We illustrate the calculation procedure for the free
energy of the system in the case of temperatures higher
than Tc. The expression for the free energy at T > Tc is
written down in the form

F = F0 + FCR + FLGR, (75)

where the term F0 = −kTN ln 2 corresponds to the free
energy of noninteracting spins, FCR to the contribution
to the free energy made by the short-wave oscillation
modes of the spin-moment density (the CR region), and
FLGR to the contribution from the long-wave oscilla-
tion modes (the region of the limiting Gaussian regime,
LGR). For FCR, we obtain

FCR = −kT
mτ∑
n=0

ln Q̃n. (76)

The quantity ln Q̃n can be expressed in the form

ln Q̃n = lnQn +Nnf(xn). (77)

Here, Qn is the partial partition function for the n-th
block structure calculated without regard for the depen-
dence of the Fourier transform of the potential Φ̃(k) on
the wave vector, and f(xn) describes an extra contribu-
tion, which arises, if ΔΦ̃(k) is taken into account. The
contribution is convenient to be written down in the form

f(xn) = −3
√

3
4
s6F0qα

′
ntn, (78)

where the expression for the quantity α′n looks like

α′n =
1√
ũn
U(xn)U3(yn−1)y−1

n−1. (79)

In a vicinity of the fixed point, the quantity α′n satisfies
the relation

α′n =
1√
ũn

U(x(0))
(y(0))4

(
1− 9

2
1

(y(0))2

)
×

×
[
1 +A′′1(xn−1 − x(0)) +A′′2(xn−1 − x(0))2+

+A′′3(xn − x(0)) +A′′4(xn − x(0))2+

+A′′5(xn−1 − x(0))(xn − x(0))
]
. (80)

Here, the following notations were used:

A′′l = ω0A
′
l,

ω0 = −3
√

3
4
s6F0t

(0)q̄
1
√
ϕ0

U(x(0))
(y(0))4

(
1− 9

2
(y(0))−2

)
,

A′1 = −4r1 + 18r1/[2(y(0))2 − 9],
A′2 = 10r21 − 4r2 + 9(2r2 − 11r21)/[2(y(0))2 − 9],

A′3 = U ′(x(0))/U(x(0)), A′4 =
1
2
U ′′(x(0))/U(x(0)),

A′5 = U ′(x(0))/U(x(0))
{
−4r1+18r1/[2(y(0))2−9]

}
, (81)

as well as t(0) = tn(ϕ0, x
(0)). The quantities r1 and r2,

which are defined through the functions U(x(0)), ϕ(x(0)),
and their derivatives are presented in works [11, 22]. For
the contribution to the free energy of the system made
by the CR region, we obtain

FCR = −kTN ′
[
a′0 + lnQ(d) + γ̃01 + γ̃02τ + γ̃03τ

2−

−γ̃′s−3(mτ+1)
]
. (82)

The coefficients a′0 and Q(d) are defined in Eqs. (6) and
(14), respectively. For other coefficients in Eq. (82), we
obtain

γ̃01 = s−3

[
f

(0)
CR + ω0

1− s−3
+

d2c̃2kẼ2

1− Ẽ2s−3
+

d̃4b̃0Ẽ
2
2

1− Ẽ2
2s
−3

]
,

γ̃02 = s−3

[
d2c̃2k1Ẽ2

1− Ẽ2s−3
+

d̃4b̃1Ẽ
2
2

1− Ẽ2
2s
−3

+
d1c̃1kẼ1

1− Ẽ1s−3
+

+
d̃5c̃1k c̃2kẼ1Ẽ2

1− Ẽ1Ẽ2s−3
+
d̃7b̃0c̃1kẼ1Ẽ

2
2

1− Ẽ1Ẽ2s−3

]
,

γ̃03 = s−3

[
d2c̃2k2Ẽ2

1− Ẽ2s−3
+
d̃5(c̃1k1c̃2k + c̃1k c̃2k1)Ẽ1Ẽ2

1− Ẽ1Ẽ2s−3
+

+
d̃4b̃2Ẽ

2
2

1− Ẽ2
2s
−3

+
d1c̃1k1Ẽ1

1− Ẽ1s−3
+

d̃3c̃
2
1kẼ

2
1

1− Ẽ2
1s
−3

+
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+
d̃6c̃2k c̃

2
1kẼ

2
1Ẽ2

1− Ẽ2
1Ẽ2s−3

+
d̃7(b̃0c̃1k1 + b̃1c̃1k)Ẽ1Ẽ

2
2

1− Ẽ1Ẽ2
2s
−3

+

+
d̃8b̃0c̃

2
1kẼ

2
1Ẽ

2
2

1− Ẽ2
1Ẽ

2
2s
−3

]
,

γ̃′ =
f

(0)
CR + ω0

1− s−3
+

d1f̃

1− Ẽ1s−3
+

d̃3f̃
2

1− Ẽ2
1s
−3
. (83)

Formulas (83) differ from analogous expressions obtained
without regard for the dependence of the Fourier trans-
form of the potential on the wave vector by the renor-
malized eigenvalues of Ẽ1 and Ẽ2, and the coefficients d̃l
(with l ≥ 3) which, in the case where the aforementioned
dependence is made allowance for, look like

d̃3 = d3 +B2
3A
′′
5 Ẽ
−1
1 , d̃4 = d4 +B2

1A
′′
5 Ẽ
−1
2 ,

d̃5 = d5 +B1B3A
′′
5

(
Ẽ−1

1 + Ẽ−1
2

)
,

d̃6 = d6 +B3B4A
′′
5

(
Ẽ−1

1 Ẽ−1
2 + Ẽ−1

1

)
+

+B1B6A
′′
5

(
Ẽ−1

2 + Ẽ−2
1

)
,

d̃7 = d7 +B1B4A
′′
5

(
Ẽ−1

1 Ẽ−1
2 + Ẽ−1

2

)
+

+B2B3A
′′
5

(
Ẽ−2

2 + Ẽ−1
1

)
,

d̃8 = d8 +B2B6A
′′
5

(
Ẽ−2

1 + Ẽ−2
2

)
+

+B3B5A
′′
5

(
Ẽ−1

1 + Ẽ−1
1 Ẽ−2

2

)
+B2

4A
′′
5 Ẽ
−1
1 Ẽ−1

2 +

+B1B7A
′′
5

(
Ẽ−1

2 + Ẽ−2
1 Ẽ−1

2

)
. (84)

Note that the expressions obtained for the quantities
f

(0)
CR, dl, and Bl are similar to those presented in works

[11, 19]. One should substitute the quantity Al in them
by the quantity Ãl = Al +A

′′

l ; the quantities f0 and ϕ0,
which characterize the coordinates of the fixed point, by
new quantities f̃ and ϕ̃, respectively; and the quantities
El and Rij by the renormalized eigenvalues Ẽl and ma-
trix elements R̃ij , respectively. The same is true for the
quantities c̃lkm and b̃l, which differ from their counter-
parts clkm and bl.

Separating the temperature dependence in Eq. (82),
we arrive at the formula

FCR = −kTN ′
[
γ̃′01 + γ̃1τ + γ̃2τ

2 − γ̃10τ
3ν
]
, (85)

where

γ̃′01 = ā0 + γ̃01, γ̃1 = ā1 + γ̃02,

γ̃2 = ā2 + γ̃03, γ̃10 = γ̃′s−3m0 . (86)

The expressions for āl are the same as in works [11, 19],
in which, however [22],

x0c =
√

3[q̄ − f̃ + c̃2kR̃
(0)ϕ̃−1/2]/

√
ϕ̃+ c̃2k,

R̃(0) = R̃
(0)
12 /(Ẽ2 − R̃11).

We emphasize that the nonanalytical part of the free en-
ergy in the CR in Eq. (85) is determined by the last term
from the renormalized critical exponent of the correla-
tion length,

ν =
ln s

ln Ẽ1

. (87)

The renormalization of this exponent influences the criti-
cal behavior of the specific heat and other characteristics
of the system in a vicinity of the temperature Tc.

While calculating the partition function of the system
with regard for the correction for the potential averaging,
the functional form of quantity d̃n+1(k) changes. For the
initial d′(k)-coefficient, we have the expression

a′2 − βΦ̃(k) = a′2 − βΦ̃(0) + 2b2βΦ̃(0)k2.

After averaging k2 over the interval (B1, B
′] and inte-

grating over the zeroth layer in the CV phase space, the
expression for the coefficient d′(k) transforms into the
following one:

d̃1(k) = ã
(1)
2 − βΦ̃(0) + 2b2βΦ̃(0)(1 + α0)k2.

The average value of d̃1(k) in the interval of the wave
vectors (B2, B1] can be written down in the form

d̃1(B2, B1) = d̃1(0) + q̄βΦ̃(0)s−2(1−η0/2),

where the notation

η0 =
α0

ln s

was introduced. In terms of the average values calculated
taking the correction ΔΦ̃(k) into account, the interaction
potential becomes renormalized,

(1 + α0)〈k2〉B2,B1 = 〈k2−η0〉B2,B1 . (88)

For the n-th block structure, we obtain, in a similar way,

d̃n(Bn+1, Bn) = d̃n(0) + 2βΦ̃(0)b2×

×〈k2〉Bn+1,Bn

n−1∏
m=0

(1 + αm), (89)

which corresponds to the equality

d̃n(Bn+1, Bn) = d̃n(0) + q̄βΦ̃(0)
n−1∏
m=0

s−2(1−ηm/2). (90)
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Here,

ηm =
αm
ln s

,

and the quantity αm is defined by Eq. (33). In the CR
region, the following equalities are satisfied:

α0 = α1 = · · · = αm = α(0). (91)

Therefore, the quantity d̃n(Bn+1, Bn) can be presented
in the form

d̃n(Bn+1, Bn) = d̃n(0) + q̄βΦ̃(0)s−2n(1−η/2), (92)

where η is given in Eq. (70). As a result, we obtain

(1 + α(0))n〈k2〉Bn+1,Bn = 〈k2−η〉Bn+1,Bn . (93)

If the temperature is equal to the critical one, then

lim
n→∞

d̃n(0) = 0 (94)

and the following limiting relation can be written down
for d̃n(k):

lim
n→∞

d̃n(k) = lim
k→0

2βΦ̃(0)b2k2−η. (95)

Let us examine a contribution to the free energy of
the system made by long-wave fluctuations. The wave-
length, which corresponds to these fluctuations, exceeds
the correlation length. At T > Tc, besides the CR, there
exists the LGR in the system. It corresponds to the
wave-vector interval

0 ≤ k < Bmτ , (96)

where Bmτ = B′s−mτ . In the region of LGR (or long-
wave fluctuations), the quantity xn (and, respectively,
the quantity yn) increases with n. This results in a
drastic reduction of the coefficients αn and the func-
tions f(xn), G(xn), and K(xn). While calculating the
contribution to the free energy FLGR from the LGR re-
gion, it is convenient, as was done in works [11, 19], to
distinguish two regions of wave-vector values. The first
one is the transition region (TR), which corresponds to
k-values close to Bmτ , i.e. to the layers in the CV phase
space located immediately beyond the exit point from
the CR. The second one, the Gaussian region, includes
small wave-vector values (k → 0), in which the phase
distribution of spin-moment density fluctuations has a
Gaussian character.

The part of the free energy of the system, which cor-
responds to the TR, looks like

FTR = −kTN ′f̃TRτ
3ν . (97)

Here,

f̃TR = s−3m0

m′′∑
m=0

s−3mfmτ+m+1,

fmτ+m+1 =
1
2

ln ymτ+m +
9
4
(ymτ+m)−2+

+
x2
mτ+m+1

4
+ lnU(0, xmτ+m+1), (98)

and the values for xmτ+m+1 and ymτ+m are determined
from the formulas

xmτ+m+1 =
√

3
q̄ + f̃(Ẽm1 − 1)

(ϕ̃+ f̃ ϕ̃1/2R̃
(0)
1 Ẽm1 )1/2

,

ymτ+m = s3/2U(xmτ+m)(3/ϕ(xmτ+m))1/2. (99)

The quantity m
′′
, which characterizes the TR size [mτ +

1,mτ + m
′′

+ 1], can be determined, by following the
technique described in works [11, 19]. The correspond-
ing value does not depend on the temperature and, for
intermediate values of RG parameter s, corresponds to
2–3 layers in the CV phase space.

The Gaussian fluctuation regime (the Gaussian re-
gion) is described by the expression

Z ′ = 2−1/2
(
πP

(m′τ−1)
2

)−Nm′τ2 ×

×
∫

exp
[
−1

2

∑
k≤Bm′τ

d̃m′τ (k)ρkρ−k

]
(dρ)Nm′τ , (100)

where m′τ = mτ +m
′′

+ 2,

d̃m′τ (k) =
(
P

(m′τ−1)
2

)−1

+β
[
Φ̃(Bm′τ , Bm′τ−1)−Φ̃(k)

]
,

P
(m′τ−1)
2 =

(
3/ã(m′τ−1)

4

)1/2

U(xm′τ−1). (101)

In view of the condition c̃1Ẽmτ+1
1 = βΦ̃(0)f̃ , we obtain

ã
(m′τ−1)
4 = s−2(2−η)(− ln τ/ ln Ẽ1+m0)s−4m′′ ũm′τ−1

or

ã
(m′τ−1)
4 = τ2(2−η)νs−2(2−η)m0−4m

′′

ũm′τ−1. (102)

Here,

ũm′τ−1 = ũ+ βΦ̃(0)f̃ R̃1Ẽ
m
′′

1 . (103)

Then, in accordance with Eqs. (101), the quantity
d̃m′τ (k) satisfies the relation

d̃m′τ (k) = τ2(2−η)νs−2(m0+m
′′)+m0ηG̃+

+2βΦ̃(0)b2(1 + α(0))mτ+1k2, (104)
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in which

G̃ = βΦ̃(0)g̃,

g̃ =
(
ũm′τ−1

3

)1/2 1
βΦ̃(0)U(xm′τ−1)

− q̄. (105)

Integrating in Eq. (100) over every variable ρk with k 6= 0
and introducing an infinitesimally low external magnetic
field into consideration, we obtain the following expres-
sion for the component Z ′ of the partition function:

Z ′ =
(
P

(m′τ−1)
2

)−Nm′τ2
(2π)−1/2

Bm′τ∏
k 6=0

(
d̃m′τ (k)

)−1/2

×

×
∫

exp
[
−1

2
d̃m′τ (0)ρ2

0 + β
√
Nhρ0

]
dρ0. (106)

The part of the free energy of the system, which corre-
sponds to Z ′, looks like

F ′ =
1
2
kT

[
Nm′τ lnP (m′τ−1)

2 +

Bm′τ∑
k=0

ln d̃m′τ (k)
]
−

−N s2(m0+m
′′)s−m0η

2Φ̃(0)g̃
h2τ−(2−η)ν . (107)

At last, taking Eqs. (101) and (104) into account and
summing up in Eq. (107) over the wave vectors, we arrive
at the formula

F ′ = −kTN ′f̃
′′
τ3ν − βNγ̃+

4 h
2τ−(2−η)ν , (108)

where

f̃ ′′ = f̃ ′c̃3νs
−3(m′′+1),

γ̃+
4 = c̃−(2−η)

ν γ̄+
4 /(βΦ̃(0)), γ̄+

4 = s2m
′′
/(2g̃),

f̃ ′ = −1
4

ln 3 +
1
3

+
1
4

ln
(
ϕ̃+ f̃ ϕ̃1/2Ẽm

′′

1 R̃
(0)
1

)
−

−1
2

ln(s−2 + g̃)− g̃′
(

1−
√
g̃′ arctan

1√
g̃′

)
−

−1
2

lnU(xm′τ−1), (109)

c̃ν = (c̃1k/f̃)ν , R̃
(0)
1 = (Ẽ1 − R̃11)/R̃

(0)
12 , g̃′ = g̃s2.

Note that s−m0 = c̃ν .
The calculated contributions to the free energy of the

system – FCR (see Eq. (85)) and FLGR = FTR + F ′ (see
Eqs. (97) and (108)) – enable, according to Eq. (75), the
corresponding complete expression to be written down.
As a result, we have

F = −kTN ′
[
γ̃0 + γ̃1τ + γ̃2τ

2 + γ̃3τ
3ν
]
−

−βNγ̃+
4 h

2τ−(2−η)ν . (110)

Here,

γ̃0 = γ̃′01 + s30 ln 2,
γ̃3 = −γ̃10 + f̃TR + f̃ ′′, (111)

the coefficients γ̃1 and γ̃2 are defined in Eqs. (86), and
the coefficient γ̃+

4 in Eqs. (109). The entropy and the
specific heat of the system can be found from expression
(110) for the free energy by differentiating it with respect
to the temperature at h = 0.

The susceptibility per one particle of the system can
be obtained by calculating the second derivative of the
free energy with respect to the external field H,

χ = Γ̃+τ−γ
µ2

B

Φ̃(0)
. (112)

The critical exponent of the susceptibility is given by the
expression

γ = (2− η)ν. (113)

The quantity

Γ̃+ = 2c̃−(2−η)
ν γ̄+

4 (114)

is the critical amplitude.
The critical exponents of the correlation function, η,

correlation length, ν, susceptibility, γ, and specific heat,
α = 2 − 3ν, were calculated in the approximation of
the quartic basis measure density for the RG param-
eter s = 4 at ΔΦ̃(k) = 0 and in the linear approxi-
mation in ΔΦ̃(k). The obtained values are quoted in
Table 2.

Note that the found critical exponents, in particular,
for the correlation function, η = 0.024, agree with the
data obtained by other authors. For instance, the esti-
mations η = 0.0335(25), η = 0.0362(8), and η = 0.033
were obtained in the framework of the field-theory ap-
proach (seven-loop calculations) [27], Monte-Carlo sim-
ulations [28], and nonperturbative RG approach (an ex-
pansion into a series up to the ∂4-order of derivatives)
[14], respectively.

T a b l e 2. Critical exponents calculated with regard for
the correction for the averaging of the Fourier transform
of the potential (ΔΦ̃(k) 6= 0) and without it (ΔΦ̃(k) = 0)

Condition η ν γ α

ΔΦ̃(k) = 0 0 0.612 1.225 0.163
ΔΦ̃(k) 6= 0 0.024 0.577 1.141 0.268
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6. Conclusions

The known theoretical approaches aimed at solving the
problems in the domain of phase transitions and criti-
cal phenomena (see, e.g., [20, 29–35]) are mainly based
on using the Gaussian measure density as a basics one.
In the framework of such an approach, the calculation
of the free energy and other thermodynamic functions
of the system is carried out with regard for the depen-
dence of the Fourier transform of the potential Φ̃(k) on
the wave vector. However, the application of the Gaus-
sian measure density as the basics one implies the ap-
plication of perturbation theory. Using the methods of
standard perturbation theory with the Gaussian distri-
bution in the critical region gives rise to the emergence
of an infinite set of diagrams for the free energy, which
are divergent at T → Tc. As a result, while calculat-
ing the partition function, there emerges an alternative:
either to use the perturbation theory and to consider
the dependence of the Fourier transform of the inter-
action potential on the wave vector k or, by averag-
ing the Fourier transform of the interaction potential
over certain k-intervals, to use a non-Gaussian distri-
bution of fluctuations (generally speaking, with an ar-
bitrary complexity) as a basics one. The latter way
gives an opportunity to avoid the problems dealing with
the emergence of unphysical divergences at the calcula-
tion of the free energy in a vicinity of Tc and to obtain
not only the correct qualitative consequences, but also
quantitative results. However, in a number of works
(see, e.g., works [15–18]), this approach was used to-
gether with an approximation which led to the zero value
for the critical exponent η of the correlation function
(η = 0). The technique of calculations reported in this
work allows one to obtain not only a critical exponent
different from zero, but also the more general tempera-
ture dependences of thermodynamic characteristics for
a three-dimensional system near the phase transition
point.

In the present work, a method is developed to calcu-
late the free energy of a three-dimensional Ising-like sys-
tem in the case where the quartic measure density is used
as a basic one (the ρ4 model), and the dependence of
the Fourier transform of the interaction potential on the
wave vector is taken into consideration. The correction
for the potential Φ̃(k) averaging is taken into account in
the linear approximation. In this case, the RRs for the
coefficients of effective measure densities are derived and
studied. It is shown that the account for the correction
for the potential averaging gives rise to a change of the
asymptotics for the RR solutions at T = Tc. An ana-

lytical procedure for the calculation of the small critical
exponent of the correlation function that arises owing to
the correction is developed, and the value of the critical
exponent is found.

Considering the correction for potential averaging
brings about a renormalization of critical exponents for
the correlation length, susceptibility, and specific heat of
the system. The critical amplitudes are changed as well.
The renormalization of the critical exponent for the cor-
relation length, ν, if comparing with the case η = 0,
is associated with a change of the larger eigenvalue for
the matrix of the RG linear transformation. In con-
trast to ν, the critical exponent of the susceptibility, γ,
explicitly depends on η and is determined according to
formula (113). The specific heat of the system is char-
acterized by the exponent α, the expression for which
contains the renormalized critical exponent of the corre-
lation length, ν.

As we see from the data given in Table 2, the ac-
count for the nonzero exponent η in the framework of
the CV method leads to a reduction of the value of the
critical exponent for the correlation length, ν (as it took
place in the nonperturbative RG approach [14]). For bet-
ter quantitative estimations to be obtained for this and
other critical exponents, it is necessary that other distri-
butions, more complicated than the quartic one (e.g., the
sextic one), should be take into account, in the frame-
work of which the exponent ν, calculated without the
correction for the potential averaging (η = 0), acquires
larger values in comparison with that obtained in the ρ4

model [11].
The developed technique of researches and the results

obtained can be used at studying the properties of var-
ious systems, in particular, ferromagnets, antiferromag-
nets, ferroelectrics, liquid–gas system, binary mixtures,
lattice liquid model, etc.
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МЕТОД РОЗРАХУНКУ ВIЛЬНОЇ
ЕНЕРГIЇ ТРИВИМIРНОЇ IЗИНГОПОДIБНОЇ
СИСТЕМИ З ВРАХУВАННЯМ ПОПРАВКИ
НА УСЕРЕДНЕННЯ ПОТЕНЦIАЛУ ВЗАЄМОДIЇ

I.Р. Юхновський, М.П. Козловський, I.В. Пилюк

Р е з ю м е

Роботу присвячено теоретичному вивченню критичної пове-
дiнки тривимiрних модельних систем. Виконано розрахунок
статистичної суми та вiльної енергiї однокомпонентної спiно-
вої системи з використанням негаусового розподiлу флуктуа-
цiй параметра порядку. Особливiстю запропонованого методу
розрахунку є врахування залежностi фур’є-образу потенцiалу
взаємодiї вiд хвильового вектора. Це приводить до вiдмiнно-
го вiд нуля критичного показника кореляцiйної функцiї η та
перенормування значень iнших критичних показникiв (коре-
ляцiйної довжини, сприйнятливостi тощо). Розрахунок остан-
нiх здiйснено з використанням методу ренормалiзацiйної гру-
пи на основi отриманих у роботi рекурентних спiввiдношень
мiж коефiцiєнтами розподiлiв флуктуацiй у сумiжних блочних
структурах.
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