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The critical temperature has been calculated for a Bose gas with
the power-law dependence of the potential energy of interaction be-
tween particles on the interparticle distance. The result obtained
satisfies the limiting cases known from the literature. The param-
eters of the collective excitation spectrum of the model have been
analyzed in the random phase approximation (RPA). The long-
wavelength asymptote has been derived for the structure factor of
the system above the phase transition temperature.

1. Introduction

The story of studying the Bose systems with long-range
forces started from the work by Foldy [1]. It was the first
one dealing with the theory of charged Bose gas imbed-
ded into a compensating field; the author studied the
properties of the system’s ground state in the Bogoliubov
approximation. A few works, in which the critical be-
havior of the model was considered, appeared only in the
first half of the 1970s [2–5], when a rapid development of
the theory of phase transitions and critical phenomena
started. The corresponding authors confined the con-
sideration to a self-consistent static variant of random
phase approximation (RPA), which enables the domi-
nant contributions to thermodynamic functions of the
system in a vicinity of the phase transition temperature
to be found and the critical indices of the model to be
calculated.

This paper aims at calculating the critical tempera-
ture of a Bose system in the model with the power-law
dependence of the potential of pair interaction between
particles on the distance r between them, 1/r1+σ, at
least at large r’s. The ground state of this model in the
limit σ = 1 and for an arbitrary space dimensionality
d has been qualitatively analyzed in work [6] with the
help of renormalization group methods. In the interest-
ing case d = 1, a complete agreement with the exact so-
lution was obtained. The critical behavior of our model
has not been analyzed.

Hence, we consider a set of N spinless particles in
the three-dimensional volume V and at the temperature

T . It is more convenient to deal with a grand canoni-
cal ensemble. Therefore, let us introduce the chemical
potential µ into consideration. The Fourier transform of
the pair interaction potential is chosen in the form

νσ(k) =
λσ
k2−σ , 0 ≤ σ ≤ 2,

where λσ > 0. Absolutely analogously to the model of
charged Bose gas in a compensating field, where the sta-
bility of the system in the thermodynamic limit (N →∞
and V → ∞ holds, but the density ρ = N/V → const)
is ensured by a uniform oppositely charged background,
so that the system as a whole is electrically neutral, we
impose the requirement νσ(0) = 0 (σ 6= 2) on the ze-
roth component of the potential Fourier transform. The
case σ = 2 (λ2 = 4π~2a/m, where a is the s-scattering
length), which corresponds to a model with δ-repulsion,
should be considered separately. The explicit form for
the potential of pair interaction between particles reads

Φσ(r) =
1

22−σπ3/2

Γ(1/2 + σ/2)
Γ(1− σ/2)

λσ
r1+σ

, σ ≤ 2,

where Γ(x) is the gamma-function. In the framework
of our model, three parameters of the length dimen-
sion can be constructed. The first one, which is the
simplest, is associated with the equilibrium density of
the system and is proportional to ρ1/3. The second
one is typical of the ideal Bose gas at finite tempera-
tures, k0 = p0 =

√
2mT/~. At last, the third parameter

is kσ = (ρλσ/T )1/(2−σ) (σ 6= 2), and, in the case of
Coulomb potential (λ0 = 4πe2), it is nothing else but
the reciprocal Debye radius kσ=0 ≡ kD =

√
4πe2ρ/T .

Those quantities can be used to construct two dimen-
sionless parameters. At finite temperatures, the per-
turbation theory is developed on the basis of a series
expansion in the ratio kσ/k0, which is proportional to
[λσmρ(σ−1)/3/~2]1/(2−σ) in a vicinity of the Bose con-
densation temperature T0 of the ideal gas. In the lim-
iting case of the Coulomb gas, σ = 0, this expansion
is equivalent to that in the so-called Brueckner param-
eter rs = (3/4πρ)1/3 me2

~2 , the ratio between the average
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distance between particles and the Bohr radius. In the
opposite limit, σ = 2, the substitution k2−σ

σ → ρλ2/T
should be made, and the expansion in the framework of
perturbation theory in a vicinity of Tc is carried out in
the gas parameter aρ1/3.

The ground state of the model for a space dimension
larger than two is a state with a smeared, owing to in-
teraction, Bose condensate. For its properties to be de-
scribed at small values of the parameter of nonideality, it
is sufficient to take advantage of the Bogoliubov method
of approximate secondary quantization. It is clear that,
for the space dimension d = 3, the results of work [1] are
reproduced in the limiting case of a Bose systems with
Coulomb interaction, and the known results of Lee and
Yang [7] are obtained for the model of weakly nonideal
Bose gas. The long-wave asymptote for the spectrum
of elementary excitations over the ground state has a
characteristic behavior Eσ(k) ∼ kσ/2.

2. Structure Factor and Collective Excitation
Spectrum

Let us analyze firstly the structure factor of the model

Sσ(k) =

∞∫
−∞

dωSσ(ω, k), (1)

where the notation

Sσ(ω, k) =
1
πρ

1
1− e−βω

×

× I(ω, k)
(1 + νσ(k)R(ω, k))2 + (νσ(k)I(ω, k))2

. (2)

was introduced for the dynamic structure factor in RPA;
β = 1/T ; R(ω, k) and I(ω, k) are the real and imaginary,
respectively, parts of the polarization operator

Π(ωn, k) =
1
V

∑
p

n(βξp)×

×
{

1
ξ|p−k| − ξp − iωn

+ (ωn → −ωn)
}

(3)

after its analytical continuation iωn → ω + i0 (see Ap-
pendix), n(x) = {ex − 1}−1, ξp = εp − µ, εp = ~2p2/2m
is the spectrum of free particles, and ωn = 2πnT (n =
0,±1, . . .) are the Matsubara frequencies. Taking the ar-
guments of work [8] into account, let us write down the

structure factor in the long-wave region (k � kσ) in the
form

Sσ(k) =
1

ρν2
σ(k)

[∂R(ω, k)/∂ω]−1
ω→ωσ(k)×

× coth(βωσ(k)/2), (4)

where ωσ(k) is the spectrum of collective excitations in
the system, which is determined by the equation

1 + νσ(k)R(ωσ(k), k) = 0. (5)

By differentiating this equation formally with respect to
νσ(k), we obtain a useful relation

[∂R(ω, k)/∂ω]−1
ω→ωσ(k) = ν2

σ(k)
∂ωσ(k)
∂νσ(k)

. (6)

The first moment of the dynamic structure factor has to
satisfy the condition

∞∫
−∞

dωωSσ(ω, k) =
~2k2

2m
,

which, in our case of long-wave asymptotic range, gives
rise to the relation

1
ρν2
σ(k)

[∂R(ω, k)/∂ω]−1
ω→ωσ(k) =

εk
ωσ(k)

, (7)

and, with regard for equality (6), to the dependence

ω2
σ(k) = 2ρνσ(k)εk + . . . , (8)

where the notation “. . . ” means the part of the spectrum
that is independent of the interaction. Note that, in the
case of low interaction, equalities (4)–(8) are valid only in
a very narrow interval of wave vectors in a vicinity of the
zero-value point. Let us try to expand the applicability
region for those formulas. Let a condition be imposed
that formula (8) should correctly reproduce the long-
wave asymptotics of the structure factor for the ideal
Bose gas, when the interaction is switched off, νσ(k) →
0. It is clear that, in this case, we has to replace the
real spectrum of collective excitations in the system by
a certain effective one, for which the notation ωσ(k) is
preserved. Then, for the long-wave asymptote of the
“spectrum” in the absence of interaction, we obtain

ω2
σ(k)|νσ(k)→0 = 2Tεk/S0(k), (9)

where S0(k) is the structure factor for the ideal Bose gas.
At last, the condition Sσ(k → ∞) → 1 unambiguously
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determines the behavior of the ωσ(k)-function at large
argument values, ωσ(k → ∞) → εk. Combining all the
aforesaid together, we obtain the following formula for
the effective spectrum of the system:

ω2
σ(k) = 2ρνσ(k)εk + 2Tεk/S0(k) + ε2k. (10)

It should be substituted into expression (4) for the struc-
ture factor of the system with interaction,

Sσ(k) =
εk

ωσ(k)
coth(βωσ(k)/2). (11)

It is of interest that now this expression correctly repro-
duces the classical limit of the theory,

Sσ(k)|~→0 =
1

1 + βρνσ(k)
. (12)

Hence, we obtained an expression that correctly de-
scribes the structure factor of the system in the long-
wave interval, k � k0. Despite that relations (10) and
(11) correctly reproduce certain limiting cases of the the-
ory, it is worth emphasizing that the applicability scope
of those formulas is confined to low interactions, in other
words, to high densities of a Bose gas at σ < 1 and to low
ones at σ > 1. The extension of the results obtained onto
lower (larger) densities is not a trivial problem. On the
one hand, it is connected with our procedure of “guess-
ing”, on the other hand, with the applicability of RPA.

Now, let us study the spectrum of “plasmons”, i.e. the
roots of Eq. (5). We rewrite this equation in the form
(see Appendix)

1−
(
kσ
k

)2−σ
k0

2k
{f(βEσ(k)/(2k/k0)− k/2k0, βµ)−

−f(βEσ(k)/(2k/k0) + k/2k0, βµ)} = 0, (13)

where a new notation Eσ(k) was introduced for the spec-
trum. The spectrum behavior is completely determined
by the ratio kσ/k0. First, if Eσ(k) is a root of the equa-
tion, the quantity −Eσ(k) is also a root. Bearing the
positivity of the function f(ε, y) in mind, we arrive at
a conclusion that a condition for Eq. (13) to have real-
valued roots is

βEσ(k)
k/k0

> ε0(βµ),

where ε0(y) is the maximum point of the function f(ε, y)
with respect to its first argument, provided that the sec-
ond argument is fixed. Second, for every value of pa-
rameter kσ/k0 (σ < 2), there exists a spectral branch

in the range k � kσ with a characteristic gap ω0 =√
4πe2~2ρ/m in the case of a charged Bose gas. To

verify this statement, it is enough to expand the func-
tion f(ε, y) (see Appendix) at large values of its first
argument into a series and to substitute the expansion
into Eq. (13). As a result, for the spectrum in the limit
kσ � k0, we obtain

E2
σ(k) = 2ρνσ(k)εk + 2Tεk

g5/2(eβµ)
g3/2(eβµ)

+ ε2k, (14)

which can be easily rewritten in the form [9]

E2
σ(k) = 2ρνσ(k)εk +

4
3
K0

N
εk + ε2k, (15)

where K0/N is the average energy of the ideal Bose gas
per one particle.

The third important feature in the spectrum of collec-
tive excitations in Bose systems with our model potential
at T > Tc is the existence of the end point kf , i.e., the
maximal value of wave vector, for which Eq. (5) still has
a root. This peculiarity in the spectrum of Coulomb
systems was not indicated by the authors of work [10],
where the long-wave asymptotics of the plasmon spec-
trum in a charged Bose gas at all temperatures was stud-
ied. In the general case, the location of the end point
is determined by the parameter kσ/k0. Only the lim-
iting cases of small and large values of this parameter
can be analyzed analytically. In the case kσ/k0 � 1,
taking Eq. (13) into account, it is easy to obtain that
the quantity Eσ(kf )/(2kf/k0) tends to ε′0(βµ), the min-
imum point of the first derivative of function f ′(ε, βµ)
with respect to the variable ε. Then, for the end point,
we have

kf/kσ = (|f ′(ε′0(βµ), βµ)|/2)1/(2−σ)
, kσ � k0. (16)

In the opposite case, the difference Eσ(kf )/(2kf/k0) −
kf/2k0 tends to the maximum point ε0(βµ) of the func-
tions f(ε, βµ), and Eσ(kf )/(2kf/k0) + kf/2k0 � 1.
Then, we have the relation

kf
k0

=

[
1
2

(
kσ
k0

)2−σ

f(ε0(βµ), βµ)

]1/(3−σ)

, kσ � k0.

(17)

One should bear in mind that it is not an adequate pro-
cedure to analyze the limit kσ � k0 in RPA.

Let us demonstrate now that the spectrum damping

Γσ(k) = I(Eσ(k), k)[∂R(ω, k)/∂ω]−1
ω→Eσ(k), (18)
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is low. Using the formula for the function I(ω, k) given
in Appendix and the last relation, we write down that,
in the long-wave limit,

Γσ(k)
Eσ(k)

∣∣∣
k→0

=
(π

8

)1/2
(
kσ
k

)3(1−σ/2)

×

×n
(

1
2
(kσ/k)2−σ − βµ

)/
g3/2(eβµ). (19)

In the limit µ → ∞ and at σ = 0, this formula re-
produces the well-known result of the classical plasma
theory,

Γ(k)/ω0 =
(π

8

)1/2
(
kD
k

)3

e−k
2
D/2k

2
. (20)

In the case σ = 2, the behavior of the spectrum is
quite different. In work [8], it was shown that not all
values of nonideality parameter aρ1/3 allow Eq. (13)
to have solutions; namely, only if 4π~2aρ/(mT ) >
2/|f ′(ε′0(βµ), βµ)|, there emerge two sound branches in
the spectrum at T > Tc, one of which is suppressed
by a substantial damping. At the critical point, there
exists only one branch in the phonon spectrum for
4π~2aρ/(mTc) > −ζ(3/2)/ζ(1/2) = 1.789.

3. One-Particle States

The self-energy part or the mass operator in RPA looks
like [11]

Σ(ωn, p) = − 1
βV

∑
ω′
n

∑
k

νσ(k)
1 + νσ(k)Π(ω′n, k)

×

× 1
i(ωn + ω′n)− ξ|p+k|

, (21)

where the equality νσ(0) = 0 has already been taken
into account. After the analytical continuation into the
upper half-plane, we introduce the notation

ΣR(ω, p) = Re Σ(ωn, p)|iωn→ω+i0, (22)

ΣI(ω, p) = Im Σ(ωn, p)|iωn→ω+i0. (23)

Now, the equation for the renormalized spectrum [12]

ξ̃p = ξp + ΣR(ξ̃p, p) (24)

can be written down. It is evident that elementary exci-
tations are stable, provided that the damping is infinites-
imally small,

γp = Z(p)ΣI(ξ̃p, p), (25)

Z−1(p) = 1− ∂ΣR(ω, p)
∂ω

∣∣∣
ω=ξ̃p

. (26)

The equilibrium density of the system

ρ = − 1
V

∑
p

lim
τ→+0

1
β

∑
ωn

eiωnτ

iωn − ξp − Σ(ωn, p)
=

=
1
V

∑
p

∞∫
−∞

dω

π

n(βω)ΣI(ω, p)
(ω − ξp − ΣR(ω, p))2 + Σ2

I(ω, p)
, (27)

which actually is an equation for the determination of
the chemical potential of the system, can be rewritten in
the form

ρ =
1
V

∑
p

Z(p)n(βξ̃p), (28)

which we use to find the renormalized temperature of
the Bose condensation, provided that µ̃ = 0. Further
calculations for the mass operator were carried out only
for temperatures in a vicinity of the critical one (strictly
speaking, in the limiting case T → Tc+0), being concep-
tually close to the calculations carried out in work [13].
We extract the Hartree–Fock contribution

Σ(ωn, p) =
1
V

∑
k

νσ(k)n(βξ|k−p|)+

+
1
βV

∑
ω′
n

∑
k

νσ(k)
νσ(k)Π(ω′n, k)

1 + νσ(k)Π(ω′n, k)
×

× 1
i(ωn + ω′n)− ξ|p+k|

(29)

from formula (21) and rewrite the fraction in the second
sum using the spectral relations

νσ(k)Π(ω′n, k)
1 + νσ(k)Π(ω′n, k)

=
1
π

∞∫
−∞

dω

ω − iω′n
×

× νσ(k)I(ω, k)
(1 + νσ(k)R(ω, k))2 + (νσ(k)I(ω, k))2

.
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After that, the sum over ω′n can be easily calculated,

Σ(ωn, p) =
1
V

∑
k

νσ(k)n(βξ|k−p|)+

+
1
V

∑
k

νσ(k)

∞∫
−∞

dω

π

n(βω)− n(βξ|k−p|)
ω − ξ|k−p| + iωn

×

× νσ(k)I(ω, k)
(1 + νσ(k)R(ω, k))2 + (νσ(k)I(ω, k))2

. (30)

In view of the complicated form of the expression, it
is evident that, in order to carry out subsequent calcula-
tions, further simplifications are to be made. Since the
region concerned (here, the wave vector amplitudes are
smaller than kf ) contains a well-defined branch in the
spectrum of collective excitations of the system, expres-
sion (30) can be rewritten by splitting each k-sum into
two sums, with the magnitudes of wave vectors k’s in
each of them being, respectively, smaller or larger than
kf . Then, in the sums over k ≤ kf , the integrals over
the variable ω can be approximately calculated taking
advantage of the relation

1
πρ

I(ω, k)
(1 + νσ(k)R(ω, k))2 + (νσ(k)I(ω, k))2

→

→ 1
ρνσ(k)

sign (I(ω, k))δ(1 + νσ(k)R(ω, k)),

and making allowance for a low damping of the spectrum
of collective excitations in the system. Ultimately, we
obtain

Σ(ωn, p) =
1
V

∑
k, k≤kf

νσ(k)n(βξ|k−p|)−

− 1
V

∑
k, k≤kf

[∂R(Eσ(k), k)/∂Eσ(k)]
−1×

×

{
1 + n(βEσ(k)) + n(βξ|k−p|)

Eσ(k) + ξ|k−p| − iωn
−

−
n(βEσ(k))− n(βξ|k−p|)
Eσ(k)− ξ|k−p| + iωn

}
+ . . . , (31)

where the notation “. . . ” stands for expression (30), in
which the sums over k are confined from below by the
condition k ≥ kf . Now, while considering the limit
kσ/k0 → 0 and taking into account that kf is also small,
it is easy to see that the first term in formula (31) gives
an insignificant contribution to the mass operator. On
the other hand, with regard for the properties of the
functions I(ω, k) and R(ω, k), we see that practically
the whole contribution to the integral over ω in formula
(30) is provided by the vicinities of two points, for which
βω ∼ ±k2/k2

0. Let us try to “catch”this region using
a trick similar to that used by us when calculating the
structure factor. We adopt that expression (31) with the
corresponding modifications (the substitution of Eσ(k)
by ωσ(k), the elimination of the restriction on the sum-
mation over the wave vector, and the neglect of terms
hidden under the ellipsis sign) can correctly describe the
mass operator

Σ(ωn, p)→
1
V

∑
k

νσ(k)n(βξ|k−p|)−

− 1
V

∑
k

νσ(k)
ρνσ(k)εk
ωσ(k)

{
1 + n(βωσ(k)) + n(βξ|k−p|)

ωσ(k) + ξ|k−p| − iωn
−

−
n(βωσ(k))− n(βξ|k−p|)
ωσ(k)− ξ|k−p| + iωn

}
. (32)

In this expression, we used relation (7) for the derivative
of the real part of the polarization operator. In such
a way, we effectively consider the contribution made by
the ideal gas similarly to what was done while calculating
the structure factor. Concerning the validity of such a
trick in calculations, it is demonstrated below that the
corresponding shifts of the critical temperature obtained
in the framework of our model for two limiting cases–
the charged Bose gas of a high density and the model
of weakly nonideal gas–completely coincide in the main
approximation with the standard results [2, 14]. At the
same time, expression (32) makes it possible to analyze
the limiting case of large nonideality-parameter values
as well.

4. The Limiting Case of Small Nonideality
Parameter

Hence, in what follows, we use expression (32). Taking
into account that small k make a dominant contribu-
tion to the integral over the wave vector in the limit
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kσ/k0 → 0, we may change the Bose distribution n(x)
by 1/x. Then, after a simple regrouping of terms and
taking equality (10) for the real part of the self-energy
part into account, we obtain

ΣR(ω, p) =
1
βV

∑
k

νσ(k)
ω2
σ(k)− 2ρνσ(k)εk

ω2
σ(k)

1
ε|k−p|

−

− 1
βV

∑
k

νσ(k)
ρνσ(k)εk
ω2
σ(k)

ω

ε|k−p|

{
1

ωσ(k) + ε|k−p| − ω
−

− 1
ωσ(k)− ε|k−p| + ω

}
. (33)

In the framework of ordinary perturbation theory, we
can approximately write down the renormalized spec-
trum in the form

ε̃p = εp + ΣR(εp, p)− ΣR(0, 0), (34)

where the zeroing of the renormalized chemical poten-
tial µ̃ has already been taken into account. The further
calculation is easy. It is enough to substitute only the
long-wave asymptote of the “spectrum”,

ω2
σ(k) = 2ρνσ(k)εk +

2ζ(3/2)
π3/2

k3

k3
0

T 2, (35)

into formula (33). The dominating contribution can be
easily demonstrated to equal

β[ΣR(εp, p)− ΣR(0, 0)] ≡ σ(p/p0) =

= (2aσ/π)2Iσ(γ) + . . . , (36)

where

Iσ(γ) =

∞∫
0

dkk

k3−σ + 1

{
k

2γ
ln
∣∣∣∣k + γ

k − γ

∣∣∣∣− 1
}
,

the notations a3−σ
σ = π3/2(kσ/k0)2−σ/ζ(3/2) and γ =

p/(p0aσ) are introduced, and all the terms of the higher
orders of the parameter aσ in the expansion series
are omitted. It is evident that the integral Iσ(γ) =
−γ2 ln(γ)/3 is not analytic at small arguments, with
the form of this non-analytic behavior being indepen-
dent of the power exponent σ in the formula for the
interaction potential. It is a hint at a universal power
behavior ε̃p ∼ p2−η of the leading asymptotic term in

the one-particle spectrum for the interacting system. It
is important that other terms, which were not taken into
account in formula (36), are analytic in γ. The dominant
contribution to the chemical potential of the system at
the critical point is

µ/Tc =
π

3− σ
(2aσ/π)2

sin(π/(3− σ))
, σ < 1, (37)

where the divergence at σ > 1 is fictitious, resulting
from the substitution n(x) → 1/x while changing from
formula (32) to expression (33).

In order to find the critical temperature in our model,
we must calculate the quantity Z(p) using formula (27).
For this purpose, we calculate the derivative

[∂ΣR(ω, p)/∂ω]
∣∣
ω→εp ≡ z(p/p0) =

=
aσ√

πζ(3/2)
Jσ(γ) + . . . , (38)

where

Jσ(γ) =
1
γ

∞∫
0

dkk

(k3−σ + 1)2
ln
∣∣∣∣k + γ

k − γ

∣∣∣∣ ,
and only the leading term in the expansion series in aσ
is preserved again. The integral Jσ(γ), in contrast to
Iσ(γ), is an analytic function of γ. At small argument
values, it is constant and, at γ → ∞, approaches the
asymptote 1/γ2.

Now, we can proceed to the integration of formula (28)
for the equilibrium density. Extracting the contribution
for the density of the ideal gas, ρ0, we write down with
the required accuracy that

ρ = ρ0 +
p3
0

2π2

∞∫
0

dpp2
{
n(p2 + σ(p))− n(p2)

}
+

+
p3
0

2π2

∞∫
0

dpp2n(p2 + σ(p))z(p).

After changing the integration variable, p → aσγ, we
obtain

Δρ ≡ ρ− ρ0 =
p3
0

2π2
a3
σ×

×
∞∫
0

dγγ2
{
n(a2

σγ
2 + (2aσ/π)2Iσ(γ))− n(a2

σγ
2)
}

+
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Dependence of the integral in formula (39) on the power exponent
in the expression for the potential energy of the pairwise interac-
tion between particles. The minimum values of −0.036 and 0.451

are attained in the Coulomb limit (σ = 0) and in the model of
weakly nonideal gas (σ = 2), respectively

+
p3
0

2π2
a3
σ

∞∫
0

dγγ2n(a2
σγ

2 + (2aσ/π)2Iσ(γ))×

× aσ√
πζ(3/2)

Jσ(γ).

At small aσ, the dominant terms give the contribution

Δρ = − p3
0

2π2
aσ

∞∫
0

dγ
(2/π)2Iσ(γ)

γ2 + (2/π)2Iσ(γ)
. (39)

There is no sense to make allowance for terms with
higher powers of the parameter aσ, because we use RPA,
whereas “beyond-RPA” contributions are quadratic in
this parameter.

To calculate the critical temperature Tc in this limit
of the interaction, let us take advantages of the specu-
lations of the authors of work [14], where a Bose sys-
tem with the point-like interaction was considered. It is
worth noticing that RPA is not absolutely correct for the
gas model with short-range forces. We take into consid-
eration that the equilibrium density does not depend on
the interaction. Therefore,

d

daσ
ρ =

∂ρ

∂aσ
+

∂ρ

∂Tc

∂Tc
∂aσ

= 0,

and, making the substitution

∂ρ

∂Tc
' ∂ρ0

∂T0
=

3
2
ρ0

T0
,

which has a required accuracy, we obtain

Tc(σ)− T0

T0
= −2

3
Δρ
ρ
. (40)

Now, consider the limiting cases in brief. First,
let us analyze the model of charged Bose gas in a
compensating field. In this case, the quantity a0 =
[π5/2/6ζ(3/2)]1/9r1/3s can be expressed in terms of the
Brueckner parameter. The numerical calculation of the
quantity Δρ at σ = 0 making use of integral (39) and
considering the equality for the critical temperature shift
brings about the relation

Tc(0)− T0

T0
= −0.026r1/3s . (41)

It is an exact result in the high-density limit, which was
obtained for the first time in work [2] using a different
calculation method. It is interesting that the critical
temperature of a charged Bose gas is lower than the Bose
condensation temperature in the ideal gas.

The other limiting value, σ = 2, corresponds to
the model of weakly nonideal Bose gas. In this case,
a2 = 2π3/2ρ1/3a/[ζ(3/2)]1/3, and the function I2(γ) is
convenient to be written down as follows:

I2(γ) = − 1
γ

γ∫
0

dyy2

1− y2
ln |y|.

Then, by formally expanding the integrand in formula
(39) in a series in I2(γ) and confining the expansion to
the first-order term, we obtain

Δρ = 2p3
0a2

∞∫
0

dγ

γ3

γ∫
0

dyy2

1− y2
ln |y|.

Now, changing the sequence of integration,

Δρ = 2p3
0a2

1∫
0

dyy

∞∫
0

dγ

1− γ2
ln |γ|,

and substituting the result into the expression for the
critical temperature shift, we ultimately obtain [14]

Tc(2)− T0

T0
=

8π
3[ζ(3/2)]4/3

ρ1/3a = 2.328ρ1/3a. (42)

In view of the result of numerical calculations of integral
(39), we obtain

Tc(2)− T0

T0
= 2.010ρ1/3a, (43)
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which is closer to the values obtained by Monte Carlo
simulations (these are (1.29±0.05)ρ1/3a [15] and (1.32±
0.02)ρ1/3a [16]) and the calculations using the renormal-
ization group methods in the seven-loop approximation,
(1.27± 0.11)ρ1/3a [17].

5. Conclusions

In the framework of RPA and using the method pro-
posed in this work to calculate the self-energy part of
one-particle Green’s functions, we managed to determine
the dominant correction to the critical temperature in
the model of a Bose gas with the long-range repulsive
potential 1/r1+σ in the high-density (for the case σ < 1)
and low-density (for the case σ > 1) limits. It is impor-
tant to emphasize that RPA is an exact approximation in
the limit of a small nonideality parameter, only provided
that σ < 2. It is of interest that the sign of the correc-
tion to the critical temperature changes from negative to
positive at σ = 1.57. Since the experimental verification
is most likely impossible, it would be interesting to com-
pare our results with those obtained for this model with
the use of the computer simulation. The method pro-
posed in this work to calculate spectral parameters can
be generalized to an arbitrary space dimension d > 2,
where the behavior of the system would not differ quali-
tatively from the examined one. In the case d ≤ 2, there
is no phase transition into the Bose-condensate state at
finite temperatures; and, as a consequence, the proper-
ties of the model change completely. The analysis of the
spectrum of collective excitations in the system above
the Bose condensation temperature revealed an inter-
esting feature: the spectrum of the model has an end
point, irrespective of the specific nonideality parameter
value. This feature is absent for the condensate phase,
considered in the same approximation, where the po-
larization operator (3) has an explicitly polar form. In
this work, using an exact relation for the first moment
of the dynamic structure factor, we managed to obtain
the long-wave asymptote for the structure factor of the
system.

We plan to continue the researches of this problem. In
particular, we intend to find the critical temperatures for
all kσ/k0-values. This task, as well as a correct calcula-
tion of the next term in the expansion of formula (39) in
a series in aσ, evidently requires that the consideration
should go beyond the RPA framework. We also intend
to consider a possibility for an instability of the Wigner
crystallization type to emerge in the charged Bose gas
above the condensation temperature.

The author expresses his gratitude to Prof.
I.O. Vakarchuk for the discussion of the results of
this work and to O. Menchyshyn for his permanent
assistance.

APPENDIX

After the analytical continuation into the upper half-plane, the
real and imaginary parts of the polarization operator (3) look like

Re Π(ωn, k)|iωn→ω+i0 = R(ω, k),

Im Π(ωn, k)|iωn→ω+i0 = I(ω, k),

where

I(ω, k) =
1

16π
βk3

0

k0

k
ln

∣∣∣∣1− exp{βµ− [k/2k0 + βω/(2k/k0)]2}
1− exp{βµ− [k/2k0 − βω/(2k/k0)]2}

∣∣∣∣
and

R(ω, k) = βρ
k0

2k
{f(k/2k0 + βω/(2k/k0), βµ)+

+f(k/2k0 − βω/(2k/k0), βµ)}.
The function

f(ε, y) = ε

1∫
0

dx
√

1− x
g1/2(ey−xε2

)/g3/2(ey),

where

gl(e
y) =

∑
n≥1

eyn

nl
,

has the following asymptotes in the limiting cases:

f(ε→ 0, y) = 2ε
g1/2(ey)

g3/2(ey)
,

f(ε→∞, y) =
1

ε

{
1 +

1

2ε2

g5/2(ey)

g3/2(ey)
+ . . .

}
,

f(ε→ 0, 0) = [π3/2sign (ε) + 2εζ(1/2)]/ζ(3/2),

where ζ(x) =
∑

n≥1 1/nx is the zeta-function.
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РОЗРАХУНОК КРИТИЧНОЇ ТЕМПЕРАТУРИ
БОЗЕ-ГАЗУ З ДАЛЕКОДIЙНИМИ СИЛАМИ

В.С. Пастухов

Р е з ю м е

У статтi обчислено критичну температуру моделi бозе-газу зi
степеневим законом залежностi потенцiальної енергiї попар-
ної взаємодiї вiд вiдстанi мiж частинками. У граничних ви-
падках результат вiдтворює вiдомi результати з лiтератури. У
наближеннi хаотичних фаз (RPA) проаналiзовано параметри
спектра колективних збуджень моделi та отримано довгохви-
льову асимптотику структурного фактора системи при темпе-
ратурах, вищих за температуру фазового переходу.
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