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The equation of state for dense fluids has been derived within
the framework of the Sutherland and Katz potential models. The
equation quantitatively agrees with experimental data on the isother-
mal compression of water under extrapolation into the high pres-
sure region. It establishes an explicit relationship between the
thermodynamic experimental data and the effective parameters of
the molecular potential.

1. Introduction

Deriving the equation of state (EoS) for water in a wide
range of pressures and temperatures remains a challeng-
ing open problem, especially in the high pressure region.
In the recent papers [1–4] devoted to the water EoS, this
problem was solved by fitting multiparameter formulae
with such a large number of adjustable parameters that
it approaches the number of experimental points. These
methods are not based on reliable statistical mechanic
foundations, and the applicability of these EoS is re-
stricted. If the functional form of the EoS and their
parameters are applicable to other substance or solution
is an open question.

In comparison with the majority of one-component liq-
uids, water reveals many unusual properties in its nor-
mal and supercooled states. The analysis of the diffusion
peak of the quasi-elastic incoherent neutron scattering
and the kinematic shear viscosity of water has shown
that the global H-bond network disintegrates into an en-
semble of weakly interacting clusters: dimers, trimers,
tetramers, etc. [5–9]. It was also shown [10] that the
properties of water in the supercritical region are deter-
mined by the averaged spherically symmetric potential.
Therefore, it is reasonable to use such well-known mod-
els as Lennard-Jones, Buckingham, Sutherland or Katz
potentials for water in the high pressure region.

In this paper, we derive the EoS for a supercritical
fluid within the framework of the Sutherland and Katz
potentials. In our previous work [11], we used a new ver-
sion of the thermodynamic perturbation theory (TPT)
originally proposed by Sysoev [11]. The main feature of
the proposed TPT is in the assumption that the func-
tional form of the perturbed potential is identical to the
potential of the reference system. Therefore, the devi-
ation of the potential of the more compressed system
from the potential of the less compressed system is con-
sidered as a perturbation. On this basis, the concept
of a reference thermodynamic state has been developed.
A functional expansion of the free energy gave the pos-
sibility to derive, at a certain choice of the parameter
expansion, two EoS modifications within the framework
of a realistic model and the “soft” sphere potential one.
As was shown in [11], these EoS correctly described the
isothermal compression for supercritical fluids of inert
gases.

Following [11], we use the free energy perturbation
expansion

FV (V0) = F0 (V0) +
∑
i<j

∫
dr̄idr̄Δe (r̄ij)

δF (V0)
δe (r̄ij)

+

+
1
2!

∑
i<j
e<m

∫
dr̄idr̄jdr̄ldr̄m Δe (rij) Δe (rlm)×

× δ2F (V0)
δe (rij) δe (rlm)

, (1)

where Δe (rij) = e (rij)− e0 (rij) = e−
ϕ(qrij)
kT − e−

ϕ(rij)
kT ,

φ (qrij) is the potential of the perturbed system, and q

is a scale factor, r̄ → qr̄, q = 3
√

V
V0

.
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Equation (1) can be transformed into the expression
for pressure (the details are given in [11])

P − P0 =
NkTΔV

V
−

−ρ
2
0V0

6V

∫
V

g2 (r) exp [β (−Φ (qr) + Φ (r))]
dΦ (qr)
dr

rdr̄+

+
ρ2
0

6

∫
V

g2 (r)
dΦ (qr)
dr

rdr̄. (2)

This expression was obtained within the framework of
a realistic potential model, that can be presented in the
general form

ϕ (r) = Φ (r) + ψ (r) , (3)

where Φ (r) is the repulsive part of the potential, and
ψ (r) is its attractive part.

2. The Equation of State within the Framework
of Sutherland and Katz Potential Models

In the case of short-range potentials, the expression for
the pressure can be rewritten in the form

P =
NkT

V
− ρ2

0V0

6V

∫
V

g2 (r) f (r)υ (r) dr̄−

−ρ
2
0V0

6V

∫
V

g2 (r)υ0 (r) dr̄, (4)

where f (r) = e
[β(−ϕ(qr)−ϕ(r))] − 1, υ (r) = −∇̄ϕ (qr) r̄

is the virial of intermolecular forces and υ0 (r) =
−∇̄ϕ (qr) r̄ |q=1 = −∇̄ϕ (r) r̄ is the virial of intermolec-
ular forces in the reference state. With regard for the
expression for the pressure in the reference state

P0 =
NkT

V0
− ρ2

0

6

∫
V

g2 (r)υ0 (r) dr̄, (5)

we rewrite relation (4) as

P =
V0P 0

V
− ρ2

0V0

6V

∫
V

g2 (r) f (r)υ (r) dr̄−

−ρ
2
0V0

6V

∫
V

g2 (r) Δυ (r) dr̄. (6)

Equation (6) can be expressed in the terms of Π =
P−P0
P0

or Δ = V0−V
V0

, using of the approximate quality
V0
V ≈ 1 + Δ

Π = Δ + (1 + Δ) (L+K) , (7)

where

L = − ρ2
0

6P0

∫
V

g2 (r) f (r)υ (r) dr̄, (8)

K = − ρ2
0

6P0

∫
V

g2 (r)Δυ (r) dr̄. (9)

Now the problem of deriving the EoS reduces to the
evaluation of integrals (8) and (9). First, we consider
the Sutherland potential

ϕ (r) =
{
∞, r < d0,
−cr−m, r > d0,

(10)

d0 is the molecular diameter, and the potential well
depth ε is defined by ε = c

dm0
. Then ϕ (qr) is written

as

ϕ (qr) =

{
∞, r < d0,

−c
(
V0
V

)m/3
r−m, r > d0,

(11)

where d = 3

√
V0
V d0. We calculate the singular force

−dϕ(r)
dr following [13] and obtain

υ (r̄) = −kTδ (r − d) r + cm

(
V0

V

)m/3
r−mΘ (r − d) ,

(12)

Δυ (r̄) = −kT [δ (r − d)− δ (r − d0)] r+

+cmr−m
[(

V0

V

)m/3
Θ (r − d)−Θ (r − d0)

]
, (13)

δ (r − d) is the Dirac delta function and Θ (r − d) is the
Heaviside step function. The expression for L takes the
form

L = −2πρ2
0

3P0

[
−kTg2 (d) f (r ↓ d) d3+
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+cm
(
V0

V

)m/3 ∞∫
d

g2 (r) r−m+2f (r)dr
]

(14)

where f (r ↓ d) = lim
r→d+0

f (r) [13]. The integral in (14)

can be evaluated if we assume that g2 (r) ≈ e−βϕ(r).
Then, in view of V0

V ≈ 1 + Δ, we have

cm

(
V0

V

)m/3 ∞∫
d

g2 (r) r−m+2f (r)d =

= (−β)(3−m)/m
c3/m

[(
V0

V

)2m/3

γ (x, y)−

−
(
V0

V

)m/3
γ

(
x, y

(
V

V0

)m/3)]
. (15)

Here, γ (x, y) is the upper incomplete gamma function
with x = m−3

β , y = − βc
dm0

. Using the same assumptions
for integral (9), we obtain

K =
2πρ2

0

3P0

[
kT
[
g2 (d) d3 − g2 (r ↓ d0) d3

]
−

− (−β)(3−m)/m
c3/m×

×

[(
V0

V

)2m/3

γ

(
x, y

(
V

V0

)m/3)
− γ (x, y)

]]
, (16)

where g2 (r ↓ d0) = lim
r→d+0

g2 (r). Since the parameter Δ

is small, we can expand g2 (d) at a point d0 in the Taylor
series

g2 (d) ≈ g2 (r ↓ d0) [1 + C (T ) Δ] , (17)

where C(T ) = d0
3
∂ ln g(r)
∂r |r→d0+0 is the function of the

reference state. Since, in the approximation Δ � 1,
f (r ↓ d) = exp

(
βcmΔ
3dm0

)
− 1 and Δ

Π � 1, Eq. (7) in the
case of small compressibility takes the form

P = P0+[B (T ) + P0]
[(
e

Δ
A(T )T− 1

)
[1 + Δ (2 + C (T ))]−

T a b l e 1. The values of the EoS parameters

T , K 300 350 400 450 500 550

B(T ), MPa 9.63 8.55 7.70 6.55 5.10 3.35

C(T ) 2.76 2.65 2.59 2.45 2.39 2.10

A(T ), K−1 0.0042 0.0037 0.0032 0.0027 0.0024 0.002

− (1 + C (T )) Δ + 2 (1 + C (T )) Δ2

]
+ Γ, (18)

Γ is the term which comprises the incomplete gamma
function

Γ =
2πρ2

0

3P0

[
(−β)(3−m)/m

c3/m

[(
V0

V

)2m/3

− 1

]
γ (x, y)

]
.

(19)

For the Sutherland model, it is expressed in terms of
the second virial coefficient B2 (T )

Γ =
kTρ0

P0

[(
V0

V

)2m/3

− 1

] [
B2 (T ) +

2πd3
0

3

]
. (20)

However, the analysis of the experimental data for
some dense fluids (water, argon, neon, krypton) re-
vealed that this term can be neglected under the con-
dition Π ≈ 103 with an accuracy of 1%. It is the
fairly wide range of thermodynamic variables, where the
isothermal compressibility is low (Δ � 1) correspond-
ing to the pressure interval 100–2200 MPa. The terms
2 (1 + C (T )) Δ2−(1 + C (T )) Δ can also be ignored with
the same accuracy. Finally, we arrive at the EoS within
the framework of the Sutherland model

P = P0 + [B (T ) + P0]
[(
e

Δ
A(T )T − 1

)
D (T )

]
, (21)

where D (T ) = 1 + Δ(2 + C (T )). Expression (21) is
a three-constant equation of state with the adjustable
parameters B(T ), D(T ), and A(T ) (see Table 1). The
parameter B(T ) depends on the temperature. It is re-
lated to the pressure caused by attractive forces

B (T ) =
2πρ2

0

30
kTg2 (r ↓ d0) d3

0 − P0 =

= P r0 − P0 = P a0 −
NkT

V0
, (22)

where P r0 is the pressure caused by the repulsive forces in
the reference state, and P a0 is a part of the pressure due
to the attractive forces. The parameter A(T ), within the
framework of the Sutherland model, is expressed by the
formula

A(T ) =
3 dm0 k

mc
. (23)

If we use the Katz potential model

Φ (r̄) =

{
∞, r < d0,

−aR
3
0

4π e
−rR0 , r > d0,

(24)
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Processing of the experimental PVT-data for supercritical water

where R0 is the interaction radius of the attractive
forces, aR3

0
4π is the interaction constant, Eq.(21) retains

its functional form, but the parameter A(T ) is defined
by the formula A(T ) = 12πdm0 exp(R0d0) k

d0R4
0a

.
The parameters B(T ) and C(T ) are defined in a sim-

ilar way.

3. Experimental PVT-data Analysis

We used the technique from the previous paper [11] to
process the PVT data and evaluate the EoS parameters.
It turns out that Eq. (21) yields good agreement with the
experimental PVT data [14] under the extrapolation to
the high pressure region. The results of the comparison
are presented in Figure.

Of special interest are the values of the parameter
A(T ), because it is related to the parameters of the po-
tential, formulae (23) and (25) for the Sutherland and
Katz models. On the basis of (23), we evaluated the val-
ues of the potential well depth ε at a fixed value m = 12
commonly used in the Lennard–Jones model (Table 2).

If we fix the value of ε = 0.650 kJ/mole, which cor-
responds to the SPC/E model, we obtain a variation
of the softness parameter m with the temperature. In
general, fixing ε at the values for well-known poten-
tial models such as SPC/Fw [15], TIP3P/Fw [15], and
TIP5P/Ew [16] leads to a variation of the softness pa-

T a b l e 2. The values of ε (Sutherland potential) at
m = 12 in the temperature interval 300–550 K

T , K 300 350 400 450 500 550

ε, J103/mole 0.493 0.562 0.650 0.769 0.866 1.038

rameter m with the temperature within the framework
of the Sutherland potential.

4. Conclusion

The approach developed on the basis of the free energy
perturbation expansion and a new version of TPT re-
sulted in some universality for the EOS statistical foun-
dation of the low weight molecular supercritical fluids.
In principle, the concept of the thermodynamic refer-
ence state implies that an initial state (P0, V0) on the
isotherm corresponds to the reference system with the
unperturbed potential, and every subsequent point on
the isotherm (P1, V2), . . . , (Pn, Vn) corresponds to the
system with the perturbed potential at the isothermal
compression of the system. This modification of TPT
allowed obtaining the EoS which exhibits good results
under the extrapolation to the high-pressure region and,
most importantly, establishes a relationship between the
parameters of the model potential and the thermody-
namic properties of substances. This relationship gives
estimations for the values of the parameter ε (Table 2).
Interestingly, the values are of the same order of mag-
nitude as the values of many well-known water mod-
els (SPC/E, SPC/Fw, TIP3P/Fw, TIP5P/Ew). How-
ever, the temperature dependence of ε in this region of
thermodynamic variables indicates that the form of the
Sutherland model is unsuitable for this high pressure re-
gion. Nevertheless, these data can be used as additional
information for calibrating the potential parameters in
simulations.
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РIВНЯННЯ СТАНУ ВОДИ В ОБЛАСТI МАЛИХ
СТИСЛИВОСТЕЙ

В.Ю. Бардiк, Д.А. Нерух, Є.В. Павлов, I.В. Жиганюк

Р е з ю м е

Одержано статистично обґрунтоване рiвняння стану густих
флюїдiв у рамках моделей потенцiалу Сюзерленда та Каца. За-
пропоноване рiвняння стану з високою точнiстю узгоджується
з експериментальними даними по iзотермiчному стисненню во-
ди при екстраполяцiї в область високих тискiв. Встановлено
кiлькiсний зв’язок мiж ефективними параметрами модельних
потенцiалiв з параметрами рiвняння стану.
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