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The possibility to describe the evolution of an electromagnetic field
by means of the photon distribution function in the phase space
(r,q-space) is studied. This function defined by analogy with the
coarse-grained Mandel operator of photon density in the configura-
tion space is used to characterize the local density of photons with
a given momentum. Approximate eigenfunctions and eigenvalues
of the distribution function, corresponding to one-photon localized
states of the electromagnetic field, are obtained. It is shown that
the photon transport is governed by the Newton mechanics if the
“external force” acting on photons is a slowly varying function of
spatial variables. It is shown that the distribution function at any
time can be expressed via the initial distribution and photon’s tra-
jectories.

1. Introduction

Many important applications of quantum theory of light
require a representation of radiation fields as ensembles
of local excitations. For example, when the localized
space-time interactions (like the spontaneous emission
from an atom) are considered, the plane-wave represen-
tation can be inefficient. This circumstance has moti-
vated the development of the photon-wave-function for-
malism (see, e.g., Refs. [1–3]), in which the single-photon
states are treated as the states of individual particles
(photons).

A somewhat different situation is in the case of pho-
todetection. The electromagnetic field density averaged
over the volumes with sizes of the order of several or
even many wavelengths can be quite sufficient for the
description of a measuring process, if the aperture of a
measuring device is much greater than the wavelengths.
The volume of averaging should be smaller than the vol-
ume involved in the course of measurement. In this case,
the theoretical data obtained within this coarse-grained
description, are quite suitable for comparing with the
experimental ones. It seems that the formalism of the
Mandel density operator (see Refs. [4] and [5]) can be
useful for theoretical purposes. The definition of the
Mandel operator does really includes the procedure of

coarse-graining of the photon density in the manner ex-
plained above (see also Section 2). At the same time,
it is worth pointing out that the Mandel operator de-
pends on a complete set of the system variables (a set of
all modes). This circumstance makes the Mandel opera-
tor to be inconvenient in theoretical studies. Moreover,
the so-detailed description does not correspond to real
experimental setups: the actual measuring devices are
sensitive to very restricted sets of field modes.

There is another operator [6] of photon density,
f(r,q, t) describing the coarse-grained photon distribu-
tion in the r,q space, i.e., in the phase space (see Section
3). In our opinion, this operator is preferable in practice.
It is defined as a quadratic form of the creation and an-
nihilation operators acting on the number of excitations
of the actual field modes. These modes really contribute
to the detected signals in individual experimental setups.
The restriction of the plane-wave basis to the subspace
of only important modes allows us to derive a linear ki-
netic equation for f(r,q, t) (Section 5). This equation
governs the evolution of the photon density. The so-
lution of the kinetic equation relates an arbitrary-time
photon distribution with the initial distribution. In con-
trast, the approach based on the Mandel’s operator does
not provide such useful opportunity.

The definition of photon density in the phase space,
f(r,q, t) is similar to the definition of distribution func-
tions commonly used in practice for electrons, holes,
phonons, etc. For example, the electron and hole dis-
tribution functions are the quantum analogs of the clas-
sical microscopic distribution functions commonly used
for the description of kinetic phenomena in gas plasmas
and semiconductors. With account for the mentioned
similarity, the term “distribution function” seems to be
quite adequate to designate the operator of photon den-
sity in the phase space.

In what follows, we will obtain approximate eigenfunc-
tions and eigenvalues of the operator f(r,q, t). These
quantities describe the localized states (particle-like
states) of the radiation field. The localization occurs in
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small (but not infinitely small) volumes of the r,q-space.
The localization corresponds to the coarse-graining pro-
cedure and agrees with the uncertainty principle. The
evolution of the localized states of individual photons is
such as if they represent a set of classical particles with a
specific (linear) momentum-energy relation, whose mo-
tion is governed by the Newton mechanics. The con-
ditions, under which the photon ensemble behaves like
a classical system of noninteracting particles, are dis-
cussed.

The averaged distribution function, 〈f(r,q, t)〉, can be
used for obtaining such important characteristics of ra-
diation fields as the local densities of energy, flux, mo-
mentum, angular momentum, etc. The value 〈f(r,q, t)〉
depends on statistical properties of both a source of the
radiation field and propagation paths.

In what follows, the temporal dependence of
〈f(r,q, t)〉 will be obtained for the simplest cases. Be-
sides that, the pair correlation function,

〈f(r,q, t)f(r′,q′, t′)〉,

describing fluctuations of the intensity of electromag-
netic fields will be derived.

2. The Mandel Operator

The Mandel operator describes the coarse-grained pho-
ton density in the configuration space (r-space):

n̂M(r, t) =
1
V

∑
q,k,s

∫
Ω

dr′e−ik(r+r′)a+
q+ k

2 ,s
aq− k

2 ,s, (1)

where V is the volume of the system; Ω = l3 is the
volume of averaging (V � Ω); s denotes two polariza-
tions of plane-wave modes with the same wave-vectors.
The value of l is considered to be much greater than the
characteristic wavelength of light, λ. All operators are
defined in the Heisenberg representation.

Due to the integration, the terms with k > π/l do not
contribute significantly to the value of n̂M(r, t). This
observation shows that a similar effect of cause-graining
can be realized using the alternative procedure, i.e., by
eliminating the harmonics with large k from the sum
which defines the photon density. Then the modified
photon density is given by

n̂(r, t) =
1
V

∑
q,s,k<k0

e−ikra+
q+ k

2 ,s
aq− k

2 ,s, (2)

where the inequality, k < k0, means here |kx,y,z| < k0 =
π/l. There is the qualitative correspondence between

the Mandel operator and the operator given by Eq. (2):

n̂(r, t)→ 1
Ω
n̂M(r, t). (3)

Both of them provide an adequate description of the
smoothly varying photon density.

3. Photon Density in the Phase Space

The photon distribution function is defined by analogy
with the distribution functions for electrons, phonons,
etc., as

fs(r,q, t) =
1
V

∑
k<k0

e−ikra+
q+ k

2 ,s
aq− k

2 ,s. (4)

It can be easily seen from Eqs. (2) and (4) that the
operator of photon density in the configuration space
can be expressed in terms of fs as

n̂(r, t) =
∑
q,s

fs(r,q, t). (5)

Equation (5) indicates that fs(r,q, t) represents the pho-
ton density in the (r,q) space. An additional support of
this statement follows from the observation that the in-
tegral of fs(r,q, t) over r is the operator of total photon
numbers, n̂q,s, in the mode {q, s}:∫
V

drfs(r,q, t) = a+
q,saq,s ≡ n̂q,s. (6)

In the next section, we consider the properties of the
operator fs(r,q, t).

4. Eigenfunctions and Eigenvalues of the
Operator fs(r, q, t)

Let us define the operator

V̂+(r,q, t) = C
∑

q′<k0,s

e−i(q+q′)req+q′,sa
+
q+q′,s, (7)

where C = V −1/2(π/k0)3/2, eq+q′,s is the unit vector
showing the polarization of the mode denoted by a set
(q + q′, s). With account for the inequality, q � q′, we
can approximate eq+q′,s by the value eq,s. Then the
vector V̂+(r,q, t) can be represented as a sum

V̂+(r,q, t) = eq,1v̂
+(r,q, t, 1) + eq,2v̂

+(r,q, t, 2),

where the numbers 1, 2 denote the polarizations of two
modes with a given wave-vector q. To shorten notations,
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we will use a single letter q to denote a set of variables
{q, s}.

The action of v̂+(r,q, t) on the vacuum state, |vac〉,
generates a normalized excited state, |r,q, t〉:

|r,q, t〉 = v̂+(r,q, t)|vac〉, 〈r,q, t|r,q, t〉 = 1. (8)

It can be seen that the function |r,q, t〉 is a super-
position of the single-photon Fock states of modes with
wave-vectors close to q. Using the evident relation

aq′a
+
q |vac〉 = δq,q′ |vac〉, (9)

we can show that |r,q, t〉 is the exact eigenfunction of
the operator of total number of photons, N̂ =

∑
q n̂q,

with the eigenvalue equal to 1:

N̂ |r,q, t〉 = 1 ∗ |r,q, t〉. (10)

Equation (10) shows that |r,q, t〉 is the state represent-
ing an elementary portion of the electromagnetic field
(a one-photon state) which is smeared out over a set of
photon modes around the mode with the wave-vector q.
The spatial structure of this field can be “probed” by
the action of the density operator on the state |r,q, t〉.
Using the inequality k0 � q and Eq. (9), we can easily
obtain

n̂(r, t)|r′,q, t〉 ≈ δ̃(r− r′)|r′,q, t〉, (11)

where

δ̃(r) =
1
V

∑
k<k0

e−ikr =
1
π3

sin(k0x)
x

sin(k0y)
y

sin(k0z)
z

.

When k0 → ∞, δ̃(r) approaches the Dirac δ-function.
For finite values of k0, this function is localized in the
region with size of the order of π/k0.

It follows from Eq. (11) that the function, |r′,q, t〉, is
the approximate eigenfunction of the operator of photon
density in the configuration space. The corresponding
approximate eigenvalue is δ̃(r− r′). Using a similar con-
sideration, we can show that |r,q, t〉 is also the eigen-
function of the operator, f(r,q, t) , i.e.,

f(r,q, t)|r′,q′, t〉 = δ̃(r− r′)δ̃q,q′ |r′,q′, t〉, (12)

where the tilde over the Kronecker delta means that q ≈
q′ with accuracy up to k0/q. The wave function |r′,q′, t〉
represents a one-particle state (see Eq. 10) localized in
the phase-space volume of the order of ΔV k3

0 ∼ 1. [The
estimate of ΔV ∼ k−3

0 can be seen from the explicit form
of δ̃(r).] Taking into account that the uncertainty of q

is of the order of k0, we obtain that ΔrΔq ∼ 1. This
agrees with the Heisenberg uncertainty principle.

Our analysis can be generalized for a set of particles
localized in different regions of the phase space. The
wave function of N particles, |N{ri,qi, t}〉, is given by

|N{ri,qi, t}〉 =
N∏

i=1

v̂+(ri,qi, t)|vac〉. (13)

Repeating the previous argumentation, we derive

f(r,q, t)|N{ri,qi, t}〉 ≈
N∑

i=1

δ̃(r− ri)δ̃q,qi
|N{ri,qi, t}〉.

(14)

The eigenvalue,

ρ(r,q) =
N∑

i=1

δ̃(r− ri)δ̃q,qi
, (15)

can be interpreted as the photon density in the phase
space.

Equation (14) can be easily generalized to the case
of different times of the wave functions and the density
operators. For this purpose, the following relation for
the Heisenberg operators a+

q+k/2, aq−k/2 is useful:

a+
q+k/2(t)aq−k/2(t) =

= ei(ωq+k/2−ωq−k/2)ta+
q+k/2(0)aq−k/2(0) ≈

≈ eicqkta+
q+k/2(0)aq−k/2(0), (16)

where cq = ∂ωq/∂q is the photon velocity, and only the
term linear in k is retained in the exponent. Using Eq.
(16), we obtain

f(r,q, t)|N{ri,qi, 0}〉 ≈

≈
N∑

i=1

δ̃(r− ri − cqi
t)δ̃q,qi

|N{ri,qi, 0}〉. (17)

It follows from Eq. (17) that, independently of the
time, t, the function |N{ri,qi, 0}〉 is an eigenfunction
of the operator f(r,q, t). The corresponding eigenvalue
ρ(r,q, t) given by

ρ(r,q, t) =
N∑

i=1

δ̃(r− ri − cqi
t)δ̃q,qi

(18)
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depends essentially on the time and differs from (15).
The difference arises from the displacements of wave-
packets over the distances cqi

t. At the same time, it
should be noted that the volume of localization of each
photon state does not depend on t. The initial localiza-
tion volume is displaced as a whole to the distance cqi

t.
This very simple physical picture occurs for a not too
long propagation distance (when the linear-in-k approx-
imation of the difference ωq+k/2 − ωq−k/2 used in Eq.
(16) is sufficient for the description of the wave packet
evolution). For very long propagation paths, the terms
nonlinear in k and potentially responsible for distort-
ing (varying) the volumes of localizations should be also
accounted for. This peculiarity does not exist for non-
relativistic finite-mass (m 6= 0) particles. In the case of
the usual energy-momentum relation (ε(p) = p2/2m),
we obtain

εp+~k/2 − εp−~k/2 = ~kvp, vp =
∂εp
∂p

. (19)

As we see, only the terms linear in k describe the wave-
packet in course of its propagation. As the velocity v =
p/m increases, the relativistic effects become important,
and, in the limit v → c (p→∞), the energy-momentum
relation resembles that in the photon case: ε(p) → cp.
This means that the particles with finite masses become
delocalized after long propagation paths.

The photon density ρ(r,q, t) resembles the micro-
scopic distribution function used for the classical descrip-
tion of noninteracting point particles. Hence, Eq. (18)
illustrates the particle-like properties of photon fields.

5. Kinetic Equation for the Photon Distribution
Function in the Phase Space

Using the definition of the distribution function (6) and
considering it as a Heisenberg operator, we can easily
obtain the kinetic equation{
∂

∂t
+ cq

∂

∂r

}
f(r,q, t) = 0, (20)

governing the evolution of a photon distribution in
the vacuum. When photons propagate in a medium
with slowly varying refractive index nref(r) (e.g., in the
Earth’s atmosphere), the effect of the medium can be ac-
counted for by introducing an “external force” (see more
details in Ref. [7])

F(r) ∼ ∂nref(r)
∂r

,

which modifies the photon momentum. In this case, the
additional term describing the particle drift in the mo-
mentum space appears in the kinetic equation:{
∂

∂t
+ cq

∂

∂r
+ F(r)

∂

∂q

}
f(r,q, t) = 0. (21)

Its solution can be expressed in terms of the initial dis-
tribution f(r,q, t = 0) as

f(r,q, t) = f

(
r−

t∫
0

dt′
∂r(t′)
∂t′

,q−
t∫

0

dt′
∂q(t′)
∂t′

, 0
)
, (22)

where the derivatives should obey the equations

∂r(t′)
∂t′

= c[q(t′)],

∂q(t′)
∂t′

= F[r(t′)] (23)

and the initial conditions r(t′ = t) = r, q(t′ = t) = q
(see [7–9]).

It seems to be reasonable to represent a state of the
photon ensemble using the set of approximate eigenfunc-
tions (13) as a basis and to describe the photon kinetics
by means of Eqs. (21) and (23).

Equations (23) can be interpreted as the Newton equa-
tions of motion for the zero-size particles which have the
energy ~ωq and the momentum ~q. In the above, we
have used the term “photons” for them. In our opin-
ion, this is a quite adequate name for the next reason.
Historically, the term “photon” was used to define the
smallest (elementary) “portion” of light. In the case
of a monochromatic electromagnetic field, this portion
can be considered as a single quantum of the plane-wave
mode. By analogy, it seems reasonable to use the term
“photon” for a portion of the electromagnetic field de-
scribed by the superposition state |r,q, t〉. This state,
being the eigenfunction of the operator N̂ with the eigen-
value equal to 1 (one-particle state), does really represent
the elementary “portion of light”.

Concluding this paragraph, Eq. (21) completed by
Eqs. (23) coincides with the corresponding equations
for classical particles. Nevertheless, the wave nature of
light is not missed here, because it is accounted for by
the initial distribution f(r,q, 0) formed by the source of
radiation. The “memory” about an initial state of f is
present, for example, in average values and correlations
of distribution functions. (The detailed description of
one-photon and two-photon interferences can be found
in [10].)
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6. Average Values and Correlations of
Distribution Functions

For practical purposes, the average values of the dis-
tribution functions and their correlation functions are
required. The simplest situation is realized when the
radiation field is in the state |N{ri,qi, t}〉. Using the
property given by Eq. (17), we can easily obtain

〈f(r,q, t)〉 = 〈N{ri,qi, 0}|f(r,q, t)|N{ri,qi, 0}〉 ≈

≈
N∑

i=1

δ̃(r− ri − cqi
t)δ̃q,qi

. (24)

It can be seen from Eq. (24) that the photon created
at t = 0 moves with its individual velocity cqi

. The
correlation function in this case is given by

〈f(r,q, t)f(r′,q′, t′)〉 = 〈f(r,q, t)〉〈f(r′,q′, t′)〉. (25)

For the thermal radiation, the average value of the
distribution function is equal to

〈f(r,q, t)〉 =
1
V
n̄q, (26)

where n̄q =
[

exp
(

~ωq

kBT

)
− 1
]−1

is the Planck distribu-

tion. There is no spatial dependence of 〈f〉 because of
the spatial homogeneity of equilibrium radiation.

The correlation function is given by

〈f(r,q, t)f(r′,q′, t′)〉 ≈

≈ 1
V 2

n̄qn̄q′ +
1
V
δ̃[r− r′− cq(t− t′)]δ̃q,q′ n̄q(1+ n̄q). (27)

Integrating Eq. (27) over r and r′, we obtain

〈n̂qn̂q′〉 = n̄qn̄q′ + δq,q′ n̄q(1 + n̄q).

This is the result known for photon number correlations
in the black-body radiation.

As is seen, the photon’s trajectories in both cases, as
well as the initial statistical properties of the radiation,
determine the average of distribution functions and their
correlations.

7. Conclusion

We have analyzed the possibility to describe the evolu-
tion of optical fields by means of the operator of photon

density (the photon distribution function) in the phase
space. Ideologically, our approach is in the course of
the Mandel operator procedure. Approximate eigenfunc-
tions and eigenvalues of the coarse-grained distribution
function are obtained. It is shown that the evolution
of the photon density in the phase space can be de-
scribed in terms of photon trajectories. These trajec-
tories can be obtained by solving the Newton equations
of motion, in which an “external force” may originate
from spatial variations of the refractive index. We be-
lieve that this method can be useful for the description
of various optical phenomena, including the problem of
quasi-one-dimensional light propagation in fibers.

We are grateful to Professors P.I. Holod, P.W. Milon-
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ОПЕРАТОР ФОТОННОЇ ГУСТИНИ У ФАЗОВОМУ
ПРОСТОРI

О. Чумак, Н. Сушкова

Р е з ю м е

Вивчається можливiсть опису еволюцiї електромагнiтного по-
ля за допомогою функцiї розподiлу фотонiв у фазовому про-
сторi (в r,q-просторi). Локальна густина фотонiв iз заданим
значенням iмпульса виражається через цю функцiю, побудо-
вану за аналогiєю iз “загрубленим” оператором Манделя фо-
тонної густини в конфiгурацiйному просторi. Знайдено набли-
женi власнi функцiї та власнi значення функцiї розподiлу, що
вiдповiдають однофотонним локалiзованим станам електрома-
гнiтного поля. Показано, що рух фотонiв описується механi-
кою Ньютона у тому випадку, коли “зовнiшня сила”, що дiє на
фотони, є плавною функцiєю просторових змiнних. Показано
також, що функцiю розподiлу у довiльний момент часу можна
виразити через початковий розподiл та фотоннi траєкторiї.
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