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We present a theoretical investigation of space separated electron
and hole distributions, which consists in the self-consistent solving
of the Schrödinger equations for electrons and holes and the Pois-
son equation. The results are illustrated for the
GaN/Al0.3Ga0.7N quantum well. The optical gain spectrum in
a [0001]-oriented GaN/Al0.3Ga0.7N quantum well in the ultravio-
let region is calculated. It is found that both the matrix elements
of optical transitions from the heavy hole band and the optical
gain spectrum have only the strict x (or y) light polarization. We
present studies of the influence of the confinement of wave func-
tions on the optical gain which implicitly depends on the built-in
electric field calculated to be 2.3 MV/cm. Whereas the structures
with narrow well widths exhibit the usual development of the light
gain maximum almost without shifting the spectral region, a sig-
nificant blueshift of the gain maximum is found with increase in
the plasma density for wider quantum wells. This blueshift is as-
cribed to the interplay between the screening of a strain-induced
piezoelectric field and the bandstructure. A large Sommerfeld or
Coulomb enhancement is present in the quantum well.

1. Introduction

Direct wide band gap group III-nitride semiconductors
based on GaN and its alloys have received a great at-
tention due to their applications in optoelectronic de-
vices such as light-emitting diodes and lasers at green-
blue and near-ultraviolet wavelengths and solar-blind
photodetectors [1, 2]. A number of ultraviolet light-
emitting diodes [3–8] and laser diodes [9–13] already
have been demonstrated. Realizing the deep-ultraviolet
semiconductor-based light-emitting diodes will provide

compact high-efficiency light sources for various applica-
tions, for example to the biological detection and data
storage [3]. Thus, these structures are in the develop-
mental stage.

Here, we present a theoretical investigation of the in-
tricate interaction of the electron-hole plasma with a
built-in electric field. For this purpose, the calculation
of a quantum well bandstructure is performed using the
invariant method and the envelope approximation. We
consider a quantum well of width w in GaN, which is
oriented perpendicularly to the growth direction (0001)
and localized in the spatial region −w/2 < z < w/2.
In the GaN/AlGaN quantum well structure, there is
a strain-induced electric field. This piezoelectric field,
which is perpendicular to the quantum well plane (i.e.,
in z direction) may be appreciable because of the large
piezoelectric constants ê in würtzite structures.

The confinement of wave functions has a strong in-
fluence on the optical gain which is observed with an
implicit dependence on the built-in electric field which
is calculated to be 2.3 MV/cm. Such fields are present
in GaN/Al0.3Ga0.7N systems, because the strain is in-
duced by the lattice mismatch. The relative magni-
tude of piezoelectric effects depends sensitively on the
quantum-well width and the plasma density. In this pa-
per, we present the results of theoretical studies of the
space separation of electron and hole distributions on the
basis of the self-consistent solution of the Schrödinger
equations for electrons and holes and the Poisson equa-
tion. The Poisson equation contains the Hartree poten-
tial which involves the space distributions of the charge
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density for electrons and holes. We focus on details of
the bandstructure for the sake of comparison of differ-
ent quantum well structures. In the calculations of a
band structure in the high-concentration regime, we dis-
cuss the treatment of the quantum confined Stark ef-
fect (QCSE). By comparing the gain spectra for two
GaN/AlGaN quantum well structures with different well
widths, we show the interaction of the bandstructure and
the piezoelectric field. In particular, we will show that
the wide-quantum-well structures, where the QCSE is
appreciable, demonstrate a significant blueshift of the
gain maximum, whereas the structures with a narrow
well width exhibit the ordinary behavior of the light gain
maximum almost without shifting the spectral region.

A similar blueshift of the exciton resonance was
observed and analyzed on the microscopic level for
GaInN/GaN quantum-well systems [14]. They reflect
a perturbation of the compensation between the self-
energy and the field renormalization contribution to the
microscopic interband polarization caused by a real spa-
tial distribution of charges. Such a feature is charac-
teristic of this quantum well and is not inherent to the
GaAs quantum well die to the lacking of a piezoelectric
field. Accounting the Coulomb renormalization of ma-
trix elements of the electric dipole moment in the two-
band model of quantum well structure causes a variation
in the oscillator strength with a variation of the carrier
density and the quantum well configuration.

In work [15], the matrix elements of the dipole mo-
ment for interband transitions and the optical gain of
a deformed würtzite GaN quantum well were presented
without consideration of the intrinsic built-in piezoelec-
tric field in the quantum well structure.

In work [16], the laser gain was investigated for Al-
GaN würtzite quantum well structures. The optical gain
spectrum was computed by simultaneously diagonalizing
the kp Hamiltonian and by solving the Poisson equation.
However, no significant shift of the gain maximum with
increase in the plasma density in the framework of single
structure was obtained. This indicates that, in the given
structure in the high-density regime, QCSE is insignifi-
cant. This result coincides with our calculations of the
gain shown in Fig. 5.

In work [17], a self-consistent calculation of the op-
tical gain in pseudomorphically strained GaN quantum
wells as a function of the carrier density was presented.
But the spectrum renormalization and the electric dipole
momentum which are caused by electron-electron and
electron-hole Coulomb correlations were not considered
there.

Understanding the influence of the bandstructure and
QCSE on laser gain properties should help one to im-
prove the laser performance and the optimal configura-
tions of a device.

The light gain spectrum presented in the paper re-
flects only the strict TE (x or y) light polarization. It
is known [18–22] that the valence-band spectrum at the
Γ point originates from the sixfold degenerate Γ15 state.
Under the action of the hexagonal crystal field and the
spin-orbit interaction in würtzite crystals, Γ15 splits and
leads to the formation of three spin degenerate levels:
Γ9, upper Γ7, and lower Γ7 levels.

In Section 2 for the processes of emission or absorp-
tion, we will calculate the energies and the wave func-
tions of the lowest conduction subband and the valence
subbands. The dependences of the matrix elements for
dipole optical interband transitions and the light gain
spectrum in GaN quantum wells on the quantum well
width and the charge density are derived. Section 3
presents the Hartree–Fock light gain spectra and the ma-
trix elements for dipole optical interband transitions that
are calculated within the theory described in Section 2.
By comparing the light gain spectra for two GaN/AlGaN
quantum well structures of different well widths, we show
the interaction of the bandstructure, polarization field,
and charge density. We determined the red renormaliza-
tion of the light gain spectrum caused by the electron-
electron and hole-hole Coulomb interactions. It is found
that the Sommerfeld enhancement composes 26.7 gain
value, which was obtained in the Hartree problem. This
enhancement of the electric dipole momentum is caused
by the electron-hole Coulomb attraction.

2. Theory

We consider QCSE in strained würtzite
GaN/Al0.3Ga0.7N quantum wells with widths 2.6
nm and 3.9 nm, in which the barrier height is a
constant value for electrons and is equal to U0 = 490
meV. The theoretical analysis of the optical gain of
strained würtzite quantum well lasers is based on the
self-consistent solution of the Schrödinger equations for
electrons and holes in quantum well of width w with
including Stark effect and the Poisson equation. The
Poisson equation contains the Hartree potential which
involves the charge density for electrons and holes. All
researches are performed at a temperature of 300 K.
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The first energy level of an electron in the quantum
well of width w is equal to [23]

E1 =
2ξ2~2

mw2
, (1)

where m = 0.19m0 is an electron effective mass, and ξ
is determined from equation

cos ξ = ±γξ, (2)

where γ = ~
w

√
2

mU0
, tan ξ > 0, and ξ = k0w

2 . For k0, the
following equality holds:

arcsin
~ k0√
2mU0

=
nπ − k0w

2
. (3)

The wave function of an electron on the first energy level
with regard for QCSE is as follows [24]:

Ψ(r) =
1√
A
eiktρΨ(z, β)|S〉|σc〉. (4)

Here,

Ψ(z, β) =

 ψ1(z, β)
ψ(z, β)
ψ2(z, β)

, (5)

where ψ1(z, β) = C1e
(κ0−β)(z+w

2 ), ψ(z, β) =
C sin (k0z + δ0)e−β z, ψ2(z, β) = C2e

−(κ0+β)(z−w2 ).
From the boundary conditions [23,24] ψ1(z, β)|z=−w/2 =
ψ(z, β)|z=−w/2, ψ2(z, β)|z=w/2 = ψ(z, β)|z=w/2,
ψ′1(z,β)
ψ1(z,β) |z=−w/2 = ψ′(z,β)

ψ(z,β) |z=−w/2,
ψ′2(z,β)
ψ2(z,β) |z=w/2 =

ψ′(z,β)
ψ(z,β) |z=w/2, we find C1 = C sin (−k0w2 + δ0)eβ

w
2 ,

C2 = C sin (k0w2 + δ0)e−β
w
2 , κ0 = k0( 1−cos k0w

sin k0w
),

δ0 = k0w
2 + arctan κ0

k0
, where A is the area of a quantum

well in the xy plane, ρ is the two-dimensional vector
in the xy plane, and kt = (kx, ky) is an in-plane wave
vector. The constant multiplier C is found from the
normalization condition
∞∫
−∞

|Ψ(z, β)|2dz = 1. (6)

Such a representation of the wave function gives the in-
formation that the conduction band corresponds to the
Γ7 representation, which arises due to the splitting of
the C4

6v space group by the crystal field with Γ1. In
other words, the conduction band wave functions orig-
inate from S atomic orbitals. This is important at the

derivation of matrix elements of the electric dipole mo-
ment by the Wigner–Eckart theorem.

The strong mismatch of the lattices in GaN and
Al0.3Ga0.7N leads to internal strains in the GaN layer. In
noncentrosymmetric structures, the internal strains can
induce a macroscopic built-in polarization field. This
phenomenon is known as the piezoelectric effect. This
phenomenon can also be described as a strain inducing
an electric field. It is known that this piezoelectric field,
which is perpendicular to the quantum well plane, can
be significant because of the large piezoelectric constants
in würtzite structures which are connected with one an-
other:

E = −4π
κ

(
2
(
e31 − e33

C13

C33

)
εxx + Psp

)
, (7)

where ê is the piezotensor, Psp is the spontaneous po-
larization, ε̂ is the strain tensor, C13 and C33 are the
elastic constants, and κ is the permittivity of the host
material. We calculated the built-in piezoelectric field
in the GaN/Al0.3Ga0.7N quantum well structure from
relation (7) and found E ' 0.23× 107 V/cm.

We take [17, 25, 26] the following values for con-
stants: C13 = 106 GPa, C33 = 398 GPa, e31 =
−0.44 × 108 V/cm, e33 = 0.66 × 108 V/cm, Psp =
−0.26 × 107 V/cm. The transverse components of the
biaxial strain are proportional to the difference between
the lattice constants of materials of the well and the
barrier and depend on the Al content: x, εxx = εyy =
aAlxGa1−xN−aGaN

aGaN
, aAlxGa1−xN = aGaN + x(aAlN − aGaN);

aGaN = 0.31892 nm, aAlN = 0.3112 nm. The longitu-
dinal component of a deformation is expressed through
elastic constants and the transverse component of a de-
formation: εzz = −2C13

C33
εxx.

One can find the functional, which is built from (4)
and (5), in the form

J(β) =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

, (8)

where

H = Hc −
~2

2mz
e

∂2

∂ z2
+ V (z), (9)

V (z) = U(z) + eΦ(z),

Hc = Eg + Δ1 + Δ2 +
~2

2m⊥e
k2
t + aczεzz + ac⊥(εxx + εyy),

(10)
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m
(c)
z,⊥ = 0.19m0, and acz,⊥ = −4080 meV [30]. The

quantity U(z) can be represented in the form

U =


U0 − eEw

2 , z ∈ (−∞...− w/2),
eEz, z ∈ [−w/2...w/2],
U0 + eEw

2 , z ∈ (w/2...∞).
(11)

To account the piezoelectric effects, we modify the
Schrödinger equation for electrons and holes, by in-
cluding an off-diagonal contribution to the electron-hole
Hamiltonian. The Schrödinger equation for an infinitely
deep quantum well with regard for the QCSE and the
Hartree potential created by spatially separated elec-
trons and holes can be presented in the form

ĤΨν(r) = EνΨν(r), (12)

where Ĥ = Ĥ+ + eEz + eΦ(z). We introduce the Bloch
function written as a vector in the three-dimensional
Bloch space:

|ασv kt〉 =

∥∥∥∥∥∥∥
φ

(1)
α (z, kt)
φ

(2)
α (z, kt)
φ

(3)
α (z, kt)

∥∥∥∥∥∥∥
|1, σv〉
|2, σv〉
|3, σv〉

, (13)

where

φ(j)
α =

n∑
i=1

V
(j)
kt

[i, α]χi(z), (14)

and j = 1, 2, 3. The Bloch vector of the α-type hole with
spin σv = ± and momentum kt is specified by its three
coordinates [V (1)

kt
[n, α], V (2)

kt
[n, α], V (3)

kt
[n, α]] in the ba-

sis [|1, σv〉, |2, σv〉, |3, σv〉]. The envelope z-dependent
part of the quantum well eigenfunctions can be deter-
mined from the boundary conditions χn(z = −w/2) =
χn(z = w/2) = 0 for an infinitely deep quantum well as

χn(z) =

√
2
w

sin (π n (
z

w
+

1
2
)), (15)

where n is a natural number. The hole wave function
can be written as

Ψvσv
ν (r) =

ei kt ρ√
S
|ασv kt〉, (16)

where ν = {kt, α} in the envelope-wave approximation,
in which the wave function is considered as a product of
the envelope part χ(z)eiktρ and a periodic Bloch multi-
plier. The Bloch vectors in the envelope wave approxi-
mation are projections of the exact Bloch vector on the

subspace of vectors with the symmetry inherent to the
Γ point [27]. We have

H± =

∥∥∥∥∥∥
F Kt ∓ iHt

Kt G Δ∓ iHt

± iHt Δ± iHt λ

∥∥∥∥∥∥ (17)

in the basis [|1, σv〉, |2, σv〉, |3, σv〉] [28], where

F = Δ1 + Δ2 + λ+ θ,

G = Δ1 −Δ2 + λ+ θ,

λ = λk + λε,

θ = θk + θε,

λk =
~2

2m0
(A1k

2
z +A2k

2
t ),

λε = D1εzz +D2(εxx + εyy),

θk =
~2

2m0
(A3k

2
z +A4k

2
t ),

θε = D3εzz +D4(εxx + εyy),

Kt =
~2

2m0
(A5k

2
t ),

Ht =
~2

2m0
(A6ktkz),

Δ =
√

2Δ3,

k2
t = k2

x + k2
y,

|1,±〉 =
1√
2
[|1, 1〉 | ↑〉 e

−3iϕ
2 e−

3iπ
4 ± |1,−1〉 | ↓〉 e

3iϕ
2 e

3iπ
4 ],

|2,±〉 =
1√
2
[±|1, 1〉 | ↓〉 e

−iϕ
2 e−

iπ
4 + |1,−1〉 | ↑〉 e

iϕ
2 e

iπ
4 ],

|3,±〉 =
1√
2
[±|1, 0〉 | ↑〉 e

−iϕ
2 e−

iπ
4 + |1, 0〉 | ↓〉 e

iϕ
2 e

iπ
4 ],

|1, 1〉 = − 1√
2
|X + iY 〉,

|1, 0〉 = |Z〉,
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|1,−1〉 =
1√
2
|X − iY 〉.

The valence subband structure Eσvα (kt) can be deter-
mined by solving the system of equations

3∑
j=1

(Hσv
ij (kz=−i ∂

∂z
)+δijEσvα (kt))φ(j)σv

α (z, kt)=0, (18)

where i = 1, 2, 3. In the quasicubic approximation, the
parameters of effective mass and deformation potential
are connected by the relation [19, 21]:

4A5 −
√

2A6 = A3, 2A4 = −A3 = A1 −A2,

4D5 −
√

2D6 = D3, 2D4 = −D3 = D1 −D2,

Δ2 = Δ3. (19)

In calculations, we take the effective-mass parameters
for the valence band [29] as A1 = −6.56, A2 = −0.91,
A3 = 5.65, A4 = −2.83, A5 = −3.13, A6 = −4.86,
the parameters for deformation potential [30] as D1 =
700 meV, D2 = 2100 meV, D3 = 1400 meV, D4 =
−700 meV, and the energy parameters at 300 K [15, 25]
as Eg = 3507 meV,Δ1 = Δcr = 16 meV, Δ2 = Δ3 =
Δso/3 = 4 meV. Solving the Poisson equation

d2Φ
dz2

=
4π
κ
ρ(z) (20)

with the condition
∫∞
−∞ ρ(z)dz = 0 and with the selected

wave functions, we find the Hartree potential eΦ(z):

eΦ =
2e2

κ

∑
α,n,k,i

gα

∫
ktdkt〈 vi, σv|V ikt [α, n]V ikt [α, k]|σv, vi〉 fα,p(kt)

{
w( cosπ Z(k+n)

π2(k+n)2 − cosπ Z(n−k)
π2(n−k)2 )

w(Z
2

2 + 1
4

cos 2π nZ
π2n2 )

−

−2e2

κ
g1

∫
ktdkt〈S|〈σc|C2|σc〉|S〉 f1n(kt)


1−cos (−k0w+2δ0)

2 eβ w e
2(κ0−β)(z+w2 )

4(κ0−β)2

e−2β z

8β2 − 2 cos 2(k0z+δ0)e
−2β z

(4β2+4k2
0)2

(β2 − k2
0) + sin 2(k0z+δ0)e

−2β z

4(β2+k2
0)2

k0β
1−cos (k0w+2δ0)

2 e−β w e
−2(κ0+β)(z−w2 )

4(κ0+β)2

, (21)

where Z = z
w + 1

2 , gα and g1 correspond to the de-
generation of the α hole band and the first quantized
conduction band, respectively, e is the value of electron
charge, κ is the permittivity of the host material, and
fα,p(kt), f1n(kt) are the Fermi–Dirac distributions for
holes and electrons. Here we assume the charge concen-
trations 9× 1012 cm−2, and 7× 1012 cm−2.

Solving (12) for holes in the infinitely deep quantum
well and finding the minimum of functional (8) for elec-
trons in a quantum well with barriers of finite height,
we can find the energy and the wave functions of elec-
trons and holes with regard for the space distribution of
electron and hole charge densities in the quantum well
with given concentrations in a piezoelectric field. The
screening field is determined by iterating Eqs. (8), (12),
and (21) until the convergence of bandstructure calcula-
tions is reached. We use the space carrier distribution of
carriers in the lowest order for the envelopes of the wave
functions of electrons and holes.

Consider the matrix elements of interband transitions:

Mjσ→ j′σ′(k) =
∫
d3rUj′σ′ kep̂Ujσ k. (22)

The wave functions of the valence band transform ac-
cording to the the representation Γ1+Γ5, while the wave
function of the conduction band transforms according to
the representation Γ1. In order to find the representa-
tion for Mjσ→ j′σ′(k), let us consider the direct product
Γ1 × (Γ1 + Γ5). The symmetry elements of the point
group C6v are as follows:

g = E,C2, 2C3, 2C6, 3σv, 3σ′v, (23)

where Cn is the axis of the n-th order, 3σv and 3σ′v are
6 planes of reflection which pass through the sixth-order
axis. For these elements, we find the representation Γ1+
Γ5:

χ(E) = 3, χ(C2) = −1, χ(2C3) = 0,

χ(2C6) = 2, χ(3σv) = 1, χ(3σ′v) = 1.
(24)
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The squares of irreducible representation elements are

g2 = E,E,C3, C3, E,E. (25)

We need to find

χ2
ψ(E) = 9, χ2

ψ(C2) = 1, χ2
ψ(2C3) = 0,

χ2
ψ(2C6) = 4, χ2

ψ(3σv) = 1, χ2
ψ(3σ′v) = 1,

(26)

whereas

χψ(E2) = 3, χψ(C2
2 ) = 3, χψ(2C2

3 ) = 0,

χψ(2C2
6 ) = 0, χψ(3σ2

v) = 3, χψ(3σ′2v ) = 3.
(27)

The symmetric representation can be found in the form

1
2 (χ2

ψ(g) + χψ(g2)) :
1
2 (χ2

ψ(E) + χψ(E2)) = 6,
1
2 (χ2

ψ(C2) + χψ(C2
2 )) = 2,

1
2 (χ2

ψ(2C3) + χψ(2C2
3 )) = 0,

1
2 (χ2

ψ(2C6) + χψ(2C2
6 )) = 2,

1
2 (χ2

ψ(3σv) + χψ(3σ2
v)) = 2,

1
2 (χ2

ψ(3σ′v) + χψ(3σ′2v )) = 2.

(28)

The antisymmetric representations are

1
2 (χ2

ψ(g)− χψ(g2)) :
1
2 (χ2

ψ(E)− χψ(E2)) = 3,
1
2 (χ2

ψ(C2)− χψ(C2
2 )) = −1,

1
2 (χ2

ψ(2C3)− χψ(2C2
3 )) = 0,

1
2 (χ2

ψ(2C6)− χψ(2C2
6 )) = 2,

1
2 (χ2

ψ(3σv)− χψ(3σ2
v)) = −1,

1
2 (χ2

ψ(3σ′v)− χψ(3σ′2v )) = −1.

(29)

The symmetric representation can be decomposed into
the irreducible representations 2A1 + E1 + E2, whereas
the antisymmetric one into A2 +E1. Thus, the würtzite
Hamiltonian H(ε,k) must include the even functions
(with respect to the time inversion), which are trans-
formed according to 2A1 +E1 +E2, and odd functions,
which are transformed according to A2 + E1 [19].

The vector representation can be written as

χv(E) = 3, χv(C2) = −1, χv(2C3) = 0,

χv(2C6) = 2, χv(3σv) = 1, χv(3σ′v) = 1,
(30)

and can be decomposed into the irreducible representa-
tions A1 + E1. The representation, according to which

the interband operator is transformed, can be decom-
posed into

Γ1 × (Γ1 + Γ5) = A1 + E1. (31)

Thus, the direct product of representations
(31) reflects the existence of nonzero matrix
elements of the electric dipole moment of in-
terband transitions, because the vector repre-
sentation can be formed from these representa-
tions.

Allowed matrix elements of the electric dipole moment
〈S|〈σc|ep̂|vi, σv〉 are found in the form

〈S|〈 ↑ |ep̂|v1,±〉 = − 1
2P⊥e

iϕe−i
3π
4 sin θ,

〈S|〈 ↑ |ep̂|v2,±〉 = 1
2P⊥e

−iϕei
π
4 sin θ,

〈S|〈 ↑ |ep̂|v3,±〉 = ± 1√
2
Pze
−iπ4 cos θ,

〈S|〈 ↓ |ep̂|v1,±〉 = ± 1
2P⊥e

−iϕei
3π
4 sin θ,

〈S|〈 ↓ |ep̂|v2,±〉 = ∓ 1
2P⊥e

iϕe−i
π
4 sin θ,

〈S|〈 ↓ |ep̂|v3,±〉 = 1√
2
Pze

iπ4 cos θ.

(32)

Due to the symmetry properties of the Bloch functions,
the only nonzero matrix elements between the basis func-
tions are [21, 23]

〈S|p̂z|1, 0〉 = Pz,

〈S|p̂+|1,−1〉 = −〈S|p̂−|1, 1〉 =
√

2P⊥,
(33)

where p̂± = p̂x ± i p̂y. Two constants of the matrix el-
ements of the moment are as follows: P⊥ ≡ 〈S|p̂x|X〉
and Pz ≡ 〈S|p̂z|Z〉. Due to the cylindrical symme-
try, the matrix element depends only on the difference
ϕ = ϕE − ϕk between the plane-projected angles of the
vectors e‖E and k. To simplify calculations, we assume
ϕk = 0 and denote the spherical angles of the vector e
by ϕ and θ [21]. We consider the case of a hole wave
vector parallel to the c axis. In this situation, ϕ = 0 in
our calculations, and the vector e in the spherical coor-
dinates takes the form e = (sin θ cosϕ, sin θ sinϕ, cos θ),
whereas ep̂ = 1

2 sin θ(eiϕp̂− + e−iϕp̂+) + p̂z cos θ. It is
known [21] that the values of constants |Pz,⊥|2 can be
found from the kp theory:

m0

m
(c)
z,x

= 1 +
2
m0

Σj 6=c
|〈c|p̂z,x|j〉|2

E0
c − E0

j

. (34)

From the value of experimentally measured conduction-
band effective mass m(c)

z,⊥ = 0.19m0 and Eg = 3.5 eV, we

obtain 2|Pz,⊥|2
m0

∼ 15 eV.
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Fig. 1. Calculated square of the wave functions of a heavy hole (1)
and a light hole (2) at the transverse wave vector kt = 8×106cm−1

and an electron (3) (A); the charge density distribution on the
quantum well 3.9 nm in width (B) at the charge concentration
9× 1012cm−2

In Fig. 3, we show the k-dependence of the matrix
elements for the quantum well. We see that the matrix
elements have the strict x (or y) light polarization for the
transitions from the heavy hole band to the conduction
band, while for the z light polarization, these transitions
are forbidden [32]. That is why the light gain spectra
presented in Figs. 4 and 5 reflect only the gain of TE
polarized light for two widths of the quantum well. Such
a behavior agrees with the results of calculations of the
moment matrix elements for a würtzite GaN quantum
well, since the valence band top originates from Γ9, Γ7,
and Γ7 irreducible representations. The results which are
presented in Figs. 3–5, testify to the optical polarization
anisotropy of the matrix elements of the electric dipole

Fig. 2. Effective screening electric field distribution (C); the quan-
tum well potential (1 ) and screening potential (2 ) on the quantum
well 3.9 nm in width (D) at the charge concentration 9×1012 cm−2

moment for interband transitions in GaN/Al0.3Ga0.7N
quantum well structures.

The optical gain of a material [15,31] can be calculated
from the Fermi golden rule

α0 =
π e2

c
√
κm0 wω

×

×
∑

σc=↑,↓

∑
σv=+,−

∑
m,α

∫
kt dkt

∫
dφ

2π
|êMσc σv

mα (kt)|2×

×
(f cm(kt)− fvσvα(kt))(~ γ

π )
(Ecvσv,mα(kt)− ~ω)2 + (~ γ)2

, (35)

where e is the magnitude of electron charge, m0 is the
electron rest mass in the free space, c is the velocity of

18 ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 1



OPTICAL POLARIZATION ANISOTROPY, INTRINSIC STARK EFFECT

Fig. 3. Moment matrix elements for the x - (or y-) polarization (A)
and the z-polarization (B): (1a) quantum well 3.9 nm in width at
the concentration n = p = 9 × 1012 cm−2; (2a) quantum well of
width 3.9 nm at the concentration n = p = 7 × 1012 cm−2; (1b)
quantum well 2.6 nm in width at the concentration n = p = 9 ×
1012 cm−2; (2b) quantum well 2.6 nm in width at the concentration
n = p = 7× 1012 cm−2

light in the free space, κ = 8.27 is the permittivity of
the host material, f cm and fvσvα are the Fermi–Dirac dis-
tributions for electrons in the conduction and valence
bands, respectively, e is a unit vector of the vector po-
tential of the electromagnetic field, Ecvσv,mα(kt) is the in-
terband energy of the conduction and valence bands, ~ω
is the optical energy, and ~ γ is a half-linewidth of the
Lorentzian function, which is equal 6.56 meV. We con-
sider the electromagnetic wave which propagates in the
plane of the quantum well. The modal gain, which deter-
mines the threshold condition of a laser, is proportional
to the material gain multiplied by the optical confine-
ment factor Γ and by the number a of quantum wells in

Fig. 4. Calculated Hartree gain spectrum: (1a) quantum well
3.9 nm in width at the concentration n = p = 9×1012 cm−2; (2a)
quantum well 3.9 nm in width at the concentration n = p = 7 ×
1012cm−2; (1b) quantum well 2.6 nm in width at the concentration
n = p = 9× 1012 cm−2; (2b) quantum well 2.6 nm in width at the
concentration n = p = 7× 1012 cm−2

Fig. 5. Calculated Hartree–Fock gain spectrum for the quantum
well 2.6 nm in width and at concentrations: n = p = 7×1012 cm−2

(1) and n = p = 9× 1012 cm−2 (2)

the case of multiple quantum wells: α = α0 Γ a. We take
Γ equal to 0.01, and a is taken to be 1 in the calcula-
tions.

Although the carriers within each band are in a
strongly nonequilibrium state, the interband relaxation
times are much larger than intraband relaxation times.
Therefore, the Fermi–Dirac statistics can be used in the
calculations.

Using the expressions for the basis functions, we ob-
tain two scalar polarizations for the matrix elements of
the electric dipole moment. For the TE-polarization
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(ê = x̂ or ŷ⊥ c axis), i.e., for the light polarization vector
lying in the quantum well plane, we have

|(Mx)σ1α(kt)|2 =

= |〈S|px|X〉|2
4 {〈Ψ1(β)|

∑
n V

1
kt

[n, α]χn〉2+
+〈Ψ1(β)|

∑
n V

2
kt

[n, α]χn〉2},
forσ = +,

= |〈S|px|X〉|2
4 {〈Ψ1(β)|

∑
n V

4
kt

[n, α]χn〉2+
+〈Ψ1(β)|

∑
n V

5
kt

[n, α]χn〉2},
forσ = −.

(36)

For the TM-polarization (ê = ẑ‖c axis), i.e., for the light
polarization vector, which is perpendicular to the quan-
tum well plane, we have

|(Mz)σ1α(kt)|2 =

= |〈S|pz|Z〉|2
2 {〈Ψ1(β)|

∑
n V

3
kt

[n, α]χn〉2},
forσ = +,

= |〈S|pz|Z〉|2
2 {〈Ψ1(β)|

∑
n V

6
kt

[n, α]χn〉2},
forσ = −.

(37)

3. Results and Their Discussion

To describe the interplay of the bandstructure and the
polarization effects in the Hartree problem, we consider
the 2.6-nm and 3.9-nm GaN/Al0.3Ga0.7N quantum well
structures. In the quantum well 2.6 nm in width at a
concentration of 9×1012 cm−2, a optical gain maximum
is equal to 23673.7 cm−1 at the wavelength λ = 334.5
nm; while, at a concentration of 7× 1012 cm−2, the op-
tical gain maximum is equal to 14245.9 cm−1. Such a
gain is observed at the wavelength λ = 336 nm. In
the quantum well 3.9 nm in width at a concentration of
9 × 1012 cm−2, the optical gain maximum is equal to
5752.7cm−1 at the wavelength λ = 348.3 nm; while, at
a concentration of 7× 1012 cm−2, the optical gain maxi-
mum is equal to 2840.8 cm−1. Such a gain is calculated
at the wavelength λ = 352.1 nm. Thus, the optical gain
in the GaN/Al0.3Ga0.7N quantum well develops in the
ultraviolet spectral region, as shown in Fig. 4.

Numerically solving the Schrödinger equations (8) and
(12) for electrons and holes and the Poisson equation
(20), the steady state solutions allow us to construct
the squares of the wave functions of a heavy hole (1 ),
a light hole (2 ) (e.g., at the transverse wave vector
kt = 8× 106 cm−1), and an electron (3 ) (A); the charge
density distribution on the quantum well width (B); the

effective screening electric field distribution (C); and the
quantum well potential and the screening potential on
the quantum well width (D). The results of calculations
for the concentration 9× 1012 cm−2 for a 3.9-nm quan-
tum well are shown in Figs. 1 and 2, and the Hartree
gain spectra are presented in Fig. 4. For the narrow
quantum well, we see that, at a density of 7×1012cm−2,
the light gain is gradually developed, as the carrier den-
sity increases. At high densities (i.e., when the density is
equal to 9×1012 cm−2), the optical gain develops nearly
in the spectral region of the original optical gain at a
plasma density of 7× 1012 cm−2.

The behavior of the light gain coefficient for two quan-
tum well widths and at given concentrations can be un-
derstood from Figs. 1(A,B) and 2(C,D). From Fig. 1(A),
we see that the overlap between the quantum confined
electron and hole wave functions is related to the charge
density distribution over the quantum well width, which
is shown in Fig. 1(B). We can conclude that, for the wide
quantum well, the overlapping integral is smaller than
that for a narrow quantum well and reduces stronger
with decrease in the carrier density.

The effective screening electric field distribution
for wide-bandgap GaN/AlGaN quantum well systems,
which is presented in Fig. 2(C), is similar to that of the
electric field in a condenser.

As shown in Fig. 4, the situation is quite different for
the 3.9-nm GaN/Al0.3Ga0.7N quantum well structure.
Because of a weaker quantum confinement in this rela-
tively wide quantum well, the piezoelectric field is able
to significantly reduce the overlap between the quantum
confined electron and hole wave functions, which can
be seen from the comparison of Figs. 1 and 2. As a
result the interband dipole matrix element or the oscil-
lator strength is substantially smaller than that in the
case for the narrow 2.6-nm quantum well. This intrinsic
quantum confined Stark effect can also cause a signifi-
cant redshift of the gain maximum at a plasma density
of 7× 1012 cm−2 as compare with the flat-bottom band
situation. As the plasma density increases, the screening
of the QCSE increases the overlap of electron-hole wave
functions and, hence, the exciton oscillator strength. Si-
multaneously, the weakened piezoelectric field, which in-
duced earlier the redshift, leads to the net of blueshifts
in the gain maximum and the absorption edge with in-
crease in the plasma density, as shown in Fig. 4.

To calculate the concentration dependence of many-
body Coulomb effects in the absorption spectrum of a
GaN quantum well, we apply the method developed in
[14, 33, 34]. Numerically solving the microscopic polar-
ization equation, we see that, with increase in the plasma
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density, the optical gain (i.e., negative absorption) de-
velops in the spectral region of the original exciton reso-
nance. With increase in the free-carrier density, the ion-
ization continuum shifts rapidly to the long-wavelength
side, whereas the 1s-exciton absorption line stays al-
most constant, due to a high degree of compensation
between the weakening of the electron-hole binding en-
ergy and the band-gap reduction, like that earlier found
for GaAs [35]. At high electron-hole concentrations, the
electric dipole moment renormalization effects give rise
to a large optical gain which is shown in Figs. 5 and
6. The maximum of the Hartree–Fock gain spectrum
equal to 29991.2 cm−1 is observed at the wavelength
λ = 339.1 nm at a concentration of 9 × 1012 cm−2.
From Fig. 6, we see that the Hartree–Fock spectrum
is shifted to the long-wavelength side relative to the
Hartree gain spectrum. Moreover, a large Sommelfeld or
Coulomb enhancement is present in the quantum well.
It is caused by an increase of the oscillator strength due
to the electron-hole Coulomb attraction.

The exchange Hartree–Fock energy spectrum renor-
malization is accounted in the equation of motion for
the microscopic dipole of the electron-hole pair. For high
concentrations, this value is significant. It is somewhat
larger for electrons and less for holes. Totally, this value
is reflected in the Hartree–Fock gain shifting in compar-
ison with the Hartree spectrum, as shown in Fig. 6. It
should be noted that the gain spectrum involves not only
Hartree–Fock correlations, but correlations of higher or-
ders in the expansion in the Coulomb potential energy.
This is achieved by the summation of the series in the
Coulomb energy in the microscopic polarization equation
in all orders of perturbation theory. In more details, the
microscopic polarization equation for the dipole of an
electron-hole pair for the würtzite quantum well will be
considered in our next paper.

4. Conclusions

In summary, the self-consistant calculations of the
Schrödinger equations and the Poisson equation of wide
bandgap GaN/AlGaN quantum well systems show the
interesting dependences of the matrix elements for dipole
optical interband transitions and the light gain spectrum
on the quantum well width and the charge density. A
blueshift with increase in the plasma density in the gain
spectrum in relatively wide wells occurs as a consequence
of the screening of the piezoelectric field induced by the
quantum confined Stark effect, whereas the structures
with narrow well widths exhibit the usual dependence of
the development of the light gain maximum almost with-

Fig. 6. Calculated Hartree–Fock gain spectrum for the quantum
well 2.6 nm in width at the concentration n = p = 9× 1012 cm−2

(1) and the Hartree spectrum at the concentration n = p = 9 ×
1012 cm−2 (2)

out shifting the spectral region. It is found that the ma-
trix elements of optical transitions from the heavy hole
band have the strict TE light polarization like that of
the light gain spectrum. With regard for the Coulomb
interactioin, a red shift of the Hartree–Fock light gain
spectrum relative to the Hartree gain spectrum and a
large Sommerfeld enhancement for a quantum well are
found.

The author is grateful to Prof. V.I. Sheka and Prof.
V.A. Kochelap for numerous discussions.
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ОПТИЧНА ПОЛЯРИЗАЦIЙНА АНIЗОТРОПIЯ,
ВНУТРIШНIЙ ЕФЕКТ ШТАРКА КВАНТОВОГО
КОНФАЙНМЕНТУ I ВПЛИВ КУЛОНIВСЬКИХ
ЕФЕКТIВ НА ЛАЗЕРНI ХАРАКТЕРИСТИКИ
[0001]-ОРIЄНТОВАНИХ GaN/Al0,3Ga0,7N
КВАНТОВИХ ЯМ

Л.O. Локоть

Р е з ю м е

У цiй статтi представлено теоретичне дослiдження просторово
роздiлених електронних i дiркових розподiлiв, яке вiдобража-
ється у самоузгодженому розв’язаннi рiвнянь Шредiнгера для
електронiв та дiрок i рiвняння Пуассона. Результати проiлюст-
ровано для GaN/Al0,3Ga0,7N квантової ями. Спектр оптично-
го пiдсилення в [0001]-орiєнтованої GaN/Al0,3Ga0,7N кванто-
вої ями обчислено в ультрафiолетовiй областi. Знайдено, що
як матричнi елементи оптичних переходiв з важкої дiркової
пiдзони в зону провiдностi, так i спектр оптичного пiдсилення
мають строго x (або y) поляризацiю свiтла. Показано вплив
конфайнменту хвильових функцiй на оптичне пiдсилення, яке
неявно залежить вiд вбудованого електричного поля, що обчи-
слене i дорiвнює 2,3 MВ/cм. Якщо структури з вузькою шири-
ною ями проявляють звичайну залежнiсть розвитку максиму-
му пiдсилення свiтла майже без змiщення спектральної обла-
стi, то значного голубого змiщення максимуму пiдсилення зi
зростанням густини плазми набувають структури зi значною
шириною квантової ями. Це голубе змiщення вiдносять до взає-
модiї мiж екрануючим п’єзоелектричним полем, створеним де-
формацiєю i зонною структурою. Велике зоммерфельдiвське
або кулонiвське пiдсилення присутнє у квантовiй ямi.
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