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For cholesteric liquid crystal systems containing photosensitive
nematic ZhK-440 and a mixture of cholesterol derivatives, the
changes in helical twisting induced by UV radiation are studied.
The UV-induced shift of the selective reflection maximum Amax is
shown to depend on the concentration of the nematic component.
For low concentrations of ZhK-440, Amax increases, which corre-
lates with the corresponding temperature-induced changes. For
higher azoxy nematic concentrations, Amax decreases, regardless
of the temperature behavior of the system. To explain the exper-
imental data, a theoretical description is proposed on the basis
of the development of molecular models of helical twisting. Good
agreement was obtained between calculated and measured values
of the UV-induced shift as a function of the azoxy nematic con-
centration, with two extrema and an inversion point. The extra
twisting arises from the cholesteric mesophase-induced orientation
of short molecular axes of cis-isomers formed as a result of irradi-
ation.

1. Introduction

Tunable dye lasers based on cholesteric liquid crystals,
first reported in [1], have attracted a renewed interest
from the standpoint of both liquid crystal physics and
laser optics [2, 3]. Since the lasing wavelength of such
“distributed feedback” lasers essentially depends on the
location of a selective reflection band of the cholesteric
matrix, a convenient way of tuning can be based on
changing the helical pitch (i.e., selective reflection max-
imum) by UV irradiation [4-8].

The phototuning effect is based on the presence of a
photosensitive conformationally active component in the
cholesteric system. Among the most promising are azo-
and azoxy compounds, which are characterized by the
trans-cis isomerization under UV irradiation. Especially
promising is the use of azo- or azoxybenzene-based ne-
matics. Under normal conditions, these substances are
in the trans-state; under UV irradiation within the ab-
sorption band (~ 300-370 nm), a cis-isomer is formed in
concentrations up to ~ 50% and more [9]. The reverse
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transition (cis-trans) occurs under irradiation at longer
wavelengths (~ 400—450 nm) or spontaneously after sev-
eral days of dark storage. An accompanying effect of
UV irradiation is a strong suppression of the nematic-
isotropic transition temperature, which is evidently due
to a very small anisometry of the emergent cis-form.

The literature data on a variation of the helical twist-
ing in such systems are contradictory. Both increase
and decrease of the helical pitch p (and, correspond-
ingly, of the maximum selective reflection wavelength
Amax = mp) were reported. As a rule, no data on the
helical pitch temperature dependence were given, and
shifts of Apax were reported only for room temperature.
However, it was noted in [10, 11] that the typical behav-
ior in most systems was the decreasing helical pitch (i.e.,
an enhancement of the helical twisting), regardless of a
positive (dp/dT > 0) or negative (dp/dT < 0) variation
of the helical pitch with temperature.

It could be expected from general considerations that
the accumulation of the cis-isomer should lead to conse-
quences similar to those caused by introduction of a non-
mesogenic dopant, i.e., the worsening of the orientational
order and an increase in the effective temperature of the
system [12, 13]. Thus, the effects of temperature and UV
irradiation on the helical pitch in each specific system
should be similar. It should be noted that an anoma-
lous decrease in the helical pitch was observed both for
steroid cholesterics (based on cholesterol esters) and for
induced cholesterics (chiral nematics). This does not al-
low explaining this effect as a result of the “extra helical
twisting” characteristic for nematic-cholesteric mixtures
[12]. Moreover, it was shown that photoinduced changes
in the helical pitch could be several times higher than
temperature changes over all the temperature range [14].
The account for changes in the average refractivity n
from the Apa.x = np relation (as proposed in [14]) is
also of no use, since the values of refractivity index n
for trans- and cis-forms of azoxy nematics differ by less
than 1% [7].
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Fig. 1. Selective reflection maximum Amax(7T") as a function of the
temperature for nematic-cholesteric systems M23 + azoxy nematic
ZhK-440 before (black symbols) and after (white symbols) UV
irradiation. Content of ZhK-440: 1 — 0% (cholesteric mixture
M23), 2 - 10%, 38 — 25%, 4 — 35%, 5 — 50%, 6 — 65%

Summing up, one can say that the most important
characteristic feature of cholesteric systems with photo-
sensitive azo- and azoxy nematics is an anomalous de-
crease in the helical pitch (i.e., additional helical twist-
ing) under UV irradiation as a result of the formation
of cis-isomers. This behavior has no clear explanation
within the available theories of cholesteric mesophase.

In our work, we studied the helical pitch in such sys-
tems as a function of the temperature and the concen-
tration of the photoactive azoxy nematic and its changes
under UV irradiation. For the theoretical description
of these systems, we used our approach previously de-
veloped in [12, 13] for cholesteric systems with non-
mesogenic dopants.

2. Materials and Methods

Our basic cholesteric liquid crystal (CLC) system com-
prised a cholesteric mixture M23 (18% cholesteryl chlo-
ride + 82% cholesteryl oleyl carbonate) and a photoac-
tive azoxy nematic ZhK-440 (NIOPIK, Russia). A nec-
essary requirement was the non-overlapping of the elec-
tronic absorption and selective reflection bands. Selec-

236

tive reflection spectra of a CLC planar texture were mea-
sured using a Hitachi 330 spectrophotometer equipped
with a thermostabilized cell. The concentration of the
nematic component was varied from 0 to 65%, which en-
sured the selective reflection peaks in the visible range.

UV irradiation was carried out using a DRT-240 Hg
lamp emitter in a geometry with the known distribution
of spectral illuminance [15]. A typical UV radiation dose
was 1.9 J/cm?, which, according to [9], resulted in a
photostationary state with about 50% of azoxy molecules
in cis-form.

3. Results and Discussion

The temperature dependences of the selective reflection
maximum Apax were obtained before and after irradi-
ation for nematic-cholesteric mixtures (M23+ZhK-440)
with various contents of the photoactive nematic com-
ponent. The typical results are presented in Fig. 1.
The initial cholesteric matrix M23 is characterized by a
small positive dAyax/dT (2.8 nm/K); upon the addition
of ZhK-440, this parameter changes non-monotonously.
UV irradiation results in changes both in Ay.x and the
slope of its temperature dependence. Assuming that a
variation of n (both with temperature and upon irradi-
ation) is negligible, we used the Ap.x = np relation, by
taking n = 1.5, which is close to the more exact values
given in [7]. For the theory of helical twisting, the value
that is of physical meaning is the inverse pitch p~!, also
called “helical twisting”; so, it is this value that we use
in our discussion.

Let us consider the changes in the helical pitch caused
by the trans-cis isomerization of ZhK-440 under irradi-
ation. At low concentrations of the nematic, the forma-
tion of cis-isomers leads to a decrease in the helical twist-
ing, i.e., higher A\, .x. This correlates with the tempera-
ture behavior of the initial matrix (dp/dT > 0). When
the nematic concentration is further increased (above the
inversion point at ~ 31% of ZhK-440), the helical twist-
ing is increased under irradiation, i.e., A\pax decreases.
This contradicts the character of dp/dT.

The formation of a cis-isomer with low anisometry
under UV irradiation can be considered as the introduc-
tion of a non-mesogenic dopant (NMD) into the system.
Then we can apply the approach previously used in [12,
13] for the description of the effects of NMD on the he-
lical twisting in cholesterics.
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The inverse pitch variation Ap~! due to the introduc-
tion of NMD is described as

_ opyt
Aplz(fyT g% —p01+kp)w—
Ipy * w?
- (7% + k) - )

where T is the temperature, w is the mass fraction of
NMD in the cholesteric system, pq is the helical pitch of
the initial cholesteric matrix, &, is a coefficient describ-
ing the extra helical twisting due to the orientation of the
NMD molecule by the steroid ring of cholesterol deriva-
tives, and + is a coeflicient of NMD non-mesogeneity: it
is equal to zero for mesogenic substances and equal to 1
for NMD with zero anisometry.

If, in the first approximation, we neglect the effects
of the nematogenic trans-component depletion on the
helical pitch, we can apply (1) to our case, modifying it
in the following manner:

apgl Weis —1
i 1— _ -
aT 2 Poi T

+pbikcis(1 - wcis)wcis:| . (2)

Here, w,;s is the mass fraction of the cis-isomer formed,
P is the helical pitch of the mixture before irradiation,
and k.;s is a coefficient characterizing the effective helical
twisting power of the cis-isomer formed in the system.

One can say that the phenomenological parameter k&,
from (1), characterizing a contribution from the interac-
tion of molecules of the nematic and cholesteric compo-
nents, is formally presented in the form k, = pgil Keis Weis-

Calculated values of the inverse pitch variation Ap~!
under UV radiation are shown in Fig. 2 together with
experimental data. In Eq. (2), we took v = 1, since the
cis-isomer formed is of practically zero anisometry. Since
all measurements were carried out for a photostationary
state, the value of w.;s was taken as one-half of the mass
fraction of ZhK-440 before irradiation, i.e., wes = w/2
[9]. By varying the phenomenological parameter ke;s, we
determined the value k.;s = 8.15 that ensured the best
fit of experimental and calculated data.

The first term in the square brackets in (2) describes
a decrease in the helical twisting of the system (with
dp=1/dT < 0) under UV irradiation due to the lower-
ing of the orientational order as a result of the forma-
tion of the non-anisometric cis-isomer. The second term
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Fig. 2. Changes in the helical twisting induced by UV irradiation in
the nematic-cholesteric system M23 + ZhK-440: 1 — experimental
data obtained; 2 — values calculated according to Eq. (2)

describes a decrease in p~! caused by the lowering of

the concentration of the initial nematic-cholesteric mix-
ture (with pitch pp;) because of the appearance of a
new component, the formally non-chiral cis-isomer. The
third term describes the anomalous increase in the he-
lical twisting with increasing wg;s. Thus, the formed
non-mesogenic non-chiral cis-isomer acquires its effec-
tive twisting power (characterized by the parameter k.;s)
in the CLC chiral field. The sense of this twisting power,
i.e., the predominance of the “conditionally left-handed”
or “conditionally right-handed” form (orientation) of the
cis-isomer molecule, is determined by the sign of the
cholesteric helix that has been already present in the sys-
tem [16]. A similar phenomenon was described in [17],
where the enhancement of the helical twisting of a chi-
ral nematic phase was observed under the introduction
of non-chiral banana-shaped molecules. A more detailed
analysis of the mechanism of such extra contribution to
the helical twisting can be given using notions of “der-
acemization” of molecules of such type [18], developed
within the concept of pseudo-scalar liquid crystals [19].
It is worth to note that the helical pitch change under
UV radiation depends on two main factors: the value of
dp/dT of the cholesteric matrix before irradiation and
the concentration of the formed cis-isomer w.;s. These
parameters determine the presence of two extrema on
the “UV-induced helical pitch change vs. the concentra-
tion of azoxy nematic” curve, as well as the inversion
point of the Ap~! sign. At the same time, the value of
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v does not essentially affect the character of Ap~!(w)
dependence.
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EOEKTHN YO-BUITPOMIHIOBAHHSA HA CIIIPAJIBHE
SAKPYYYBAHHA V XOJIECTEPUYHUX CUCTEMAX,

10 MICTATH ®OTOYYTJINBI ABOKCU-HEMATHNKIN

M.I. Cep6bina, H.O. Kacan, JI.M. Jluceuyvrui
PezwowMme

Il st XoJiecTepuIHUX PiAKOKPUCTAJIYHUX CUCTEM, IO MICTATH (PO~
TouyTiauBuii HemaTuk 2KK-440 Ta cywminr moxXiJHUX XOJI€eCTEPHHY,
OOCTIIPKEHO 3MiHH CHipaJIbHOrO 3aKpyIyBaHHS, BUKIHKaHI YP-
onpominenuaM. [lokazano, mo YP-inayKoBaHUil 3CyB MAKCUMYMY
CEJIEKTUBHOT'O BIAOUTTS Amax 3aJIE2KUTH BiJ| KOHIIEHTpAIlil HEMAaTH-
qHOro KoMnonenta. s mannx kounentparit 2KK-440, Amax 3po-
cTae, 10 KOPEJIIE 3 BiJTIOBIIHUMU TeMIIepaTypPHO-1Hy KOBAHUMU
sminamu. JIjist 6GibIIMX KOHIEHTPAIA A30KCU-HEMATHKA Amax
3HIKY€EThCsl HE3aJIe’KHO BiJ] TeMIlepaTypHO!I IOBEIiHKA CUCTEMH.
Jyist 1OSICHEHHSI €KCIEePUMEHTAJIbHUX JIAHUX 3AIIPOIIOHOBAHO Te-
OPETHUYHUI OIHUC, SKUNH I'DYHTYETHCS Ha PO3BUTKY MOJIEKYIISD-
HUX MOJIeJIel CIipajibHOroO 3akpy4dyBaHHsi. OTpuMaHo qobpe y3ro-
JPKEHHsI MiXK PO3PaxOBaHUMU Ta BUMIDSHUMU 3HadYeHHSMU Y D-
1H/IyKOBAHOT'O 3CyBY 3aJI€2KHO BiJ] KOHIIEHTPAIlIl a30KCH-HEMATUKA,
3 JIBOMa €KCTpeMyMaMu Ta TOYKO iHBepcil. [lomaTkoBe 3akpydy-
BaHHS BUHUKA€ BHACJIIJIOK Opi€HTaIlil B XOJjieCTepuYHiil Me30dasi
KOPOTKHX OCeH 4uc-130MepiB, 110 yTBOPIOIOTHCS B PE3yJIbTaTi OIIpo-
MiHEHHH.
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