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Without the weakly guiding fiber approximation, a statistical model
of light scattering by a rough surface in a planar dielectric waveg-
uide has been developed. The dependences of radiation losses on
the refractive index contrast, the waveguide core thickness, and the
correlation characteristics of a scattering surface have been stud-
ied. The difference between the scattering of TE and TM modes
has been analyzed, and the two-dimensional model was shown to
be not suitable for quantitative estimates of losses in the case of
TM modes.

1. Introduction

Light propagation in dielectric optical fibers with irreg-
ular interfaces between dielectric layers is accompanied
by radiation losses caused by light scattering at a rough
surface. This phenomenon has been known for a long
time; however, it remained beyond the scope of inter-
est of researchers working in fiber optics. This circum-
stance may probably be associated with the fact that
the strength of this scattering is proportional to the re-
fractive index contrast in the lightguide; therefore, it
is negligibly small in weakly guiding fibers. Optical
fibers of this type were the center of attention for a
long time, because the single-mode regime of light prop-
agation, which is required in the majority of applica-
tions, can be easily realized in them. An interest to
surface scattering considerably grew owing to the minia-
turization of optical elements and the creation of struc-
tures on submicronic and nanoscales. A reduction of
the characteristic dimensions of optical waveguides is
possible only provided that the difference between the
refractive indices of dielectric layers in the waveguide
structure increases adequately, which is accompanied by

an enhancement of the role of surface scattering. It
was demonstrated theoretically and experimentally that
the absolute values of such losses can be substantial, in
particular, in photonic crystal fibers [1], nanofibers [2],
and planar waveguide components of integrated optics
[3, 4].

The expediency of studying the surface scattering in
planar light-guiding structures follows from a number
of reasons. First, simple boundary conditions allow an-
alytical solutions of the corresponding electrodynamic
problems to be found, which simplifies the analysis of
the influence exerted by statistical structural defects.
On the other hand, at the fabrication of planar waveg-
uide layers, essentially different technological processes
are used, which are characterized by different physical
mechanisms of surface defect formation. This enables
the influence of the statistics of heterogeneities on the
scattering efficiency to be determined experimentally.
At last, the planar geometry of the object under study
practically excludes the influence of bends and noncon-
trollable changes in the thickness of a waveguide layer
on light scattering, which is especially characteristic of
cylindrical nano-sized fibers.

In the present work, a statistical model for light scat-
tering by the rough surface of a planar optical fiber is
developed. In so doing, we did not use the weakly guid-
ing fiber approximation. The main feature of the pro-
posed approach is the application of a nonlinear model
for the formation of equivalent stimulated currents on a
statistically non-uniform surface. This model allows the
dependences of radiation losses on the refractive index
contrast, the thickness of the optical fiber core, and the
correlation characteristics of the the scattering surface
to be analyzed in detail.



RADIATION LOSSES IN A PLANAR DIELECTRIC WAVEGUIDE

2. Radiation Losses in the Approximation of
Weakly Perturbed Interface in the Optical
Fiber

Consider a model of planar optical fiber, in which one
boundary has a stochastic relief represented by a ho-
mogeneous Gaussian field ξ(z), whose average value is
〈ξ〉 = 0, the correlation function 〈ξ∗(z1)ξ(z2)〉 = Gξ(z2−
z1) ≡ Gξ(Δz), and the mean-square deviation σξ � ρ
(Fig. 1). The field magnitude ξ(z) at a certain point z is
equal to a deviation of the interface between the media
with different refractive indices (in Fig. 1, the field ξ(z)
is reckoned from the coordinate ρ along the axis OX).

The refractive index is presented as a sum of two com-
ponents,

n2(x, z) = n2
0(x) + n2

1(x, z), (1)

where n0(x) is the refractive index for the nonperturbed
waveguide, and the second term depends on the field
ξ(z),

n2
1(x, z) =


n2
co − n2

cl, ξ(z) > x− ρ;
n2
cl − n2

co, ξ(z) < x− ρ;
0, otherwise,

(2)

where nco and ncl are the refractive indices of the fiber
core and cladding, respectively; and ρ is the half-width
of the waveguide core (Fig. 1).

The refractive index is perturbed in a thin layer near
the interface located at x = ρ. Within the layer limits,
the fields can be considered constant. The tangential
components ez(ρ) and ey(ρ) of the electric field are con-
tinuous across the interface, whereas the component ex
has a jump: ex(ρ+ 0) at x > ρ and ex(ρ− 0) at x < ρ.

In accordance with the standard procedure [5], let
us change the perturbed waveguide to a nonperturbed
one containing equivalent forced current sources. Since
σξ � ρ, the fields in the perturbed waveguide are lit-
tle different from the fields in the nonperturbed one, so
that the method of small perturbations can be applied.
Namely, we may present the electric field as

Ē0(x, z) = Ē
(0)
0 (x, z) + Ē

(1)
0 (x, z), (3)

where Ē(0)
0 (x, z) = a0ē0(x)ejβ0z is the field in the non-

perturbed waveguide, a0 the amplitude of propagating
mode, β0 the corresponding propagation constant, and

Ē
(1)
0 (x, z) =

Qmax∫
0

aITE(Q, z)ēITE(x,Q)ejβITE(Q)zdQ +

Fig. 1. Planar optical fiber with a perturbed interface
core/cladding

+

Qmax∫
0

aITM(Q, z)ēITM(x,Q)ejβITM(Q)zdQ (4)

is the total field of radiation modes. We assume that
Ē

(1)
0 (x, z) � Ē

(0)
0 (x, z). The following notations were

introduced: aITE and aITM are the amplitude factors
of radiation modes, ēITE(x,Q) and ēITM(x,Q) the elec-
tric fields of radiation modes (see Table), βITE and
βITM the radiation mode propagation constants, and
Qmax = ρkncl. The subscripts ITE and ITM correspond
to the transverse magnetic and transverse, respectively,
electric radiation modes. The expressions for magnetic
field components are similar to expressions (3) and (4).

Substituting the expressions for fields (3) and (4) in
the Maxwell equation and neglecting the terms, whose
smallness order is higher than one, we obtain an extra
term in the Maxwell equation, which can be interpreted
as a forced current,

J̄0(x, z) = −j
√
ε0
µ0
kn2

1(x, z)a0ē0(x)ejβ0z, (5)

where k is the wave vector of a wave in vacuum. Ac-
cording to work [5], the amplitude factors of radiation
modes for the current density J̄0 are

aITE(Q, z) = − 1
4NITE(Q)

z∫
0

∞∫
−∞

ē∗ITE ×

× J̄0(x, z′)e−jβITEz
′
dxdz′, (6)

where NITE(Q) is the normalizing multiplier for the ITE
mode (Table). The expression for the amplitudes aITM

of ITM modes are similar with an accuracy to the substi-
tutions NITE → NITM, eITE → eITM, and βITE → βITM.
The fields in the perturbed layer can be considered as
constant. Therefore, after the corresponding simplifica-
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ITM and ITE radiation modes of a planar optical fiber

Mode type Electric field components Parameters a, b Normalization

odd ITM ez(x) = j
kρn2(x)


Q cosQ(x

ρ
− 1) + a, x > ρ

bU cos Ux
ρ
, −ρ < x < ρ

Q cosQ(x
ρ

+ 1)− a, x < ρ

tan a =
n2

coQ

n2
cl
U

tanU Normalization condition:

ex(x) = β
kn2(x)


sinQ(x

ρ
− 1) + a, x > ρ

b sin Ux
ρ
, −ρ < x < ρ

sinQ(x
ρ

+ 1)− a, x < ρ

b = sin a
sinU

1
2

∞∫
−∞

[
ēj(Q)× h̄∗j (Q

′)
]
ẑdx =

even ITM ez(x) = − j
kρn2(x)


Q sinQ(x

ρ
− 1) + a, x > ρ

bU sin Ux
ρ
, −ρ < x < ρ

Q sinQ(x
ρ

+ 1)− a, x < ρ

tan a =
n2

clU

n2
coQ

tanU = Nj(Q)δ(Q−Q′)

ex(x) = β
kn2(x)


cosQ(x

ρ
− 1) + a, x > ρ

b cos Ux
ρ
, −ρ < x < ρ

cosQ(x
ρ

+ 1)− a, x < ρ

b = cos a
cosU

NITM = πρβ

2kn2
cl

√
ε0
µ0

odd ITE ey(x) =


sinQ(x

ρ
− 1) + a, x > ρ

b sin Ux
ρ
, −ρ < x < ρ

sinQ(x
ρ

+ 1)− a, x < ρ

tan a = Q
U

tanU , b = sin a
sinU

NITE = πρβ
2k

√
ε0
µ0

even ITE ey(x) =


cosQ(x

ρ
− 1) + a, x > ρ

b cos Ux
ρ
, −ρ < x < ρ

cosQ(x
ρ

+ 1)− a, x < ρ

tan a = U
Q

tanU , b = cos a
cosU

tions, we obtain

aITE(Q, z) =
√
ε0
µ0

jka0

4NTE(Q)

z∫
0

fITE(ξ(z))×

× exp (j(β0 − βITE(Q))z′)dz′, (7)

where the normalizing factor of the TE mode

NTE =
ρβ0

2k

√
ε0
µ0

V 2

U2

1 +W

W
,

f(ξ(z)) = e∗ITE(x0)ē0(x0)(n2
co − n2

cl)ξ(z),

V = ρk
√
n2
co − n2

cl, U2 = ρ2(k2n2
co − β2

0),

W 2 = V 2 − U2.

The power lost by the ITE mode on a length z on the
rough surface is

pITE(Q) =
NITE(Q)

2
〈
|aITE|2

〉
. (8)

Passing to the difference coordinates Δz =
z′′ − z′, Z = z′+z′′

2 and bearing in mind that

〈f∗(ξ(z′))f(ξ(z′′))〉 = Gf (Δz), we ultimately obtain

pITE(Q) =
ε0k

2a2
0zNITE(Q)

32µ0N2
TE(Q)

∞∫
−∞

GfITE(Δz)×

×ej(β0−βITE(Q))zd(Δz). (9)

A similar expression to within the substitutions NITE →
NITM, NTE → NTM, fITE → fITM, and βITE → βITM is
obtained for the power losses by ITM modes.

3. Dependence of Power Losses on the
Correlation of Surface Perturbations

According to Price’s theorem, the relation between the
correlation functions Gf and Gξ can be presented in the
form

d2Gf
dγ2
ξ

= G2
f (0)

〈
d2f∗

dξ2(z′)
d2f

dξ2(z′′)

〉
, (10)

d2Gf
dγ2
ξ

= |mcl −mco|2
σ2
ξ

2π
√

1− γ2
ξ (Δz)

, (11)

where the following notation was introduced for conve-
nience:

mcl = (n2
co − n2

cl)ē
∗
ITE(ρ+ 0)ē0(ρ+ 0);
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mco = (n2
co − n2

cl)ē
∗
ITE(ρ− 0)ē0(ρ− 0). (12)

Solving Eq. (11) with the initial conditions

Gf (γξ = 0) = |〈f〉|2 ,

Gf (γξ = 1) =
∣∣〈f〉2∣∣ , (13)

we obtain the dependence of the averaged squared abso-
lute value of the amplitude factor of ITE modes on the
perturbation field correlation,

Gf (γξ) =
σ2
ξ

4
|mcl +mco|2 γξ+

+
σ2
ξ

2π
|mcl −mco|2

(
γξ arcsin γξ +

√
1− γ2

ξ

)
. (14)

The addend in Eq. (14),

f (γξ) =
2

π − 2

(
γξ arcsin γξ +

√
1− γ2

ξ − 1
)
,

is well approximated by the square-law function γ2
ξ

(Fig. 2).
Taking this circumstance into account, we obtain

Gf (γξ) =
Gξ(Δz)

4
|mcl +mco|2 +

+
π − 2
4π

|mcl −mco|2
(
G2
ξ(Δz)
Gξ(0)

+Gξ(0)

)
. (15)

Since SITE
ξ (β) =

∞∫
−∞

Gξe
jβITEΔz, the expression for scat-

tered power looks like

pITE(Q) = A1S
ITE
ξ (β0 − βITE(Q)) +

A2

∞∫
−∞

SITE
ξ (β′)SITE

ξ

(
β0 − βITE(Q)− β′

)
dβ′, (16)

where

A1 = C |mcl +mco|2 ,

A2 = C(π − 2) |mcl −mco|2 /(πσ2
ξ ),

C = ε0k
2a2

0z
/
(128µ0NTE(Q)) .

Fig. 2. Comparison of the dependences f(γξ) and γ2
ξ on the cor-

relation coefficient γξ

A similar expression is valid for ITM modes as well,
with the corresponding change of notations.

The general radiation losses Prad(z) (z) are determined
by

Prad =

Qmax∫
0

pITE(Q)dQ+

Qmax∫
0

pITM(Q)dQ. (17)

Formula (17) is valid, provided that Prad � Ptot, i.e. if
the lengths z are short. Therefore, to calculate power
losses for arbitrary large z, the coefficient of damping
per unit length has to be introduced,

η = −10
z

lg
(

1− Prad

Ptot

)
, (18)

where Ptot is the power of an incident wave.
Experimental researches of the surface of an optical

fiber fabricated of quartz glass showed [7] that the spec-
trum of a surface relief has the Lorentzian shape, and
the corresponding correlation function is determined by
the expression

Gξ(Δz) = Gξ(0)e−
|Δz|
z0 . (19)

Note that the correlation function presented in this form
was used to calculate surface losses in photonic crystals
[1] and nanofibers [2], where a surface relief is created by
the thermodynamically equilibrium mechanism of for-
mation of frozen capillary waves.

4. Numerical Results and Discussion

Numerical calculations of light losses in a planar waveg-
uide with randomly perturbed interface were carried
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Fig. 3. Dependence of the power loss coefficient η for the TE mode
on the waveguide thickness ρ. Both quantities are normalized to
the wavelength λ

Fig. 4. Dependences of the power loss coefficient for the TM and
TE modes on the refractive index contrast at the waveguide thick-
ness ρ = 0.9ρmax, where ρmax = λ/4

√
n2
co − n2

cl is the maximal
thickness of the core, at which the single-mode regime is realized

Fig. 5. Dependence of the power loss coefficient η for the TE mode
on the interface relief correlation length z0. Both quantities are
normalized to the wavelength λ

out for the following parameters: nco = 1.58, ncl =
1.5, the correlation length z0 = λ, and the disper-
sion σ2

ξ = 0.01λ2. The calculated dependence of the
power loss coefficient on the waveguide thickness for the
TE mode is exhibited in Fig. 3. If the waveguide be-
comes narrower, the distribution of the directed-mode
field power over the waveguide cross-section changes;
namely, the power density increases near the interfaces
between the cladding and the core, i.e. in the perturbed
layer. Therefore, if ρ is small, a large part of the di-
rected mode interacts with the perturbation. On the
other hand, a decrease of the thickness diminishes the
directed-mode propagation constant β0. As a result, the
difference Δβ = β0− βITE(Q) calculated at βITE = kncl
decreases, and, consequently, the contribution of low-
frequency spectral components increases in the frame-
work of the model selected for the spectrum of relief
fluctuations.

The dependences of power loss coefficient on the re-
fractive index contrast for TE and TM modes are de-
picted in Fig. 4. A growth of losses is expectedly ob-
served at the growth of the refractive index contrast
Δn = nco − ncl for the modes of both types, because
Prad ∼ (n2

co − n2
cl)

2.
The dependences of radiation losses on the interface

perturbation correlation length are depicted in Fig. 5.
One can see that the obtained dependences have a
quasiresonance character, with the maximum value of
loss coefficient being dependent on the waveguide pa-
rameters. This fact is explained by the opposite action of
two factors, which govern the scattering efficiency. Scat-
tering is effective at frequencies Δβ. If z0 is small, the
spectral density of relief fluctuations has a low scattering
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power at all frequencies, whereas, at large z0 values, it
has a maximum at low scattering frequencies. Therefore,
in both cases, the power scattered at the frequency Δβ
is low. When z0 corresponds to the scattering frequency
Δβ, we obtain a maximum in the scattered power. In
addition, a reduction of the waveguide thickness results
in a decrease of Δβ.

At last, we note that the contribution of the second
term in expression (16), which is proportional to the
squared correlation, to the general scattering of the TM
mode is insignificant in a planar waveguide, in contrast
to a fiber waveguide [2] (Fig. 6). For the TE mode,
the second term in expression (16) equals zero, because
it is proportional to the difference mcl − mco, and the
electric field is not discontinuous at the core/cladding
interface.

We see from Fig. 4 that the power losses for the
TM mode are much lower than those for the TE one,
which does not correspond to the data obtained ear-
lier for multimode waveguides [3]. This can be ex-
plained as follows. The equivalent current (5) is codi-
rectional with the electric field strength vector of of the
TM mode, which oscillates in the xz-plane and radi-
ates a large portion of the power along the axis Oy.
This was not taken into account by our two-dimensional
model. At the same time, the equivalent current for
the TE mode oscillates just along the axis Oy, so that
its radiation was taken into consideration completely.
Hence, the proposed two-dimensional model is not suit-
able for the quantitative analysis of power losses by TM
modes.

5. Conclusions

To summarize, the conclusion can be drawn that the
method proposed for the calculation of surface losses in
optical waveguides adequately corresponds to the sta-
tistical character of the problem. The key feature is
its independence of the refractive index contrast in the
waveguide, which allows one to analyze strongly directed
waveguide systems. Moreover, the account of nonlinear
effects at the calculation of equivalent currents consid-
erably affects the spectral characteristics of spatial re-
lief frequencies, which are responsible for the scattering
efficiency. It is worth noting that the considered ap-
proach is essentially based on the assumption about the
normal character of the statistics of surface relief fluc-
tuations. However, the corresponding experimental re-
searches testify that this assumption is satisfied at least
for thermodynamically equilibrium fluctuations, which

Fig. 6. Dependences of the power loss coefficient for the compo-
nents of the TM mode that are proportional to the relief pertur-
bation correlation γ and its square γ2 on the waveguide thickness

arise in technological processes at the waveguide manu-
facturing.
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РАДIАЦIЙНI ВТРАТИ У ПЛАНАРНОМУ СВIТЛОВОДI
ЗI ШОРСТКОЮ МЕЖЕЮ ПОДIЛУ
ДIЕЛЕКТРИЧНИХ ШАРIВ

О.Г. Матєвосова, А.В. Коваленко, В.Н. Курашов

Р е з ю м е

Розвинуто статистичну модель розсiювання свiтла шорсткою
поверхнею планарного свiтловода, вiльну вiд наближення сла-

бонаправленого свiтловода. Дослiджено залежнiсть величини

втрат вiд висоти профiлю показника заломлення, товщини сер-

цевини свiтловода та кореляцiйних характеристик розсiюючої

поверхнi. Проаналiзовано вiдмiнностi розсiювання TE та TM

мод, показано, що двовимiрна модель непридатна для кiлькi-

сних оцiнок втрат у випадку TM мод.
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