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In the Kaluza–Klein model with toroidal extra dimensions, we
obtain the metric coefficients in the weak-field approximation for
delta-shaped matter sources. These metric coefficients are used
to calculate the formulas for the frequency shift, perihelion shift,
and deflection of light. In the leading order of approximation, the
formula for the frequency shift coincides with the well-known ex-
pression from general relativity. However, for the perihelion shift
and the light deflection, we obtain formulasDπrg/[(D−2)a(1−e2)]

and (D − 1)rg/[(D − 2)ρ], respectively, where D is a total num-
ber of spatial dimensions. These expressions demonstrate good
agreement with experimental data only in the case of the ordinary
three-dimensional (D = 3) space. This result does not depend
on the size of the extra dimensions. We also obtain the exact 5-
D soliton solution with correct non-relativistic Newtonian limit.
The energy momentum tensor for this solution has clear physical
interpretation. However, the classical tests for this metric do not
satisfy the experimental data. Therefore, the considered multidi-
mensional Kaluza–Klein models face a severe problem.

1. Introduction

The idea of the multidimensionality of our Universe de-
manded by the theories of unification of the fundamental
interactions is one of the most breathtaking ideas of the-
oretical physics. It takes its origin from the pioneering
works by Th. Kaluza and O. Klein [1]. Now, the most
self-consistent modern theories of unification such as su-
perstrings, supergravity, and M-theory are constructed
in spacetime with extra dimensions [2]. Different as-
pects of the idea of the multidimensionality are inten-
sively used in numerous recent articles. Therefore, it
is very important to suggest experiments which can re-
veal the extra dimensions. For example, one of the aims
of the Large Hadronic Collider consists in detecting the

Kaluza–Klein particles which correspond to excitations
of the internal spaces (see, e.g., [3]). On the other hand,
if we can show that the existence of extra dimensions is
contrary to observations, then these theories are prohib-
ited. This important problem is extensively discussed in
the scientific literature (see, e.g., [4–10]).

It is well known that classical gravitational tests such
as the frequency shift, perihelion shift, and deflection of
light are crucial tests of any gravitational theory. For
example, there is the significant discrepancy for Mer-
cury between the measurement value of the perihelion
shift and its calculated value using Newton’s formal-
ism [11]. This indicates that non-relativistic Newton’s
theory of gravity is not complete. This problem was
resolved with the help of general relativity which is in
good agreement with observations. A similar situation
happened with deflection of light [12]. Obviously, the
multidimensional gravitational theories should also be
in concordance with these experimental data. To check
it, the corresponding estimates were carried out in a
number of works. For example, in [8], it was investi-
gated the well-known multidimensional black hole solu-
tion [13], and the authors obtained a negative result.
However, this result was clear from the very beginning,
because the solution [13] does not have non-relativistic
Newtonian limit in the case of extra dimensions. Def-
initely, such solutions in the solar system lead to re-
sults, which are far from the experimental data. The
5-D soliton metrics [14–16] were explored in [4–7]. In
[5] and [6], the range of parameters, for which classical
gravitational tests for these metrics satisfy the observa-
tional values, was found. The black string (see, e.g.,
[17]) is a particular limiting case of such solutions with
a trivial metric coefficient for the extra dimension. How-
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ever, as we show in Section 4, this range of parameters
is quite far from the values, which possess the correct
non-relativistic Newtonian limit for a point mass grav-
itating source. Moreover, for the soliton metrics which
belongs to this range of parameters, the energy momen-
tum tensor has the form that is hard to imagine for
ordinary astrophysical objects. For example, the black
string has matter sources with non-zero tension (see, e.g.,
[18, 19]). It is very difficult to explain how astrophysical
objects, e.g. the Sun, can have such energy momentum
tensor.

In the 5-D non-factorizable brane world model, classi-
cal gravitational tests were investigated in [20]. Here, the
model contains one free parameter associated with the
bulk Weyl tensor. For appropriate values of this parame-
ter, the perihelion shift in this model does not contradict
observations. Certainly, this result is of interest, and it
is necessary to examine carefully this model to verify the
naturalness of the conditions imposed.

In our paper, we consider the classical gravitational
tests in Kaluza–Klein models with an arbitrary num-
ber of spatial dimensions D ≥ 3. We suppose that,
in the absence of gravitating masses, the metric is a
flat one. Gravitating masses (moving or at rest) per-
turb this metric, and we consider these perturbations
in the weak-field approximation. In this approxima-
tion, we obtain the asymptotic form of the metric co-
efficients. Then we admit that, first, the extra dimen-
sions are compact and have the topology of a torus and,
second, the gravitational potential far away from grav-
itating masses tends to the non-relativistic Newtonian
limit. All our assumptions are very general and natural.
In the case of a gravitating body at rest, the obtained
metric coefficients are used to calculate the frequency
shift, perihelion shift, and deflection of light. We demon-
strate that, for the frequency shift type experiment, it
is hardly possible to observe the difference between the
usual four-dimensional general relativity and multidi-
mensional Kaluza–Klein models. However, the situation
is quite different for the perihelion shift and the deflec-
tion of light. In these two cases, we get formulas which
generalize the corresponding ones in general relativity.
We show that both of these formulas for the perihelion
shift and the deflection of light depend on a total number
of spatial dimensions, and they are in good agreement
with observations only in the ordinary three-dimensional
space. It is worth noting that this result does not depend
explicitly on the size of extra dimensions. So, we cannot
avoid the problem with the classical gravitational tests
in the limit of an arbitrarily small size of extra dimen-

sions. We mention that, in work [9], the authors arrived
at the same conclusions within the different approach.

We also obtain the exact soliton solution with cor-
rect non-relativistic Newtonian limit. The metric coeffi-
cients in this limit exactly coincide with asymptotic ex-
pressions we found in the weak-field approximation for
a delta-shaped gravitating source. Moreover, the ten-
sion is absent in this model, and the energy momentum
tensor has a clear physical interpretation. However, the
classical tests for this metric do not satisfy the experi-
mental data. This is the predictable result, because the
parameters of this solution do not belong to the range
found in [5, 6] and discussed above.

Therefore, our results show that the considered multi-
dimensional Kaluza–Klein models face a severe problem.

The paper is structured as follows. In Section 2, we get
the asymptotic metric coefficients in the weak-field limit
for the delta-shaped matter gravitating source. These
metric coefficients are used to calculate the formulas of
the frequency shift, perihelion shift, and deflection of
light in Section 3. In Section 4, we obtain the exact
soliton solution with proper boundary conditions. Here,
we compare this solution with the black string solution.
The main results are summarized and discussed in the
concluding section 5.

2. Weak Gravitational Field Approximation

To start with, we consider the general form of a multi-
dimensional metric:

ds2 = gikdx
idxk = g00

(
dx0
)2

+

+2g0αdx0dxα + gαβdx
αdxβ , (2.1)

where the Latin indices i, k = 0, 1, . . . , D and the Greek
indices α, β = 1, . . . , D, andD is the total number of spa-
tial dimensions. We make the natural assumption that,
without matter sources, the spacetime is the Minkowski
one: g00 = η00 = 1, g0α = η0α = 0, gαβ = ηαβ = −δαβ .
At the same time, the extra dimensions may have the
topology of a torus. In the presence of matter, the met-
ric is not a Minkowskian one, and we will investigate it in
the weak-field limit. This means that the gravitational
field is weak, and the velocities of the test bodies are
small compared to the speed of light c. In this case, the
metric is only slightly perturbed from its flat spacetime
value:

gik ≈ ηik + hik , (2.2)

where hik are corrections of the order 1/c2. In partic-
ular, h00 ≡ 2ϕ/c2. Later, we will demonstrate that ϕ
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is the non-relativistic gravitational potential. The same
conclusion with respect to ϕ can be easily obtained from
the comparison of the non-relativistic action of a test
mass moving in a gravitational field with its relativistic
action. To get the other correction terms up to the same
order 1/c2, we should consider the multidimensional Ein-
stein equation

Rik =
2SDG̃D
c4

(
Tik −

1
D − 1

gikT

)
, (2.3)

where SD = 2πD/2/Γ(D/2) is the total solid angle (sur-
face area of the (D − 1)-dimensional sphere of unit
radius), and G̃D is the gravitational constant in the
(D = D+1)-dimensional spacetime. We are going to in-
vestigate the weak-field approximation, where the grav-
itational field is generated by N moving point masses.
Therefore, the energy-momentum tensor is

T ik =
N∑
p=1

mp

[
(−1)Dg

]−1/2 dxi

dt

dxk

dt

cdt

ds
δ(r− rp) , (2.4)

where mp is the rest mass, and rp is the radius vector of
the p-th particle, respectively. All radius vectors r and
rp are D-dimensional, e.g. r = (x1, x2, . . . , xD), where
xα are coordinates in metric (2.1). The rest mass density
is

ρ ≡
N∑
p=1

mp δ(r− rp) . (2.5)

2.1. 1/c2 correction terms

Obviously, to hold the terms up to the order 1/c2 on the
right-hand side of (2.3), the components of the energy-
momentum tensor (2.4) are approximated as

T00 ≈ ρc2, T0α ≈ 0, Tαβ ≈ 0 ⇒ T = T ii ≈ ρc2. (2.6)

Taking into account that hik are of the order of 1/c2,
the covariant components of the Riemann and Ricci ten-
sors

Riklm =
1
2

(
∂2gim
∂xk∂xl

+
∂2gkl
∂xi∂xm

− ∂2gil
∂xk∂xm

−

− ∂
2gkm

∂xi∂xl

)
+ gnp (ΓnklΓ

p
im − ΓnkmΓpil) ,

Rkm = gilRiklm (2.7)

up to the same order read

Riklm ≈
1
2

(
∂2him
∂xk∂xl

+
∂2hkl
∂xi∂xm

−

− ∂2hil
∂xk∂xm

− ∂2hkm
∂xi∂xl

)
, (2.8)

Rkm ≈
1
2
ηil
(
∂2him
∂xk∂xl

+
∂2hkl
∂xi∂xm

− ∂2hil
∂xk∂xm

−

− ∂
2hkm

∂xi∂xl

)
=

1
2

(
∂2hlm
∂xk∂xl

+
∂2hlk
∂xm∂xl

−

− ∂2hll
∂xk∂xm

− ηil ∂
2hkm

∂xi∂xl

)
, (2.9)

where hik ≡ ηimhmk. With the help of the gauge condi-
tions

∂

∂xk

(
hki −

1
2
hllδ

k
i

)
= 0 , (2.10)

formula (2.9) can be written in the form

Rkm ≈ −
1
2
ηil

∂2hkm
∂xi∂xl

. (2.11)

Taking into account that the derivatives with respect
to x0 = ct are much smaller than the derivatives with
respect to xα, relation (2.11) yields

R00 ≈ −
1
2
ηαβ

∂2h00

∂xα∂xβ
=

1
2
δαβ

∂2h00

∂xα∂xβ
=

1
2
4h00,

(2.12)

R0α ≈
1
2
4h0α, Rαβ ≈

1
2
4hαβ , (2.13)

where4 = δαβ∂2/∂xα∂xβ is the D-dimensional Laplace
operator. It is worth noting that condition (2.10) holds
up to the order 1/c2,

∂

∂xβ

(
hβα −

1
2
hllδ

β
α

)
= 0 +O(1/c3) ,

∂hβ0
∂xβ

= 0 +O(1/c3). (2.14)

Therefore, keeping the terms up to the order 1/c2 on
the left- and right-hand sides of (2.3), we obtain the
equations

4h00 =
2SDGD
c2

ρ , 4h0α = 0 ,

4hαβ =
1

D − 2
· 2SDGD

c2
ρδαβ , (2.15)

where GD = [2(D − 2)/(D − 1)] G̃D. The substitution
of h00 = 2ϕ/c2 into the above equation for h00 demon-
strates that ϕ satisfies the D-dimensional Poisson equa-
tion:

4ϕ = SDGDρ . (2.16)
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Therefore, ϕ is a non-relativistic gravitational potential.
From (2.15), we obtain

h0α = 0, hαβ =
1

D − 2
h00δαβ =

1
D − 2

2ϕ
c2
δαβ . (2.17)

It can be easily seen that, in this approximation, the
spatial coordinates of metric (2.1) are the isotropic ones,
i.e. the spatial part of the metric is conformally related
to the Euclidean one. We note also that the relation
hαβ/h00 = [1/(D− 2)]δαβ can be also obtained from the
corresponding equations in works [13, 21].

2.2. 1/c3 and 1/c4 correction terms

Now, we want to keep the terms up to the order 1/c2

in metric (2.1). Because the coordinate x0 = ct con-
tains c, this means that, in g00 and g0α, we should keep
correction terms up to the order 1/c4 and 1/c3, respec-
tively, and to leave gαβ without changes in the form
gαβ ≈ ηαβ + hαβ with hαβ from (2.17).

First, we investigate the energy-momentum tensor
(2.4), which we split into three expressions:

T 00 =
N∑
p=1

mpc
2[(−1)Dg]−1/2 cdt

ds
δ(r− rp) , (2.18)

T 0α =
N∑
p=1

mpc[(−1)Dg]−1/2vαp
cdt

ds
δ(r− rp) , (2.19)

Tαβ =
N∑
p=1

mp[(−1)Dg]−1/2vαp v
β
p

cdt

ds
δ(r− rp) , (2.20)

where vαp = dxαp /dt . From (2.20) up to order 1 (in units
of c), we obtain the covariant components

Tαβ ≈
N∑
p=1

mpvpαvpβδ(r− rp) . (2.21)

Thus, with regard for the prefactor 1/c4 on the right-
hand side of (2.3), these components can contribute
terms of the order of 1/c4 to gαβ , which are not of inter-
est for us. For T0α, relation (2.19) yields

T0α ≈ −
N∑
p=1

mpcvpαδ(r− rp) . (2.22)

Hence, these components can give terms of the order of
1/c3 into g0α. Finally, we obtain the following expression
from (2.18) for T00:

T00 = g0ig0kT
ik ≈

N∑
p=1

mpc
2δ(r− rp) +

+
N∑
p=1

mp

(
3D − 4
D − 2

ϕp +
1
2
v2
p

)
δ(r− rp) , (2.23)

where ϕp is the potential of the gravitational field at a
point with radius vector rp. At the moment, we do not
care about the fact that ϕp contains the infinite con-
tribution of the p-th particle. Thus, up to order 1, we
get

T = gikTik ≈
N∑
p=1

mpc
2δ(r− rp) +

+
N∑
p=1

mp

(
D

D − 2
ϕp −

1
2
v2
p

)
δ(r− rp) . (2.24)

With the help of (2.23) and (2.24), we obtain, up to the
order 1/c4,

2SDG̃D
c4

(
T00 −

1
D − 1

g00T

)
≈

≈ SDGD
c2

N∑
p=1

mpδ(r− rp) +

+
SDGD
c4

N∑
p=1

mp

(
3D − 4
D − 2

ϕp+

+
D

2(D − 2)
v2
p

)
δ(r− rp). (2.25)

Similarly, from (2.22) and (2.24), we get (up to the order
1/c3)

2SDG̃D
c4

(
T0α −

1
D − 1

g0αT

)
≈

≈ −D − 1
D − 2

SDGD
c3

N∑
p=1

mpvpαδ(r− rp) . (2.26)

Now, we work out the left-hand side of (2.3) up to the
appropriate orders of 1/c. As we wrote above, we are
looking for corrections of the order of 1/c4 and 1/c3 to
the metric components g00 and g0α, respectively. To this
end, it is convenient to present gik as follows:

gik ≈ ηik + hik + fik , (2.27)
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where f00 and f0α are of the order of 1/c4 and 1/c3,
respectively. Then the 00-component of the Ricci tensor
up to the order 1/c4 reads

R00 ≈
1
c2
4ϕ+

1
2
4f00 +

1
D − 2

· 2
c4
ϕ4ϕ− 2

c4
(∇ϕ)2 ,

(2.28)

where we take into account that hα0 = h0
α ≡ 0 and use

the gauge condition

∂fβ0
∂xβ

=
1
2
∂hββ
∂x0

(2.29)

and condition (2.14). The 0α-component of the Ricci
tensor up to the order 1/c3 reads

R0α ≈
1
2
4f0α +

1
2c3

∂2ϕ

∂t∂xα
. (2.30)

Now, we come back to the Einstein equation (2.3). Sub-
stituting (2.25) and (2.28) into (2.3) and taking (2.5)
and (2.16) into account, we get the following equation
for f00:

4f00 +
1

D − 2
4
c4
ϕ4ϕ− 4

c4
(∇ϕ)2 =

=
2SDGD
c4

N∑
p=1

mp

(
3D − 4
D − 2

ϕp +
D

2(D − 2)
v2
p

)
×

×δ(r− rp) . (2.31)

With the help of the auxiliary equation

4(∇ϕ)2 = 24(ϕ2)− 4ϕ4ϕ (2.32)

and Eqs. (2.5) and (2.16), Eq. (2.31) takes the form

4
(
f00 −

2
c4
ϕ2

)
=

2SDGD
c4

×

×
N∑
p=1

mp

(
ϕ′p +

D

2(D − 2)
v2
p

)
δ(r− rp) . (2.33)

Here, ϕ′p is the potential of the gravitational field at a
point with radius vector rp produced by all particles,
except for the p-th one. The subtraction of the infinite
contribution of the gravitational field of the p-th particle
corresponds to a renormalization of its mass (see [22]).
The solution of (2.33) is

f00 =
2
c4
ϕ2(r) +

2
c4

N∑
p=1

ϕ′pϕ
′(r− rp) +

+
D

D − 2
· 1
c4

N∑
p=1

v2
pϕ
′(r− rp) , (2.34)

where ϕ′(r−rp) is the potential of the gravitational field
of the p-th particle which satisfies the Poisson equation

4ϕ′ = δαβ
∂2ϕ′

∂xα∂xβ
= SDGDmpδ(r− rp) . (2.35)

It can be easily verified with the help of (2.5) and (2.16)
that ϕ′(r− rp) satisfies the condition

ϕ(r) =
N∑
p=1

ϕ′(r− rp) . (2.36)

Therefore, substituting h00 = 2ϕ/c2 and f00 into (2.27),
we obtain g00 up to the order 1/c4:

g00 ≈ 1 +
2
c2
ϕ(r) +

2
c4
ϕ2(r) +

2
c4

N∑
p=1

ϕ′pϕ
′(r− rp) +

+
D

D − 2
1
c4

N∑
p=1

v2
pϕ
′(r− rp) . (2.37)

We should mention that the radius vectors rp of the mov-
ing gravitating masses depend on the time. In this case,
the potential ϕ(r) in (2.36) also depends on the time.

The equation for f0α can be obtained by the substi-
tution of (2.26) and (2.30) into the Einstein equation
(2.3):

4f0α = −2(D − 1)
D − 2

SDGD
c3

N∑
p=1

mpvpαδ(r− rp)−

− 1
c3

∂2ϕ

∂t∂xα
, (2.38)

whose solution is

f0α = −2(D − 1)
D − 2

1
c3

N∑
p=1

vpαϕ
′(r− rp)−

1
c3

∂2f

∂t∂xα
,

(2.39)

where the function f satisfies the equation

4f = δαβ
∂2f

∂xα∂xβ
= ϕ(r) . (2.40)

Therefore, substituting h0α = 0 and f0α into (2.27), we
get g0α up to the order 1/c3:

g0α ≈ −
2(D − 1)
D − 2

1
c3

N∑
p=1

vpαϕ
′(r− rp)−

1
c3

∂2f

∂t∂xα
.

(2.41)
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We note that, in the three-dimensional case D = 3,
relations (2.37) and (2.41) exactly coincide with (106.13)
and (106.14) in [22] if we take into account that ϕ′(r −
rp) = −GNmp/|r− rp|.

We now consider the case of one gravitating par-
ticle of mass m1 ≡ m, which is at rest in our 3-D
space but, for generality, moves with constant speed
in extra dimensions. That is, p = 1 ⇒ ϕ′1 = 0 and
vα = dxα/dt = (0, 0, 0, v4, v5, ..., vD), where v4, v5, ..., vD
are constants. In this case, (2.37) and (2.41) are reduced,
respectively, to

g00 ≈ 1 +
2
c2
ϕ(r) +

2
c4
ϕ2(r) +

Dv2

(D − 2)c4
ϕ(r) (2.42)

and

g0α ≈ −
2(D − 1)vα
(D − 2)c3

ϕ(r)− 1
c3

∂2f

∂t∂xα
, (2.43)

where ϕ(r) satisfies the Poisson equation

4ϕ = δαβ
∂2ϕ

∂xα∂xβ
= SDGDmδ(r) , (2.44)

and v2 = −gαβvαvβ = v2
4 + v2

5 + ... + v2
D + O(1/c2) (at

the same accuracy, vβ = −vβ). Obviously, the transition
to the case where the gravitating mass is at rest both in
our three-dimensional space and in the extra dimensions
corresponds to the limit vα = 0 ⇒ v2 = 0. In this case,
the potential ϕ(r) and the function f do not depend on
the time t. We recall that the covariant components gαβ
read (see (2.17))

gαβ ≈ −
(

1− 1
D − 2

· 2
c2
ϕ(r)

)
δαβ . (2.45)

To get all above results, we did not use any specific
form of topology. The only things we used were as-
sumptions of the flatness of the metric in the absence
of gravitating masses and the weakness of the gravita-
tional field and velocities of gravitating masses, which
perturb the flat metric. Now, to solve (2.44), we should
specify the topology of a space and the boundary con-
ditions. We suppose that the (D = 3 + d)-dimensional
space has the factorizable geometry of a product man-
ifold MD = R3 × T d. The quantity R3 describes the
three-dimensional flat external (our) space, and T d is
a torus, which corresponds to a d-dimensional internal
space with volume Vd. For this topology and with the
boundary condition that the potential must go to the
Newtonian expression at infinitely large distances from
the gravitating body, we can find the exact solution of

the Poisson equation (2.44) [23, 24]. The boundary con-
dition requires that the multidimensional GD and New-
tonian GN gravitational constants be connected by the
condition SDGD/Vd = 4πGN . Assuming that we con-
sider the gravitational field of a gravitating mass m at
distances much greater than the periods of the torus, we
can restrict ourselves to the zero Kaluza–Klein mode.
For example, this approximation is very well satisfied
for the planets of the solar system, because the inverse-
square law experiments show that the extra dimensions
in Kaluza–Klein models should not exceed submillime-
ter scales [25] (see, however, [23, 24] for models with
smeared extra dimensions, where Newton’s law preserves
its shape for arbitrary distances). Then, the gravita-
tional potential reads

ϕ(r) ≈ −GNm
r3

= −rgc
2

2r3
, (2.46)

where r3 is the length of a radius vector in the
three-dimensional space, and we introduce the three-
dimensional Schwarzschild radius rg = 2GNm/c2. As
was mentioned above, the gravitating mass m is at rest
in our three-dimensional space, but it can move in the
extra dimensions. In this case, the extra dimensional
components of D-dimensional radius vector of a gravi-
tating particle depend on the time. The exact formu-
las for the non-relativistic gravitational potential (see
[23, 24]) show that this dependence “nests” only in non-
zero Kaluza–Klein modes, which are exponentially sup-
pressed in the considered approximation. Therefore, in
this approximation, the potential ϕ(r) in (2.46) does not
depend on the time.

It is worth noting that all the previous analysis works
also in the case where the gravitating masses are uni-
formly smeared over some or all extra dimensions. Let
us take, for simplicity, one (p = 1) gravitating mass
m1 ≡ m, which is smeared over all extra dimensions.
Obviously, this mass can move only in our usual three
dimensions: vα1 = dxα1 /dt = (v1

1 , v
2
1 , v

3
1 , 0, . . . , 0), and its

rest mass density (2.5) now reads

ρ =

(
m/

d∏
α=1

aα

)
δ(r3 − r(1)3) , (2.47)

where aα are the periods of the torus. Then, the solu-
tion of the Poisson equation (2.16) exactly coincides with
the Newton potential if the multidimensional GD and
Newtonian GN gravitational constants are connected as
SDGD/

∏d
α=1 aα = 4πGN [23, 24]. Therefore, in this

case, the approximate formula (2.46) becomes the exact
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equality:

ϕ(r) = ϕ(r3) = −GNm
r3

= −rgc
2

2r3
. (2.48)

In approximation (2.46) (or with (2.48) for “smeared”
extra dimensions), the covariant components (2.42),
(2.43), and (2.45) take the form

g00 ≈ 1− rg
r3

+
r2g
2r23
− Dv2

2(D − 2)c2
rg
r3
,

g0α ≈
(D − 1)vα
(D − 2)c

rg
r3
,

gαβ ≈ −
(

1 +
1

D − 2
rg
r3

)
δαβ . (2.49)

For the contravariant components, we obtain

g00 ≈ 1 +
rg
r3

+
r2g
2r23

+
Dv2

2(D − 2)c2
rg
r3
,

g0α ≈ − (D − 1)vα

(D − 2)c
rg
r3
,

gαβ ≈ −
(

1− 1
D − 2

rg
r3

)
δαβ . (2.50)

It is not difficult to verify that these components satisfy
the condition

gikg
kj =

(
1 +O(1/c6) 0 +O(1/c5)
0 +O(1/c5) δαβ +O(1/c4)

)
. (2.51)

The metric components (2.49) demonstrate that, in
this approximation, the spatial section t = const is con-
formal to the Euclidean metric. Hence, the spatial co-
ordinates are isotropic ones. It is convenient to use the
three-dimensional spherical coordinates r3, θ, ψ instead
of the Cartesian coordinates x1 ≡ x, x2 ≡ y, x3 ≡ z. In
these coordinates, metric (2.1) reads

ds2 ≈

(
1− rg

r3
+

r2g
2r23
− Dv2

2(D − 2)c2
rg
r3

)
c2dt2 +

+
2(D − 1)
(D − 2)c

rg
r3
cdt

D∑
α=4

vαdx
α −

−
(

1 +
1

D − 2
rg
r3

)(
dr23 + r23dθ

2 + r23 sin2 θdψ2
)
−

−
(

1 +
1

D − 2
rg
r3

)(
(dx4)2+

+(dx5)2 + . . .+ (dxD)2
)
. (2.52)

As was mentioned above, this metric corresponds to a
gravitating mass in the rest in our three-dimensional
space. If the mass is smeared over extra dimensions,
the appropriate velocity components vanish.

3. Three Classical Tests

We now check the above-obtained multidimensional met-
ric (2.52) from the viewpoint of its consistency with the
famous classical tests: the frequency shift, perihelion
shift, and deflection of light. It is well known that the
four-dimensional general relativity is in good agreement
with these experiments. But is it true for the considered
Kaluza–Klein models?

3.1. Frequency shift

To investigate the gravitational redshift formula (2.52)
in the spacetime, we can use the famous expression for
relation between the frequency ω1 of a light signal, which
is emitted at point 1 with the metric component g00|1
and the frequency ω2 and is received at point 2 with the
metric component g00|2:

ω1[(g00)
1/2]1 = ω2[(g00)

1/2]2 . (3.1)

Therefore, up to the order 1/c2, we get

ω2 ≈ ω1

(
1 +

ϕ1 − ϕ2

c2

)
, (3.2)

where the non-relativistic potential ϕ is given by (2.46).
In the considered approximation, this formula exactly
coincides with that of general relativity. Therefore, for
this type of experiments, it is hardly possible to observe
the difference between the usual four-dimensional gen-
eral relativity and the multidimensional Kaluza–Klein
models.

3.2. Perihelion shift

Let us consider the motion of a test body of mass m′ in
the gravitational field described by metric (2.52). The
Hamilton–Jacobi equation

gik
∂S

∂xi
∂S

∂xk
−m′2c2 = 0 (3.3)

for this test body moving in the orbital plane θ = π/2
reads

1
c2

(
1 +

rg
r3

+
r2g
2r23

+
Dv2

2(D − 2)c2
rg
r3

)(
∂S

∂t

)2

−

−2(D − 1)vα

(D − 2)c2
rg
r3

∂S

∂t

∂S

∂xα
−
(

1− 1
D − 2

rg
r3

)(
∂S

∂r3

)2

−

− 1
r23

(
1− 1

D − 2
rg
r3

)(
∂S

∂ψ

)2

−
(

1− 1
D − 2

rg
r3

)
×

×

[(
∂S

∂x4

)2

+ ...+
(
∂S

∂xD

)2
]
−m′2c2 ≈ 0 . (3.4)
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We investigate this equation by the separation of vari-
ables considering the action in the form

S = −E′t+Mψ+Sr3(r3)+S4

(
x4
)
+...+SD

(
xD
)
. (3.5)

Here, E′ ≈ m′c2+E is the energy of the test body, which
includes the rest energy m′c2 and the non-relativistic en-
ergy E, and M is the angular momentum. Substituting
this expression for the action S in formula (3.4), we ob-
tain an expression for (dSr3/dr3)

2 holding the terms up
to the order 1/c2:(
dSr3
dr3

)2

≈
(

2m′E −
(
p2
4 + ...+ p2

D

)
+
E2

c2

)
−

− 1
r23

(
M2 −

Dm′2c2r2g
2(D − 2)

)
+

+
1
r3

(
m′2c2rg +

2(D − 1)
D − 2

m′Erg +

+
D

2(D − 2)
m′2rgv

2 +
2(D − 1)
(D − 2)

m′rg

D∑
α=4

vαpα

)
, (3.6)

where pα = ∂S/∂xα = dSα/dx
α (α = 4, . . . , D) are

the components of the momentum of the test body in
the extra dimensions. If the gravitating and test masses
are localized on the same brane, then these components
are equal to zero. Integrating the square root of this
expression with respect to r3, we get Sr3 in the form

Sr3 ≈
∫ [(

2m′E −
(
p2
4 + ...+ p2

D

)
+
E2

c2

)
+

+
1
r3

(
m′2c2rg +

2(D − 1)
D − 2

m′Erg +

+
D

2(D − 2)
m′2rgv

2 +
2(D − 1)
(D − 2)

m′rg

D∑
α=4

vαpα

)
−

− 1
r23

(
M2 −

Dm′2c2r2g
2(D − 2)

)]1/2

dr3 . (3.7)

It is well known (see, e.g., § 47 in [26]) that, for any
integral of motion I of a system with action S, the fol-
lowing equation should hold:

∂S

∂I
= const . (3.8)

Because the angular momentum M is the integral of mo-
tion, the trajectory of a test body is defined by the equa-
tion

∂S

∂M
= ψ +

∂Sr3
∂M

= const , (3.9)

where we use (3.5).
Let now the Sun be the gravitating mass, and let the

planets of the solar system be the test bodies. Then the
change of the angle during one revolution of a planet on
its orbit is

Δψ = − ∂

∂M
ΔSr3 , (3.10)

where ΔSr3 is the corresponding change of Sr3 . It is
well known that the perihelion shift originates due to a
small relativistic correction ε to M2 in Sr3 : M2/r23 ⇒
(M2 − ε)/r23. Relation (3.7) shows that, in our case,
ε = Dm′2c2r2g/[2(D − 2)]. Expanding Sr3 in powers of
this correction,

Sr3 = Sr3(M
2 − ε) ≈ S(0)

r3 − ε
∂S

(0)
r3

∂M2
=

= S(0)
r3 −

ε

2M
∂S

(0)
r3

∂M
=

= S(0)
r3 −

Dm′2c2r2g
4(D − 2)M

∂S
(0)
r3

∂M
, (3.11)

where S(0)
r3 ≡ Sr3(M2), we obtain

ΔSr3 ≈ ΔS(0)
r3 −

Dm′2c2r2g
4(D − 2)M

∂ΔS(0)
r3

∂M
. (3.12)

Differentiating this equation with respect to M, we get

Δψ ≈ 2π +
Dπm′2c2r2g
2(D − 2)M2

, (3.13)

where we took into account that −∂ΔS(0)
r3 /∂M =

Δψ(0) = 2π. Therefore, the second term in (3.13) gives
the required formula for the perihelion shift in our mul-
tidimensional case:

δψ =
Dπm′2c2r2g
2(D − 2)M2

=
Dπrg

(D − 2)a(1− e2)
. (3.14)

In this equation, we used the well-known relation M2 =
m′2rgc

2a(1 − e2)/2, with a and e being the semimajor
axis and the eccentricity of the ellipse, respectively. In
the three-dimensional case D = 3, this equation exactly
coincides with formula (101.7) in [22]. It can be easily
seen that result (3.14) does not depend on the motion of
the gravitating and test masses in the extra dimensions.

It makes sense to apply this formula to Mercury, be-
cause it has the most significant discrepancy in the so-
lar system between the measurement value of perihelion
shift and its value calculated with the use of Newton’s
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formalism. The observed discrepancy is 43.11±0.21 arc-
sec per century. This missing value is usually explained
by the relativistic effects of the form (3.14). However,
only in three-dimensional case D = 3, relation (3.14)
gives the satisfactory result 42.94′′, which is within the
measurement accuracy. For the D = 4 and D = 9 mod-
els, we obtain 28.63′′ and 18.40′′, respectively, which are
very far from the observable value.

3.3. Deflection of light

Let us consider the propagation of light in a gravitational
field with metric (2.52). In the case of massless particles,
the Hamilton–Jacobi equation (3.3) is reduced to the
eikonal equation:

gik
∂Ψ
∂xi

∂Ψ
∂xk

= 0 . (3.15)

For metric (2.52), it reads

1
c2

(
1 +

rg
r3

+
r2g
2r23

+
Dv2

2(D − 2)c2
rg
r3

)(
∂Ψ
∂t

)2

−

−2(D − 1)vα

(D − 2)c2
rg
r3

∂Ψ
∂t

∂Ψ
∂xα

−
(

1− 1
D − 2

rg
r3

)(
∂Ψ
∂r3

)2

−

− 1
r23

(
1− 1

D − 2
rg
r3

)(
∂Ψ
∂ψ

)2

−
(

1− 1
D − 2

rg
r3

)
×

×

[(
∂Ψ
∂x4

)2

+ ...+
(
∂Ψ
∂xD

)2
]
≈ 0 , (3.16)

where we take into account that light propagates in the
orbital plane θ = π/2. The eikonal function Ψ can be
written in the form

Ψ = −ω0t+
ρω0

c
ψ + Ψr3(r3) +

+Ψ4

(
x4
)

+ Ψ5

(
x5
)

+ ...+ ΨD

(
xD
)
, (3.17)

where ω0 = −∂Ψ/∂t is the frequency of light, and ρ is
a constant. Later, we will show that ρ is the impact
parameter, i.e., the distance of the closest approach of
ray’s path to the gravitating mass. Taking into account
that k = ω0/c is the absolute value of the wave-vector,
it is clear that M ≡ ρk = ρω0/c plays the role of the
angular momentum for the light beam.

We now consider the natural case where light propa-
gates in our three-dimensional space and does not have
components of the momentum in the extra dimensions,
i.e., pα = dΨα/dx

α ≡ 0 , α = 4, . . . , D. Then, from
(3.16) and (3.17) up to the order O(1/c4), we obtain the

following formula:(
dΨr3

dr3

)2

≈ ω2
0

c2

(
1− 1

D − 2
rg
r3

)−1

×

×

(
1 +

rg
r3

+
r2g
2r23

+
Dv2

2(D − 2)c2
rg
r3

)
− ρ2ω2

0

c2r23
≈

≈ ω2
0

c2

(
1 +

D − 1
D − 2

rg
r3
− ρ2

r23

)
. (3.18)

Integrating this expression, we get

Ψr3 ≈
ω0

c

∫ (
1 +

D − 1
D − 2

rg
r3
− ρ2

r23

)1/2

dr3 . (3.19)

Considering the term with rg/r3 as a small relativis-
tic correction, we expand the integrand up to the order
O(1/c3):

Ψr3 ≈ Ψ(0)
r3 +

D − 1
2(D − 2)

rgω0

c

∫ (
r23 − ρ2

)−1/2
dr3 =

= Ψ(0)
r3 +

D − 1
2(D − 2)

rgω0

c
arccosh

r3
ρ
, (3.20)

where the non-relativistic (i.e., gravity is absent: rg ≡ 0)
eikonal function is

Ψ(0)
r3 =

ω0

c

∫ (
1− ρ2

r23

)1/2

dr3 ≡

≡
∫ ((ω0

c

)2

− M2

r23

)1/2

dr3 . (3.21)

In this non-relativistic approximation, the trajectory of
the light beam is a straight line. Indeed, we have in this
case (by full analogy with (3.9)):

∂Ψ(0)

∂M
= ψ(0) +

∂Ψ(0)
r3

∂M
= ψ(0)−arccos(ρ/r3) = 0 . (3.22)

Here, the constant is taken in such a way that ψ(0) →
π/2 for r3 → ∞. Thus, the trajectory ρ = r3 cosψ(0)

is a straight line. Obviously, in the non-relativistic
case, the total change of the angle ψ(0) is Δψ(0) =
−∂ΔΨ(0)

r3 /∂M = π.
Coming back to the relativistic case (3.20), the change

of the eikonal function for the light beam traveling from
some distance r3 = R to the closest approach to the
gravitating mass at r3 = ρ and again to the distance
r3 = R is

ΔΨr3 ≈ ΔΨ(0)
r3 +

D − 1
D − 2

rgω0

c
arccosh

R

ρ
. (3.23)
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The corresponding change of the polar angle ψ is

∂Ψ
∂M

= ψ +
∂Ψr3

∂M
= const =⇒

Δψ = −∂ΔΨr3

∂M
≈ −∂ΔΨ(0)

r3

∂M
+

+
D − 1
D − 2

rgR

ρ

(
R2 − ρ2

)−1/2
. (3.24)

Thus, in the limit R→ +∞, we finally get

Δψ ≈ π +
D − 1
D − 2

rg
ρ
. (3.25)

Therefore, the second term in (3.25) gives the required
formula for the deflection of light in our multidimen-
sional case:

δψ =
D − 1
D − 2

rg
ρ
. (3.26)

For the three-dimensional case D = 3, this equation ex-
actly coincides with formula (101.9) in [22].

We now apply this formula to the Sun. Obviously,
the radius R of the Sun is much greater than the size of
the extra dimensions, and approximation (2.46) works
well at the distances r3 ≥ R. For general relativity and
for a ray that grazes the Sun’s limb, δψ ≈ 1.75 arcsec
is in very good agreement with observational data [12].
Relation (3.26) shows that we get this value of δψ only
for the usual three-dimensional space. In the cases where
D = 4 and D = 9, we obtain, respectively, δψ ≈ 1.31′′

and δψ ≈ 1.00′′, which are very far from the observable
value.

4. Soliton and Black String Metrics

Our previous analysis demonstrates that the physically
reasonable delta-shaped matter source in the multidi-
mensional Kaluza–Klein model results in asymptotic
metric coefficients, which do not provide the correct val-
ues for the classical gravitational tests if D > 3. On
the other hand, there are a number of well-known exact
vacuum solutions for the Kaluza–Klein models. There-
fore, it is of interest to determine the relationship be-
tween these exact solutions and our asymptotic metric
coefficients. In this regard, we will investigate a 5-D
static metric in isotropic (with respect to our three-
dimensional space) coordinates:

ds2 = A(r3)c2dt2 +B(r3)
(
dx2 + dy2 + dz2

)
+

+C(r3)dξ2 , (4.1)

where r3 =
√
x2 + y2 + z2. This spacetime has two

Killing vectors ∂/∂t and ∂/∂ξ. It is clear that the ap-
propriate energy-momentum tensor should not depend
on the time t and the fifth coordinate ξ. We suppose
that metric (4.1) is a solution of the vacuum Einstein
equation

Rik = 0 (4.2)

with the proper boundary conditions.
To our knowledge, the first solution of the form (4.1) in

non-isotropic “Schwarzschild-like” coordinates was found
in [14] and reads

ds2 =
(

1− b

r′3

)a′
c2dt2 −

(
1− b

r′3

)−a′−b′
dr′23 −

−
(

1− b

r′3

)1−a′−b′

r′23 dΩ
2
2 −

(
1− b

r′3

)b′
dξ2 , (4.3)

where a′ and b′ are constants satisfying the condition

a′2 + a′b′ + b′2 = 1 , (4.4)

and the parameter b is usually connected with the grav-
itating mass: a′b = 2GNm/c2 = rg. Then, in the
isotropic coordinates, this solution was obtained in [15]
and [16] and dubbed the soliton solution in the liter-
ature. Its generalization for D ≥ 5 was recently per-
formed in [27]. In our paper, we choose the metric in
the parametrization proposed in [16]:

ds2 =
(
ar3 − 1
ar3 + 1

)2εk

c2dt2 −
(

1− 1
a2r23

)2

×

×
(
ar3 + 1
ar3 − 1

)2ε(k−1) (
dr23 + r23dΩ

2
2

)
−

−
(
ar3 + 1
ar3 − 1

)2ε

dξ2 , (4.5)

where a, ε and k are constants, and the parameters ε and
k satisfy the condition

ε2
(
k2 − k + 1

)
= 1 . (4.6)

The Schwarzschild-like solution (4.3) and the soliton so-
lution (4.5) are connected by the relations

r′3 = r3

(
1 +

b

4r3

)2

(4.7)

and

a′ = εk, b′ = −ε, a =
4
b
. (4.8)

It follows from (4.7) that r′3 = r3 +O(1/c2) if b = 4/a =
rg/a

′.
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In the approximation f ≡ 1/(ar3) � 1 and up to
O(f), we obtain the following formulas for the metric
coefficients of (4.5):

B(r3) = −
(
1− f2

)2(1 + f

1− f

)2ε(k−1)

≈

≈ −1− 4ε(k − 1)f = −1− 4ε(k − 1)
ar3

(4.9)

and

C(r3) = −
(

1 + f

1− f

)2ε

≈ −1− 4εf = −1− 4ε
ar3

. (4.10)

Comparing these expressions with our asymptotic metric
coefficients from (2.52) (where D = 4 and v ≡ 0)

B(r3) ≈ −1− rg
2r3

, C(r3) ≈ −1− rg
2r3

, (4.11)

we get

k = 2, ε =
1√
3
, a =

8√
3rg

. (4.12)

Here, we took relation (4.6) into account. Finally, for
A(r3) from (4.5) up to O(f2), we get

A(r3) =
(

1− f
1 + f

)2εk

≈ 1− 4εkf + 8ε2k2f2 =

= 1− 4εk
ar

+
8ε2k2

a2r2
= 1− rg

r
+

r2g
2r2

(4.13)

in complete analogy with the asymptotic metric coeffi-
cient A(r3) in (2.52). Therefore, for parameters (4.12),
the soliton metric (4.5) reads

ds2 =

(
1−
√

3rg/8r3
1 +
√

3rg/8r3

) 4√
3

c2dt2 −

−
(
1− 3r2g/64r23

)2(1 +
√

3rg/8r3
1−
√

3rg/8r3

) 2√
3

×

×
(
dr23 + r23dΩ

2
2

)
−

(
1 +
√

3rg/8r3
1−
√

3rg/8r3

) 2√
3

dξ2 . (4.14)

Our analysis shows that this form of the metric provides
the correct asymptotic behavior in the case of a delta-
shaped matter source. Metric (4.14) is the exact solution
of the Einstein equation for the gravitating mass at rest
(v ≡ 0) “smeared” uniformly over the extra dimension.
The only non-zero component of the energy-momentum
tensor is T00. We can prove it in the following way. It

is clear from the previous consideration that the metric
coefficients in (4.14) up to the terms 1/c2 read

g00 ≈ 1− rg
r3

= 1 + h00 ,

gαα ≈ −1− rg
2r3

= −1 + hαα ⇒

h00 = −rg
r3
, hαα = − rg

2r3
, α = 1, 2, 3, 4 . (4.15)

With the same accuracy, the components of the Ricci
tensor are

R00 ≈
1
2
4h00 = −1

2
4rg
r3

= −GNm
c2
4 1
r3

=

=
4πGNmδ(r3)

c2
= kN

1
2
mδ(r3)c2 ,

Rαα ≈ kN
1
4
mδ(r3)c2 , α = 1, 2, 3, 4 , (4.16)

where kN ≡ 8πGN/c4, and the operator 4 is defined
in (2.13). Taking into account that the matter source
is at rest, we may conclude from (4.16) that the only
non-zero component of the energy momentum tensor is
T00. Hence, for the Einstein equations, we obtain

R00 = k′′
(
T00 −

1
3
Tg00

)
= k′′

2
3
T00,

Rαα = k′′
(
Tαα −

1
3
Tgαα

)
≈

≈ k′′ 1
3
T00 , α = 1, 2, 3, 4 , (4.17)

where k′′ ≡ 2SDG̃D/c4 in accordance with (2.3). There-
fore, from (4.16) and (4.17) up to the terms c2, we get

T00 ≈
kN
k′′

3
4
mδ(r3)c2 =

1
a1
mδ(r3)c2 , (4.18)

where a1 is the size of the extra dimension (the pe-
riod of the torus), and we take the relations GD =
[2(D − 2)/(D − 1)] G̃D and SDGD/

∏d
α=1 aα = 4πGN

into account. We can write (4.18) in the form T00 ≈ ρc2,
where ρ = (m/a1) δ(r3) in accordance with (2.47). This
energy momentum tensor has a delta-shaped form. How-
ever, we can generalize this consideration to the case of
a finite-size spherically symmetric gravitating body at
rest smeared uniformly over the fifth compact dimension.
Analyzing the Einstein equations (where we should keep
the terms up to 1/c2), we can conclude that the met-
ric coefficients outside of the body should take the form
(4.15). In this case, T00 ≡ 0 and T00 ≈ mc2/(V3a1)
outside and inside the body, respectively, and V3 is the
three-dimensional part of the body volume.
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All others soliton metrics (4.5) with the parameters
different from (4.12) have no correspondence with the
asymptotic metric (2.52). Besides the non-zero compo-
nent T00, these models will also have some other non-
zero components of the energy-momentum tensor, which
have no clear physical origin. It is worth noting that, in
works [5, 6], the classical tests of general relativity were
applied to the soliton solutions, and it was shown that
these models do not contradict the observations if the
modulus of the parameter ε in (4.5) is at most 0.07. Ob-
viously, this value is much less than ε = 1/

√
3 ≈ 0.58 in

(4.12). This result confirms the conclusion of the pre-
vious section that the multidimensional Kaluza–Klein
models with a physical reasonable source of matter (with
smeared or not smeared extra dimensions) do not satisfy
the experimental data.

There is one interesting particular example satisfying
the condition |ε| < 0.07 which corresponds in (4.5) to
the limit

ε→ 0, k → +∞, εk → 1 , (4.19)

or to the limit a′ → 1, b′ → 0 in the Schwarzschild-like
metric (4.3). In this limit, metric (4.5) reads

ds2 =
(
ar3 − 1
ar3 + 1

)2

c2dt2 −
(
ar3 + 1
ar3

)4

×

×
(
dr23 + r23dΩ

2
2

)
− dξ2 . (4.20)

It can be easily seen that the four-dimensional part of
this metric (which corresponds to the section ξ = const)
is the pure Schwarzschild metric (for a = 4/rg) in
isotropic coordinates. Metrics of the form (4.20) are of-
ten called the uniform black strings. From this metric
up to the terms 1/c2, we get

g00 ≈ 1− rg
r3

= 1 + h00,

gαα ≈ −1− rg
r3

= −1 + hαα , α = 1, 2, 3,

g44 = −1 = −1 + h44 ⇒
h00 = h11 = h22 = h33 = −rg

r3
, h44 = 0 . (4.21)

With the same accuracy, the components of the Ricci
tensor are

R00 ≈
1
2
4h00 = −1

2
4rg
r3

= −GNm
c2
4 1
r3

=

=
4πGNmδ(r3)

c2
= kN

1
2
mδ(r3)c2 ,

R11 = R22 = R33 ≈ kN
1
2
mδ(r3)c2 ,

R44 = 0 . (4.22)

For a gravitating mass at rest in view of (4.22), we arrive
at the conclusion that T00 and T44 are the only non-zero
components of the energy momentum tensor. Thus, the
Einstein equations take the form

R00 = k′′
(
T00 −

1
3
Tg00

)
,

R11 = R22 = R33 = k′′
(
−1

3
Tg11

)
,

R44 = k′′
(
T44 −

1
3
Tg44

)
. (4.23)

Therefore, from (4.22) and (4.23) up to the terms c2, we
get

T00 ≈
kN
k′′
mδ(r3)c2 =

4
3
m

a1
δ(r3)c2 ,

T44 ≈ −
1
2
kN
k′′
mδ(r3)c2 = −2

3
m

a1
δ(r3)c2 ,

T = T00g
00 + T44g

44 ≈

≈ 3
2
kN
k′′
mδ(r3)c2 = 2

m

a1
δ(r3)c2 . (4.24)

The presence of the non-zero component T44 results in a
non-vanishing tension of black strings (see, e.g., [18,19]).
Relation (4.24) shows that the value T00 is two times big-
ger than the modulus of T44. A similar relation exists
for the ADM mass and the tension (see, e.g., (B.11) and
(B.12) in [18]). For the soliton solution (4.14), the ten-
sion is absent. This follows from the fact that T44 ≡ 0,
or we can see it also from (B.12) in [18], where we should
insert the correction terms hik from our relation (4.15).

Thus, we can conclude the following. The black string
solutions (4.20) do not contradict the classical gravi-
tational tests. However, the matter sources for these
metrics have non-zero tension. It is hard to imag-
ine that astrophysical objects, e.g. the Sun, can have
such energy momentum tensor. On the other hand,
it is natural to suppose that, for gravitating masses
(e.g., ordinary astrophysical objects) at rest, T00 is
the only non-zero component of the energy momen-
tum tensor. As we have seen above, the soliton solu-
tion (4.14) has the matter source with such clear phys-
ical interpretation. Moreover, the metric coefficients for
this solution have the asymptotic form, which corre-
sponds to the correct non-relativistic Newtonian limit
for a gravitating mass. However, analysis conducted
in the previous section shows that this multidimen-
sional Kaluza–Klein metric contradicts the experimental
data.

454 ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 4



THE NEGATIVE RESULT OF GRAVITATIONAL TESTS

5. Conclusion and Discussion

In our paper, we have investigated the classical gravita-
tional tests (frequency shift, perihelion shift, and deflec-
tion of light) for multidimensional models with compact
internal spaces in the form of torus. We have supposed
that, in the absence of gravitating masses, the metric
is a flat one. Gravitating masses (moving or at rest)
perturb this metric, and we have considered these per-
turbations in a weak-field approximation. In this ap-
proximation, we obtained the asymptotic form of the
metric coefficients. Up to this point, we did not require
the compactness of extra dimensions. This approach is
valid for any number of spatial dimensions D ≥ 3 and
generalizes the well-known calculations [22] in the four-
dimensional spacetime. Then, we have admitted that,
first, the extra dimensions are compact and have the
topology of a torus and, second, the gravitational po-
tential far away from gravitating masses tends to the
non-relativistic Newtonian limit. It gave us a possibility
to specify the non-relativistic gravitational potential for
the considered models. In turn, this enabled us to spec-
ify the metric coefficients. In the case of a gravitating
body at rest, we used these metric coefficients to calcu-
late the frequency shift, perihelion shift, and deflection
of light. We have demonstrated that, for the frequency
shift type experiment, it is hardly possible to observe
the difference between the usual four-dimensional gen-
eral relativity and the multidimensional Kaluza–Klein
models. However, the situation is quite different for the
perihelion shift and the deflection of light. In these two
cases, we obtained formulas, which generalize the cor-
responding ones in general relativity. We have shown
that both of these formulas (for perihelion shift and de-
flection of light) depend on a total number of spatial
dimensions D, and they are in good agreement with ob-
servations only in the ordinary three-dimensional space
D = 3. This result does not depend explicitly on the
size of the extra dimensions. Therefore, it is impossible
to avoid the problem with classical gravitational tests in
a limit of arbitrary small sizes of the extra dimensions.

As was mentioned in Introduction and Section 4, there
is a range of parameters for the soliton solutions (4.5)
(or, equivalently, (4.3)), for which the classical grav-
itational tests satisfy the observational values. How-
ever, this range of parameters is quite far from the val-
ues, which enable the metric coefficients to have the
asymptotic form (2.52) corresponding to the correct
non-relativistic Newtonian limit for a gravitating mass.
Moreover, in this case, the energy momentum tensor
has the form that is hard to imagine for ordinary as-

trophysical objects. For example, the black string so-
lutions belong to this class of the parameters and have
matter sources with non-zero tension. It is very difficult
to explain how the astrophysical objects, e.g. the Sun,
can have such energy momentum tensor. On the other
hand, we have found the exact soliton solution (4.14)
with metric coefficients of the asymptotic form (2.52).
Here, the matter source has a delta-shaped form, and
T00 is the only non-zero component of the energy mo-
mentum tensor. Such energy momentum tensor has a
clear physical interpretation for a gravitating mass at
rest. However, our analysis demonstrates that this mul-
tidimensional Kaluza–Klein metric contradicts the ex-
perimental data. So, we arrive at the following situa-
tion: either we have the metrics (e.g., the black string
(4.20)), which do not contradict the observations, but
have to deal with very unnatural (for ordinary astro-
physical objects) energy momentum tensors for matter
sources, or we have the metrics (e.g., our soliton solu-
tion (4.14)), which correspond to physically reasonable
matter sources, but contradict the experimental data.

Therefore, the considered multidimensional Kaluza–
Klein models face a severe problem. This testifies to the
need for a strong reconsideration of the foundations of
extra-dimensional models. A possible resolution might
be provided in models with branes or with a non-linear
action f(R). However, to prove the viability of these
models, it is necessary to perform the similar investiga-
tion.
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КЛАСИЧНI ТЕСТИ БАГАТОВИМIРНОЇ ГРАВIТАЦIЇ:
НЕГАТИВНИЙ РЕЗУЛЬТАТ

М. Ейнгорн, А. Жук

Р е з ю м е

У моделi Калуци–Клейна з тороїдальними додатковими вимi-
рами ми отримуємо метричнi коефiцiєнти для дельтаподiбних
матерiальних джерел у наближеннi слабкого поля. Цi метричнi
коефiцiєнти застосованi для знаходження формул для часто-
тного зсуву, зсуву перигелiю та вiдхилення свiтла. У головному
порядку наближення формула для частотного зсуву збiгається
з широко вiдомим виразом загальної теорiї вiдносностi. Однак
для зсуву перигелiю та вiдхилення свiтла отримуємо форму-
ли Dπrg/[(D − 2)a(1− e2)] та (D − 1)rg/[(D − 2)ρ] вiдповiдно,
де D – загальна кiлькiсть просторових вимiрiв. Цi вирази де-
монструють добре узгодження з експериментальними даними
лише у випадку звичайного тривимiрного (D = 3) простору.
Цей результат не залежить вiд розмiру додаткових вимiрiв.
Ми також отримуємо точний 5-D солiтонний розв’язок з пра-
вильною нерелятивiстською ньютонiвською границею. Тензор
енергiї-iмпульсу для цього розв’язку має чiтку фiзичну iнтер-
претацiю. Тим не менш, класичнi тести для цiєї метрики не
задовiльняють експериментальнi данi. Отже, розглянутi бага-
товимiрнi моделi Калуци–Клейна стоять перед серйозною про-
блемою.
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