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In the Kaluza—Klein model with toroidal extra dimensions, we
obtain the metric coefficients in the weak-field approximation for
delta-shaped matter sources. These metric coefficients are used
to calculate the formulas for the frequency shift, perihelion shift,
and deflection of light. In the leading order of approximation, the
formula for the frequency shift coincides with the well-known ex-
pression from general relativity. However, for the perihelion shift
and the light deflection, we obtain formulas D7rg/[(D—2)a(1—e?)]
and (D — 1)rg/[(D — 2)p], respectively, where D is a total num-
ber of spatial dimensions.
agreement with experimental data only in the case of the ordinary
three-dimensional (D = 3) space. This result does not depend
on the size of the extra dimensions. We also obtain the exact 5-
D soliton solution with correct non-relativistic Newtonian limit.

These expressions demonstrate good

The energy momentum tensor for this solution has clear physical
interpretation. However, the classical tests for this metric do not
satisfy the experimental data. Therefore, the considered multidi-
mensional Kaluza—Klein models face a severe problem.

1. Introduction

The idea of the multidimensionality of our Universe de-
manded by the theories of unification of the fundamental
interactions is one of the most breathtaking ideas of the-
oretical physics. It takes its origin from the pioneering
works by Th. Kaluza and O. Klein [1]. Now, the most
self-consistent modern theories of unification such as su-
perstrings, supergravity, and M-theory are constructed
in spacetime with extra dimensions [2]. Different as-
pects of the idea of the multidimensionality are inten-
sively used in numerous recent articles. Therefore, it
is very important to suggest experiments which can re-
veal the extra dimensions. For example, one of the aims
of the Large Hadronic Collider consists in detecting the
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Kaluza—Klein particles which correspond to excitations
of the internal spaces (see, e.g., [3]). On the other hand,
if we can show that the existence of extra dimensions is
contrary to observations, then these theories are prohib-
ited. This important problem is extensively discussed in

the scientific literature (see, e.g., [4-10]).
It is well known that classical gravitational tests such

as the frequency shift, perihelion shift, and deflection of
light are crucial tests of any gravitational theory. For
example, there is the significant discrepancy for Mer-
cury between the measurement value of the perihelion
shift and its calculated value using Newton’s formal-
ism [11]. This indicates that non-relativistic Newton’s
theory of gravity is not complete. This problem was
resolved with the help of general relativity which is in
good agreement with observations. A similar situation
happened with deflection of light [12]. Obviously, the
multidimensional gravitational theories should also be
in concordance with these experimental data. To check
it, the corresponding estimates were carried out in a
number of works. For example, in [§], it was investi-
gated the well-known multidimensional black hole solu-
tion [13], and the authors obtained a negative result.
However, this result was clear from the very beginning,
because the solution [13| does not have non-relativistic
Newtonian limit in the case of extra dimensions. Def-
initely, such solutions in the solar system lead to re-
sults, which are far from the experimental data. The
5-D soliton metrics [14-16] were explored in [4-7]. In
[5] and [6], the range of parameters, for which classical
gravitational tests for these metrics satisfy the observa-
tional values, was found. The black string (see, e.g.,
[17]) is a particular limiting case of such solutions with
a trivial metric coefficient for the extra dimension. How-
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ever, as we show in Section 4, this range of parameters
is quite far from the values, which possess the correct
non-relativistic Newtonian limit for a point mass grav-
itating source. Moreover, for the soliton metrics which
belongs to this range of parameters, the energy momen-
tum tensor has the form that is hard to imagine for
ordinary astrophysical objects. For example, the black
string has matter sources with non-zero tension (see, e.g.,
[18,19]). It is very difficult to explain how astrophysical
objects, e.g. the Sun, can have such energy momentum
tensor.

In the 5-D non-factorizable brane world model, classi-
cal gravitational tests were investigated in [20]. Here, the
model contains one free parameter associated with the
bulk Weyl tensor. For appropriate values of this parame-
ter, the perihelion shift in this model does not contradict
observations. Certainly, this result is of interest, and it
is necessary to examine carefully this model to verify the
naturalness of the conditions imposed.

In our paper, we consider the classical gravitational
tests in Kaluza—Klein models with an arbitrary num-
ber of spatial dimensions D > 3. We suppose that,
in the absence of gravitating masses, the metric is a
flat one. Gravitating masses (moving or at rest) per-
turb this metric, and we consider these perturbations
in the weak-field approximation. In this approxima-
tion, we obtain the asymptotic form of the metric co-
efficients. Then we admit that, first, the extra dimen-
sions are compact and have the topology of a torus and,
second, the gravitational potential far away from grav-
itating masses tends to the non-relativistic Newtonian
limit. All our assumptions are very general and natural.
In the case of a gravitating body at rest, the obtained
metric coeflicients are used to calculate the frequency
shift, perihelion shift, and deflection of light. We demon-
strate that, for the frequency shift type experiment, it
is hardly possible to observe the difference between the
usual four-dimensional general relativity and multidi-
mensional Kaluza—Klein models. However, the situation
is quite different for the perihelion shift and the deflec-
tion of light. In these two cases, we get formulas which
generalize the corresponding ones in general relativity.
We show that both of these formulas for the perihelion
shift and the deflection of light depend on a total number
of spatial dimensions, and they are in good agreement
with observations only in the ordinary three-dimensional
space. It is worth noting that this result does not depend
explicitly on the size of extra dimensions. So, we cannot
avoid the problem with the classical gravitational tests
in the limit of an arbitrarily small size of extra dimen-

444

sions. We mention that, in work [9], the authors arrived
at the same conclusions within the different approach.

We also obtain the exact soliton solution with cor-
rect non-relativistic Newtonian limit. The metric coeffi-
cients in this limit exactly coincide with asymptotic ex-
pressions we found in the weak-field approximation for
a delta-shaped gravitating source. Moreover, the ten-
sion is absent in this model, and the energy momentum
tensor has a clear physical interpretation. However, the
classical tests for this metric do not satisfy the experi-
mental data. This is the predictable result, because the
parameters of this solution do not belong to the range
found in [5, 6] and discussed above.

Therefore, our results show that the considered multi-
dimensional Kaluza—Klein models face a severe problem.

The paper is structured as follows. In Section 2, we get
the asymptotic metric coefficients in the weak-field limit
for the delta-shaped matter gravitating source. These
metric coeflicients are used to calculate the formulas of
the frequency shift, perihelion shift, and deflection of
light in Section 3. In Section 4, we obtain the exact
soliton solution with proper boundary conditions. Here,
we compare this solution with the black string solution.
The main results are summarized and discussed in the
concluding section 5.

2. Weak Gravitational Field Approximation

To start with, we consider the general form of a multi-
dimensional metric:

ds? = gipdatdz® = goo (dx0)2 +

+2g0adz’dz® + gagdxo‘dxﬁ , (2.1)

where the Latin indices i,k = 0,1,..., D and the Greek
indices a, 3 = 1,..., D, and D is the total number of spa-
tial dimensions. We make the natural assumption that,
without matter sources, the spacetime is the Minkowski
one: goo = 100 = 1, goa = Moa = 0, gap = Nap = —0ap-
At the same time, the extra dimensions may have the
topology of a torus. In the presence of matter, the met-
ric is not a Minkowskian one, and we will investigate it in
the weak-field limit. This means that the gravitational
field is weak, and the velocities of the test bodies are
small compared to the speed of light c. In this case, the
metric is only slightly perturbed from its flat spacetime
value:

ik & Nik + hik, (2.2)
where h; are corrections of the order 1/c?. In partic-
ular, hgg = 2p/c?. Later, we will demonstrate that ¢
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is the non-relativistic gravitational potential. The same
conclusion with respect to ¢ can be easily obtained from
the comparison of the non-relativistic action of a test
mass moving in a gravitational field with its relativistic
action. To get the other correction terms up to the same
order 1/c?, we should consider the multidimensional Ein-
stein equation

- QSZGD <E - Dl_lgikT> )
where Sp = 277/2/T(D/2) is the total solid angle (sur-
face area of the (D — 1)-dimensional sphere of unit
radius), and Gp is the gravitational constant in the
(D = D+ 1)-dimensional spacetime. We are going to in-
vestigate the weak-field approximation, where the grav-
itational field is generated by N moving point masses.
Therefore, the energy-momentum tensor is

' N
T = Zmp [(‘DDQ}

Rix (2.3)

—1/2 dxldixkc;dt (x
dt dt ds

- rp) ’ (2'4)

where m,, is the rest mass, and r), is the radius vector of
the p-th particle, respectively. All radius vectors r and
r, are D-dimensional, e.g. r = (2',2?,...,27), where
x® are coordinates in metric (2.1). The rest mass density
is

N
p= Zmpé(r—rp).
p=1

3

(2.5)

2.1. 1/c? correction terms

Obviously, to hold the terms up to the order 1/c? on the
right-hand side of (2.3), the components of the energy-
momentum tensor (2.4) are approximated as

Too = pc?, Toa =0, Tag~0 = T =T~ pc*. (2.6)

Taking into account that h; are of the order of 1/c2,
the covariant components of the Riemann and Ricci ten-
sors

O*gri _ 8*ga _
Oxidz™  Ozkdz™

Rikim =

1 a2gzm
2 \ Ozkox!

aQka n n
_8xi8zl> + gnp Ty Th,, = Thn )

Rim = 9" Riim (2.7)
up to the same order read
R, - } thzm 82hkl _
iktm =9 \ 0zFozl " Ozidz™
0%hy 0?hym
_ — 2.8
dxkdzm 8:1:18371) ’ (28)
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0?him,
Ozkoz!

a2hkl _
Oxidz™

Phy
Oxkdx™

1 .
ka ~ 577d <

OPhi\ _L (OB, h
Artoxt | 2 \ 9xkdxt | Qxmi!
Phl . Phim
— —n" - 2.
Arkdzm axzaxl) ’ (29)

where h} = 9" h,,;,. With the help of the gauge condi-
tions

0 1
[ pF = Zhlsk) = 2.1
ok ( i 9 1A’ 0 ( 0)
formula (2.9) can be written in the form
1 .,0%hy,
Ry A~ — =il Z1thm 2.11
g 2" 9zidx! (2.11)

Taking into account that the derivatives with respect
to 2 = ct are much smaller than the derivatives with
respect to z%, relation (2.11) yields

1 thoo 1 thOO 1
Ry~ ——nP ——2_ = —§of ~ 2 — A}
00 2" BredL® 2 0roorP — 270
(2.12)
1 1
Roa ~ §Ah0a, Raﬁ ~ §Ahaﬁ, (213)

where A = §492 /902" is the D-dimensional Laplace
operator. It is worth noting that condition (2.10) holds
up to the order 1/c?,

0 1
B _ ZplsB) — 3
57 (ha 2h16a> 04+0(1/¢%),
ohy 5
5.8 = 0+oa/e). (2.14)

Therefore, keeping the terms up to the order 1/c¢? on
the left- and right-hand sides of (2.3), we obtain the
equations

2
AhOO = S?QGDP7 Ah’OOé - Oa
1 28pGp
Ahaﬁ = m . 02 p(saﬁ, (215)

where Gp = [2(D — 2)/(D — 1)] Gp. The substitution
of hoo = 2¢/c? into the above equation for hgy demon-
strates that ¢ satisfies the D-dimensional Poisson equa-
tion:

AQD = SDGDp. (216)
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Therefore, ¢ is a non-relativistic gravitational potential.
From (2.15), we obtain

1
———= hoobap =

ha: )
0a =0 D—2

1 2

D—
It can be easily seen that, in this approximation, the
spatial coordinates of metric (2.1) are the isotropic ones,
i.e. the spatial part of the metric is conformally related
to the Euclidean one. We note also that the relation
hag/hoo = [1/(D —2)]dap can be also obtained from the
corresponding equations in works [13, 21].

2.2. 1/c® and 1/c* correction terms

Now, we want to keep the terms up to the order 1/c?
in metric (2.1). Because the coordinate 2 = ¢t con-
tains ¢, this means that, in gog and gg., we should keep
correction terms up to the order 1/c¢* and 1/¢3, respec-
tively, and to leave g.s without changes in the form
JoB = Nap + hap With hag from (2.17).

First, we investigate the energy-momentum tensor
(2.4), which we split into three expressions:

N
19 cdt
7% =3 "myc[(-1)Pyg] 1/2%5@ —1,), (2.18)
p=1
N cdt
T = Z mpc[(—l)Dg]fl/%;‘E(S(r —r,), (2.19)
p=1
N cdt
« D _1— a
70 :;mp[(—l) g7 Pugu) (e =), (2.20)

where vy = dzj/dt . From (2.20) up to order 1 (in units
of ¢), we obtain the covariant components

N

Top ~ Z MpUpaUpgd(r —Tp) .
p=1

(2.21)

Thus, with regard for the prefactor 1/c¢* on the right-
hand side of (2.3), these components can contribute
terms of the order of 1/¢* to Jas, Which are not of inter-
est for us. For Tp,, relation (2.19) yields

N
Toa ~ — Z MpCURO(r —1p).
p=1

(2.22)
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Hence, these components can give terms of the order of
1/¢? into go,. Finally, we obtain the following expression
from (2.18) for Tpo:

N
TOO = gOigOkTik ~ Zmpczé(r — I'p) +
p=1

N

3D —4 14
+p2=:1 My (1)—290” + 2%) o(r—rp), (2.23)
where ¢, is the potential of the gravitational field at a
point with radius vector r,. At the moment, we do not
care about the fact that ¢, contains the infinite con-
tribution of the p-th particle. Thus, up to order 1, we
get

N
T =g*Ty ~ Zmpcgé(r —r,) +

p=1
N
D 1
+;mp (D_230p — 21}12)) 5([‘ — I'p) .
With the help of (2.23) and (2.24), we obtain, up to the
order 1/c*,

2SpGp 1
Thn —
ct ( ®T D1

(2.24)

goo T) ~

N
SpG
~ %Zmpé(r—rp)—o—

p=1
SpGp < 3D —4
DYD -
#2723 (gt
p:

D
2(1)_2)115) O(r—rp).

Similarly, from (2.22) and (2.24), we get (up to the order
1/c%)

25pGp 1
C4 (T(Ja - l)_lgOaT> ~

N
D—-15pGp
m 3 Zmpvpa(s(r — I‘p) .
p=1

+ (2.25)

(2.26)

Now, we work out the left-hand side of (2.3) up to the
appropriate orders of 1/c. As we wrote above, we are
looking for corrections of the order of 1/¢* and 1/¢3 to
the metric components gogg and go., respectively. To this
end, it is convenient to present g;; as follows:

Gik = Nk + hik + fik (2.27)
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where foo and fy, are of the order of 1/c¢* and 1/c3,
respectively. Then the 00-component of the Ricci tensor
up to the order 1/c* reads

1 1 1 2 2
Ry~ =Ap+ —A —— S pAp — = (V)?
0~ Z8p+ S 0foo+ 55 Dy 04( ©)°,

(2.28)

where we take into account that h$ = h% = 0 and use

the gauge condition

off 100

9f _ 193 (2.29)

dzf 2920

and condition (2.14). The Oa-component of the Ricci
tensor up to the order 1/c® reads

1 0%
2¢3 Jtdx>
Now, we come back to the Einstein equation (2.3). Sub-
stituting (2.25) and (2.28) into (2.3) and taking (2.5)

and (2.16) into account, we get the following equation
for fool

1
Roa ~ §Af0a + (2.30)

1 4
Afoo-f'D 5z 480A80—*(V90)

285G 3D — 4 D,
T a Zmi’(1)—2“’1’+2(17—2)”17)><

p=1
xo(r —rp). (2.31)
With the help of the auxiliary equation
4(Vp)? = 2A(4%) — dplp (2.32)

and Eqs. (2.5) and (2.16), Eq. (2.31) takes the form

2 25pG
(fo - 4<)02> i4 2

X ;m,, (gp; + 2(;12)%3) S(r—1p).

Here, ¢/, is the potential of the gravitational field at a
point with radius vector r, produced by all particles,
except for the p-th one. The subtraction of the infinite
contribution of the gravitational field of the p-th particle
corresponds to a renormalization of its mass (see [22]).
The solution of (2.33) is

2 2 2 al /AN

5% (r)+g2¢pw(r—rp)+
1 N

_ ZZ l(r—rp),

(2.33)

foo =

(2.34)
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where ¢’ (r—r)) is the potential of the gravitational field

of the p-th particle which satisfies the Poisson equation
824,0/

Ox*0zP

It can be easily verified with the help of (2.5) and (2.16)
that ¢'(r —r,) satisfies the condition

JAN= 58

= SpGpmpd(r —rp). (2.35)

N

p(r)=> ¢'(r—r,).

p=1

(2.36)

Therefore, substituting hoo = 2p/c? and foo into (2.27),
we obtain goo up to the order 1/c*:

4290?

2
goo =~ 1+ gw(r) (r—rp) +
N
(r—rp).

2D (2.37)

We should mention that the radius vectors r,, of the mov-
ing gravitating masses depend on the time. In this case,
the potential ¢(r) in (2.36) also depends on the time.

The equation for fy, can be obtained by the substi-
tution of (2.26) and (2.30) into the Einstein equation
(2.3):

2(D—-1) SpG
Afoa = _7(D ik Zmpvm ry) —
1 0%
—— 2.
c® Otox™ (2:38)
whose solution is
2D —1) 1 & ) 1 02f
foo = =53 @ 2 e ) = G
(2.39)
where the function f satisfies the equation
0% f
Af = 5P : 2.4
f=6 =t = o) (240)

Therefore, substituting ho, = 0 and fy, into (2.27), we
get goa up to the order 1/c:

1o
3 Otz
(2.41)

N
2(D—-1) 1
Boa =Ty @ D e (r ) -
p=1

447



M. EINGORN, A. ZHUK

We note that, in the three-dimensional case D = 3,
relations (2.37) and (2.41) exactly coincide with (106.13)
and (106.14) in [22] if we take into account that ¢'(r —
rp) = —Gymp/|r — 1.

We now consider the case of one gravitating par-
ticle of mass m; = m, which is at rest in our 3-D
space but, for generality, moves with constant speed
in extra dimensions. That is, p = 1 = ¢} = 0 and
v* =dz®/dt = (0,0,0,v4, s, ...,0p), where vy, vs, ..., vp
are constants. In this case, (2.37) and (2.41) are reduced,
respectively, to

2 2, Dv?
goo ~ 1+ cj@(r) tav (r) + m@(r) (2.42)
and
2(D — 1)v, 1 0%f

o e - = , 2.4
90 D=2 *Y " E o (243)
where ¢(r) satisfies the Poisson equation

(ot

Ay — 598 _ 2.44

=20 920927 SpGpmd(r), (2.44)

and v? = —gapv°0” = 02 + 02 + ... + 0% + O(1/c?) (at
the same accuracy, vg = —v%). Obviously, the transition
to the case where the gravitating mass is at rest both in
our three-dimensional space and in the extra dimensions
corresponds to the limit v, = 0 = v? = 0. In this case,
the potential ¢(r) and the function f do not depend on
the time ¢. We recall that the covariant components g.g
read (see (2.17))

1 2

Gag % (1 Sl Czso(r)) s (2.45)

To get all above results, we did not use any specific
form of topology. The only things we used were as-
sumptions of the flatness of the metric in the absence
of gravitating masses and the weakness of the gravita-
tional field and velocities of gravitating masses, which
perturb the flat metric. Now, to solve (2.44), we should
specify the topology of a space and the boundary con-
ditions. We suppose that the (D = 3 4 d)-dimensional
space has the factorizable geometry of a product man-
ifold Mp = R3 x T?. The quantity R® describes the
three-dimensional flat external (our) space, and 7% is
a torus, which corresponds to a d-dimensional internal
space with volume V. For this topology and with the
boundary condition that the potential must go to the
Newtonian expression at infinitely large distances from
the gravitating body, we can find the exact solution of
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the Poisson equation (2.44) [23,24]. The boundary con-
dition requires that the multidimensional Gp and New-
tonian G gravitational constants be connected by the
condition SpGp/Vy = 47Gy. Assuming that we con-
sider the gravitational field of a gravitating mass m at
distances much greater than the periods of the torus, we
can restrict ourselves to the zero Kaluza-Klein mode.
For example, this approximation is very well satisfied
for the planets of the solar system, because the inverse-
square law experiments show that the extra dimensions
in Kaluza—Klein models should not exceed submillime-
ter scales [25] (see, however, [23, 24] for models with
smeared extra dimensions, where Newton’s law preserves
its shape for arbitrary distances). Then, the gravita-
tional potential reads

Gym TC2
QO(I') ~ - = _97’
T3 2’/“3

(2.46)

where 73 is the length of a radius vector in the
three-dimensional space, and we introduce the three-
dimensional Schwarzschild radius r, = 2Gym/c?. As
was mentioned above, the gravitating mass m is at rest
in our three-dimensional space, but it can move in the
extra dimensions. In this case, the extra dimensional
components of D-dimensional radius vector of a gravi-
tating particle depend on the time. The exact formu-
las for the non-relativistic gravitational potential (see
[23,24]) show that this dependence “nests” only in non-
zero Kaluza—Klein modes, which are exponentially sup-
pressed in the considered approximation. Therefore, in
this approximation, the potential ¢(r) in (2.46) does not
depend on the time.

It is worth noting that all the previous analysis works
also in the case where the gravitating masses are uni-
formly smeared over some or all extra dimensions. Let
us take, for simplicity, one (p = 1) gravitating mass
my = m, which is smeared over all extra dimensions.
Obviously, this mass can move only in our usual three

dimensions: v{ = dz$/dt = (vi,v?,v3,0,...,0), and its
rest mass density (2.5) now reads
d
o= (m/ 11 ) 5(rs — rya) (2.47)
a=1

where a,, are the periods of the torus. Then, the solu-
tion of the Poisson equation (2.16) exactly coincides with
the Newton potential if the multidimensional Gp and
Newtonian Gy gravitational constants are connected as
SpGp/T1%_, aa = 4nGy [23, 24]. Therefore, in this
case, the approximate formula (2.46) becomes the exact
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equality:
2

Gym TgC

p(r) = ¢(r3) = — rs = g

(2.48)

In approximation (2.46) (or with (2.48) for “smeared”
extra dimensions), the covariant components (2.42),
(2.43), and (2.45) take the form

Tg 7”3 Dv? 1,
goo Rl — 2+ 5% — e T
00 rg 22 2(D—2)2rg
(D —1)vy 1y
Joa = /v o
(D—=2)c r3
1 r
g — |1+ ——-2)6, 2.49
gop = (14 5 ) g (2.49)
For the contravariant components, we obtain
2 2
00 g g Dv Ty
~l+——+-FHF 4+ ———-—-
g Jr7“3+2r§Jr2(D—2)c27“37
O ~ (D — 1)1]& ng
(D—2)c rg’
1 7
B (11— —=——="2)b.5. 2.50
5 = (1= g 2 ) b (2.50)

It is not difficult to verify that these components satisfy
the condition

i _ ((1+0(1/) 04+0(1/c°)
girg" = ( 04 0(1/c%) dap+0O(1/ch) > '

The metric components (2.49) demonstrate that, in
this approximation, the spatial section t = const is con-
formal to the Euclidean metric. Hence, the spatial co-
ordinates are isotropic ones. It is convenient to use the
three-dimensional spherical coordinates r3, 6,1 instead
of the Cartesian coordinates z! = z,22 = y,2° = 2. In
these coordinates, metric (2.1) reads

2 2
r r Dv r
d 2 ~ _ g g g thQ
3 ( 3 + 2r2  2(D—2)c2r3 catt

(2.51)

D

2(D-1)r,

+——tZedt Vo dx® —
(D —2)crs (12::4

1
(1 g ) a4 e 4 s 0a?) -

+(d2®)? + ...+ (daP)?) .

As was mentioned above, this metric corresponds to a
gravitating mass in the rest in our three-dimensional
space. If the mass is smeared over extra dimensions,
the appropriate velocity components vanish.

(2.52)
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3. Three Classical Tests

We now check the above-obtained multidimensional met-
ric (2.52) from the viewpoint of its consistency with the
famous classical tests: the frequency shift, perihelion
shift, and deflection of light. It is well known that the
four-dimensional general relativity is in good agreement
with these experiments. But is it true for the considered
Kaluza—Klein models?

3.1. Frequency shift

To investigate the gravitational redshift formula (2.52)
in the spacetime, we can use the famous expression for
relation between the frequency wy of a light signal, which
is emitted at point 1 with the metric component gool,
and the frequency ws and is received at point 2 with the
metric component gool,:

2),. (3.1)
Therefore, up to the order 1/c?, we get

le(ww),

wi[(900)"*]1 = wal(goo)"

=2 (3.2)
where the non-relativistic potential ¢ is given by (2.46).
In the considered approximation, this formula exactly
coincides with that of general relativity. Therefore, for
this type of experiments, it is hardly possible to observe
the difference between the usual four-dimensional gen-
eral relativity and the multidimensional Kaluza—Klein
models.

3.2. Perihelion shift

Let us consider the motion of a test body of mass m’ in
the gravitational field described by metric (2.52). The
Hamilton—-Jacobi equation
#0508
Oxt Ok
for this test body moving in the orbital plane 6 = 7/2
reads

2 2
i 1+ Tg + LQQ + D71)27‘7g aﬁ _
c? rs  2rs  2(D—2)c?rs ot

2D —1)v®r, 08 S <1 1 rg>(as>2_

12 2:0

(3.3)

(D —2)c? r3 Ot Oz
2
AL g\ (OSNT rg)
3 D—2r3 o D—2r;3
2 2
(25) 4ot (55 | -t 0.

X (3.4)
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We investigate this equation by the separation of vari-
ables considering the action in the form

S = —E't+M+5S,,(r3)+5s (z*)+...+Sp (z") . (3.5)

Here, E' ~ m/c?+ F is the energy of the test body, which
includes the rest energy m/c? and the non-relativistic en-
ergy F, and M is the angular momentum. Substituting
this expression for the action S in formula (3.4), we ob-
tain an expression for (dS,., /dr3)? holding the terms up
to the order 1/c?:

ds,,\? ) .\ E?
( d7~;> ~ (Qm/E — (p4 + ... erD) + 02> -

1 Dm/ZCZ,rZ
S PV I
2 2(D —2)

1 2(D —1)
_|_T3<m/202,rg+ 53

m'Erg +

D
2(D—-1
Tg’U2 + ((D_2))m’7‘g E Uapa>, (36)
a=4

where p, = 95/0z% = dS,/dz®* (a = 4,...,D) are
the components of the momentum of the test body in
the extra dimensions. If the gravitating and test masses
are localized on the same brane, then these components
are equal to zero. Integrating the square root of this
expression with respect to 73, we get Sy, in the form

E2
S, ~ / [(2m’E — (pZ + ... +p2D) + 02> +

2D — 1)
D -2

+Lm/2
2(D —2)

m'Erg +

D
D e 2 20-1 , o
—|—2(D_2)m rev” + (D—2) mrg;v Pa
1/2
1 Dm/2¢2p2
- M- drs. 3.7
r§< 2(D — 2) "3 (3.7)

It is well known (see, e.g., § 47 in [26]) that, for any
integral of motion I of a system with action S, the fol-
lowing equation should hold:
oS

—— = const.

- (3.8)

Because the angular momentum M is the integral of mo-
tion, the trajectory of a test body is defined by the equa-
tion
os
oM

a5,
oM

¥+ (3.9)

= const,
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where we use (3.5).

Let now the Sun be the gravitating mass, and let the
planets of the solar system be the test bodies. Then the
change of the angle during one revolution of a planet on
its orbit is

0

A= o

ASy, , (3.10)
where AS,, is the corresponding change of S,,. It is
well known that the perihelion shift originates due to a
small relativistic correction € to M? in S,,:  M?/r? =
(M? — €)/r2. Relation (3.7) shows that, in our case,
e = Dm?¢*r2/[2(D — 2)]. Expanding S, in powers of
this correction,

85(0)
2 ~ a0 T3 _
Srs - Sr3(M 75) ~ Sﬁg) 7687]\432 -
0
= §00) _ iasﬁQ —
s 2M OM
0
_ g0 Dm/%c*r? 95t (3.11)
s T AD—2)M oM’ '
where Sﬁg) = S,,(M?), we obtain
Dm23r2 9AS®
AS,, ~ AS© — DMC Ty 085 (3.12)

AD-2)M oM

Differentiating this equation with respect to M, we get

D7rm’202r3

where we took into account that —aAsﬁ? JOM =
A(©®) = 27, Therefore, the second term in (3.13) gives
the required formula for the perihelion shift in our mul-
tidimensional case:

D7rm’2027“§

o = 2(D —2)M2

Drry
(D —2)a(l —e2)’

(3.14)

In this equation, we used the well-known relation M? =
m'?r,ca(1l — €?)/2, with a and e being the semimajor
axis and the eccentricity of the ellipse, respectively. In
the three-dimensional case D = 3, this equation exactly
coincides with formula (101.7) in [22]. It can be easily
seen that result (3.14) does not depend on the motion of
the gravitating and test masses in the extra dimensions.

It makes sense to apply this formula to Mercury, be-
cause it has the most significant discrepancy in the so-
lar system between the measurement value of perihelion
shift and its value calculated with the use of Newton’s
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formalism. The observed discrepancy is 43.11+0.21 arc-
sec per century. This missing value is usually explained
by the relativistic effects of the form (3.14). However,
only in three-dimensional case D = 3, relation (3.14)
gives the satisfactory result 42.94” which is within the
measurement accuracy. For the D =4 and D = 9 mod-
els, we obtain 28.63" and 18.40", respectively, which are
very far from the observable value.

3.3. Deflection of light

Let us consider the propagation of light in a gravitational
field with metric (2.52). In the case of massless particles,
the Hamilton—Jacobi equation (3.3) is reduced to the
eikonal equation:

;5 00 OV
kaxiﬁ =0. (3.15)

For metric (2.52), it reads

2 2
c? rs  2ri  2(D —2)c?rs ot

2D -1y 0T OV (1 rg) (OF 2
(D —2)c? r3 Ot Oz~

2
() (2 ()
3 D—2r; o D—2r;3
MEANEN LAY
Ot dxP
where we take into account that light propagates in the

orbital plane § = 7/2. The eikonal function ¥ can be
written in the form

~0, (3.16)

W
U = —wot + p—cow +W,,(rs) +

+0y (2) + U5 (2°) + ... + Tp (2P) | (3.17)
where wy = —0WU /0t is the frequency of light, and p is
a constant. Later, we will show that p is the impact
parameter, i.e., the distance of the closest approach of
ray’s path to the gravitating mass. Taking into account
that k = wp/c is the absolute value of the wave-vector,
it is clear that M = pk = pwoy/c plays the role of the
angular momentum for the light beam.

We now consider the natural case where light propa-
gates in our three-dimensional space and does not have
components of the momentum in the extra dimensions,
ie, po = d¥,/dz* =0, a =4,...,D. Then, from
(3.16) and (3.17) up to the order O(1/c*), we obtain the
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following formula:

d\IjTg 2/\}&8 ]__Lrig 71><
drs T2 D—2r3

2 2

wg D—-1ry, p
— _— == 3.18
2 ( D—2r;3 rg) (3.18)

Integrating this expression, we get
1/2
wo D—-1r, p?

v, ~— _— = - d 3.19
e ( D rs 13 " (8.19)

Considering the term with r,/rs as a small relativis-
tic correction, we expand the integrand up to the order

O(1/c3):

D-1 ryw —-1/2

a0 0 2 2\~ —

\Ifr3~‘115«3)+m97/(7"3—/’) drs =
D-1

S Doy e ety Y

where the non-relativistic (i.e., gravity is absent: r, = 0)
eikonal function is

r
1/2

. wo ) 2 M2

= —) - — drs. 3.21
/ (( c r3 " (3:21)

In this non-relativistic approximation, the trajectory of

the light beam is a straight line. Indeed, we have in this

case (by full analogy with (3.9)):

o) NS
aaM =0 4 8873 = —arccos(p/r3) = 0. (3.22)

Here, the constant is taken in such a way that (@ —
7w/2 for r3 — oo. Thus, the trajectory p = r3cos )
is a straight line. Obviously, in the non-relativistic
case, the total change of the angle 1(© is Ayp©® =
—0ATY) /oM = r.

Coming back to the relativistic case (3.20), the change
of the eikonal function for the light beam traveling from
some distance r3 = R to the closest approach to the
gravitating mass at r3 = p and again to the distance
r3 = R is

D —1 rywo

AV, ~ A\Ifgg) + =— arccoshE .

D5 ; (3.23)
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The corresponding change of the polar angle 1 is

o =9+ 0%y, _ const =
oM oM
_0AY,, oATY)
M=o Yo Y
D—-1rqR ,_, o\—1/2
— — (R° - . 3.24
D g, Hr) (3.24)
Thus, in the limit R — 400, we finally get
D—-1r
Ay = - g, 2
ESE s D-2 ) (3.25)

Therefore, the second term in (3.25) gives the required
formula for the deflection of light in our multidimen-
sional case:

D—-1r,

fp=—7—2 8

: 3.26

For the three-dimensional case D = 3, this equation ex-
actly coincides with formula (101.9) in [22].

We now apply this formula to the Sun. Obviously,
the radius R of the Sun is much greater than the size of
the extra dimensions, and approximation (2.46) works
well at the distances r3 > R. For general relativity and
for a ray that grazes the Sun’s limb, d¢ ~ 1.75 arcsec
is in very good agreement with observational data [12].
Relation (3.26) shows that we get this value of 41 only
for the usual three-dimensional space. In the cases where
D =4 and D = 9, we obtain, respectively, d¢ =~ 1.31”
and d¢ ~ 1.00”, which are very far from the observable
value.

4. Soliton and Black String Metrics

Our previous analysis demonstrates that the physically
reasonable delta-shaped matter source in the multidi-
mensional Kaluza—Klein model results in asymptotic
metric coefficients, which do not provide the correct val-
ues for the classical gravitational tests if D > 3. On
the other hand, there are a number of well-known exact
vacuum solutions for the Kaluza-Klein models. There-
fore, it is of interest to determine the relationship be-
tween these exact solutions and our asymptotic metric
coefficients. In this regard, we will investigate a 5-D
static metric in isotropic (with respect to our three-
dimensional space) coordinates:

ds® = A(rs)cPdt® + B(rs) (dz? + dy* + dz*) +

+C(r3)dg?, (4.1)
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where r3 = /22 4+ y? + 2z2. This spacetime has two
Killing vectors 0/0t and 9/9¢. It is clear that the ap-
propriate energy-momentum tensor should not depend
on the time ¢ and the fifth coordinate £&. We suppose
that metric (4.1) is a solution of the vacuum Einstein
equation

Rix =0 (4.2)

with the proper boundary conditions.

To our knowledge, the first solution of the form (4.1) in
non-isotropic “Schwarzschild-like” coordinates was found
in [14] and reads

a’ —a’ —b'
b b
ds* = (1 - ,) Adt* — (1 - ,) dri? —
T3 T3

b 1—a’—b’ b b’
(o) (o) e

where @’ and b’ are constants satisfying the condition

(4.4)

(4.3)

a'2+a/b/+b/2:1,

and the parameter b is usually connected with the grav-
itating mass: a’b = 2Gym/c* = r,. Then, in the
isotropic coordinates, this solution was obtained in [15]
and [16] and dubbed the soliton solution in the liter-
ature. Its generalization for D > 5 was recently per-
formed in [27]. In our paper, we choose the metric in
the parametrization proposed in [16]:

ds® = ars — 1 26k02dt27 17L 2><
C\arg+1 a®r?

2e(k—1)
3+1
o <a7”3 + > (d?“% +7”§ng) _

arg — 1
2e
ars +1 9
_ d 4.5
(argl) &, (4.5)

where a, ¢ and k are constants, and the parameters ¢ and
k satisfy the condition

(K —k+1)=1. (4.6)

The Schwarzschild-like solution (4.3) and the soliton so-
lution (4.5) are connected by the relations

b\ 2
and
i / 4
az&k,bz—é,azz. (4.8)

It follows from (4.7) that r§ = r3+O(1/c?) if b= 4/a =
re/d.
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In the approximation f = 1/(ars) < 1 and up to
O(f), we obtain the following formulas for the metric
coefficients of (4.5):

2e(k—1)
B(rz)=—(1- f2)2 <1+f> ~

1—f
z—1—45(k—1)f:—1—$ (4.9)
3
and
2e
Clrs) = — (ﬂ) ~—1—def=—-1— j—;. (4.10)

Comparing these expressions with our asymptotic metric
coefficients from (2.52) (where D = 4 and v = 0)

T r
B(r3)~—-1—- -2 CO(r3)~-1- 2L 4.11
(r3) T (r3) T (4.11)
we get
1 8
k=2 e= a= (4.12)

Here, we took relation (4.6) into account. Finally, for
A(rs) from (4.5) up to O(f?), we get

]-_f 2¢ek
Alrs) = <1+f> ~1—dekf + 87K f7 =
dek  8e2k? Ty Th
=1- ? + a27“2 = - 7 ﬁ (413)

in complete analogy with the asymptotic metric coeffi-
cient A(rs) in (2.52). Therefore, for parameters (4.12),
the soliton metric (4.5) reads

4
d52 _ ]‘7\/37’9/87‘3 ﬂczdtZ o
1+ V3ry /873

S

o o2 [ 143,83

1+\/§rg/8r3 i 9
N \/grg/m) e, (4.14)

Our analysis shows that this form of the metric provides
the correct asymptotic behavior in the case of a delta-
shaped matter source. Metric (4.14) is the exact solution
of the Einstein equation for the gravitating mass at rest
(v = 0) “smeared” uniformly over the extra dimension.
The only non-zero component of the energy-momentum
tensor is Tpg. We can prove it in the following way. It

x (dr3 + r3dQ3) — (
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is clear from the previous consideration that the metric
coefficients in (4.14) up to the terms 1/c? read

r
goo~1—-2=1+hg,

T3
oo ~ — _;79:_1+hao¢ =
3
Tg 'I"g
hoo = —9 how = —29 0 =1,2,34. (4.15)
3 2r3

With the same accuracy, the components of the Ricci
tensor are

1 1 1
ROO ~ *Ahoo = 77A717g = 7GNmAf =
2 2 1 c? r3
4G nmé(r 1
= NT(?’) = k;N §m6(r3)027
1
Roo ~ ky Zmé(rg)c2 , a=1,2,34, (4.16)

where ky = 87Gy/c*, and the operator A is defined
in (2.13). Taking into account that the matter source
is at rest, we may conclude from (4.16) that the only
non-zero component of the energy momentum tensor is
Too. Hence, for the Einstein equations, we obtain

1 2
Roo = K" (Too - 3T900> =k gToo,

Raa =k’ (Taa - ;Tgaa) ~

~ ]{j” %TOO, a = 1,2,3,4, (417)
where k" = 2SpGp/c* in accordance with (2.3). There-
fore, from (4.16) and (4.17) up to the terms c?, we get
Too =~ % %m 5(r3)c? = ailmé(rg)c2 , (4.18)
where a7 is the size of the extra dimension (the pe-
riod of the torus), and we take the relations Gp =
2(D - 2)/(D — 1)]Gp and SpGp/ [, aa = 4nGy
into account. We can write (4.18) in the form Tpo ~ pc?,
where p = (m/a1) é(r3) in accordance with (2.47). This
energy momentum tensor has a delta-shaped form. How-
ever, we can generalize this consideration to the case of
a finite-size spherically symmetric gravitating body at
rest smeared uniformly over the fifth compact dimension.
Analyzing the Einstein equations (where we should keep
the terms up to 1/c?), we can conclude that the met-
ric coefficients outside of the body should take the form
(4.15). In this case, Too = 0 and Toy ~ mc?/(Vzay)
outside and inside the body, respectively, and V3 is the
three-dimensional part of the body volume.
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All others soliton metrics (4.5) with the parameters
different from (4.12) have no correspondence with the
asymptotic metric (2.52). Besides the non-zero compo-
nent Tyg, these models will also have some other non-
zero components of the energy-momentum tensor, which
have no clear physical origin. It is worth noting that, in
works [5, 6], the classical tests of general relativity were
applied to the soliton solutions, and it was shown that
these models do not contradict the observations if the
modulus of the parameter € in (4.5) is at most 0.07. Ob-
viously, this value is much less than ¢ = 1/v/3 ~ 0.58 in
(4.12). This result confirms the conclusion of the pre-
vious section that the multidimensional Kaluza—Klein
models with a physical reasonable source of matter (with
smeared or not smeared extra dimensions) do not satisfy
the experimental data.

There is one interesting particular example satisfying
the condition |e| < 0.07 which corresponds in (4.5) to
the limit

e—0, k— +oo, ek — 1, (4.19)

or to the limit ' — 1, " — 0 in the Schwarzschild-like
metric (4.3). In this limit, metric (4.5) reads

ds? = (232 ! 2c2dt2 _ (e tt ' X
T \arg+1 ars

x (dri 4+ r3dQ3) — dg*. (4.20)

It can be easily seen that the four-dimensional part of
this metric (which corresponds to the section £ = const)
is the pure Schwarzschild metric (for a = 4/ry) in
isotropic coordinates. Metrics of the form (4.20) are of-
ten called the uniform black strings. From this metric
up to the terms 1/c2, we get

-
goo ~ 1 — -2 =1+ hqo,

T3
gaaz_l_Tig:_l"_hocav 04:1727?%
T3
guu=-1=-1+hy =
r
hoo = h11 = h22 = h33 = —Ti, h44 =0. (421)
3

With the same accuracy, the components of the Ricci
tensor are

1 1. r Gnm 1
~ = =—-AL =— A— =
Roo 2 hOO 9 rs 62 r3
47rGNm5(r3) 1 2
— T = k‘N im(s(rg)c 5
1

Rll = R22 = R33 ~ kN 5m(5(1‘3)627
Ry =0. (4.22)
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For a gravitating mass at rest in view of (4.22), we arrive
at the conclusion that Ty and Ty4 are the only non-zero
components of the energy momentum tensor. Thus, the
FEinstein equations take the form

1
Roo = K" (Too - 3T900> ;

1
Ry1 = Roy = R33 = k" (—3T911> ,

1
R44 = k/l <T44 - 3Tg44) . (423)

Therefore, from (4.22) and (4.23) up to the terms c?, we
get

kN 4m

N 2_*m 2
Too ~ o md(rs)c 3alé(r3)c ,

1k 2m
T44 =~ —ik—lxmé(rg)g = —gaé(r3)02,

T = Toog”® + Tuag** =~

~ SN (rs)e? = 2ﬁ(5(1‘3)c2 . (4.24)
ai

The presence of the non-zero component Ty, results in a
non-vanishing tension of black strings (see, e.g., [18,19]).
Relation (4.24) shows that the value Ty is two times big-
ger than the modulus of Ty4. A similar relation exists
for the ADM mass and the tension (see, e.g., (B.11) and
(B.12) in [18]). For the soliton solution (4.14), the ten-
sion is absent. This follows from the fact that Ty, = 0,
or we can see it also from (B.12) in [18], where we should
insert the correction terms h;; from our relation (4.15).

Thus, we can conclude the following. The black string
solutions (4.20) do not contradict the classical gravi-
tational tests. However, the matter sources for these
metrics have non-zero tension. It is hard to imag-
ine that astrophysical objects, e.g. the Sun, can have
such energy momentum tensor. On the other hand,
it is natural to suppose that, for gravitating masses
(e.g., ordinary astrophysical objects) at rest, Ty is
the only non-zero component of the energy momen-
tum tensor. As we have seen above, the soliton solu-
tion (4.14) has the matter source with such clear phys-
ical interpretation. Moreover, the metric coefficients for
this solution have the asymptotic form, which corre-
sponds to the correct non-relativistic Newtonian limit
for a gravitating mass. However, analysis conducted
in the previous section shows that this multidimen-
sional Kaluza—Klein metric contradicts the experimental
data.
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5. Conclusion and Discussion

In our paper, we have investigated the classical gravita-
tional tests (frequency shift, perihelion shift, and deflec-
tion of light) for multidimensional models with compact
internal spaces in the form of torus. We have supposed
that, in the absence of gravitating masses, the metric
is a flat one. Gravitating masses (moving or at rest)
perturb this metric, and we have considered these per-
turbations in a weak-field approximation. In this ap-
proximation, we obtained the asymptotic form of the
metric coefficients. Up to this point, we did not require
the compactness of extra dimensions. This approach is
valid for any number of spatial dimensions D > 3 and
generalizes the well-known calculations [22] in the four-
dimensional spacetime. Then, we have admitted that,
first, the extra dimensions are compact and have the
topology of a torus and, second, the gravitational po-
tential far away from gravitating masses tends to the
non-relativistic Newtonian limit. It gave us a possibility
to specify the non-relativistic gravitational potential for
the considered models. In turn, this enabled us to spec-
ify the metric coeflicients. In the case of a gravitating
body at rest, we used these metric coefficients to calcu-
late the frequency shift, perihelion shift, and deflection
of light. We have demonstrated that, for the frequency
shift type experiment, it is hardly possible to observe
the difference between the usual four-dimensional gen-
eral relativity and the multidimensional Kaluza—Klein
models. However, the situation is quite different for the
perihelion shift and the deflection of light. In these two
cases, we obtained formulas, which generalize the cor-
responding ones in general relativity. We have shown
that both of these formulas (for perihelion shift and de-
flection of light) depend on a total number of spatial
dimensions D, and they are in good agreement with ob-
servations only in the ordinary three-dimensional space
D = 3. This result does not depend explicitly on the
size of the extra dimensions. Therefore, it is impossible
to avoid the problem with classical gravitational tests in
a limit of arbitrary small sizes of the extra dimensions.

As was mentioned in Introduction and Section 4, there
is a range of parameters for the soliton solutions (4.5)
(or, equivalently, (4.3)), for which the classical grav-
itational tests satisfy the observational values. How-
ever, this range of parameters is quite far from the val-
ues, which enable the metric coefficients to have the
asymptotic form (2.52) corresponding to the correct
non-relativistic Newtonian limit for a gravitating mass.
Moreover, in this case, the energy momentum tensor
has the form that is hard to imagine for ordinary as-
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trophysical objects. For example, the black string so-
lutions belong to this class of the parameters and have
matter sources with non-zero tension. It is very difficult
to explain how the astrophysical objects, e.g. the Sun,
can have such energy momentum tensor. On the other
hand, we have found the exact soliton solution (4.14)
with metric coefficients of the asymptotic form (2.52).
Here, the matter source has a delta-shaped form, and
Too is the only non-zero component of the energy mo-
mentum tensor. Such energy momentum tensor has a
clear physical interpretation for a gravitating mass at
rest. However, our analysis demonstrates that this mul-
tidimensional Kaluza—Klein metric contradicts the ex-
perimental data. So, we arrive at the following situa-
tion: either we have the metrics (e.g., the black string
(4.20)), which do not contradict the observations, but
have to deal with very unnatural (for ordinary astro-
physical objects) energy momentum tensors for matter
sources, or we have the metrics (e.g., our soliton solu-
tion (4.14)), which correspond to physically reasonable
matter sources, but contradict the experimental data.

Therefore, the considered multidimensional Kaluza—
Klein models face a severe problem. This testifies to the
need for a strong reconsideration of the foundations of
extra-dimensional models. A possible resolution might
be provided in models with branes or with a non-linear
action f(R). However, to prove the viability of these
models, it is necessary to perform the similar investiga-
tion.
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KJIACUYHI TECTU BATATOBUMIPHOT I'PABITALIII:
HETATUBHUN PE3VJILTAT

M. Etneopn, A. Kyx
PezwowMme

Y moneni Kanynu—Kieiina 3 TopoigajspHIMU TOJATKOBUME BUMi-
paMy MU OTPHUMYEMO METPUUHI KOedIIIEHTH IJIsl AesIbTA0IIOHIX
MaTepiaJbHUX JKepes y Habau»KeHHi cyrabkoro moJist. 11i merpuysni
KoedilieHTH 3acTOCOBaH] /I8 3HAXOXKEeHHsI (DOPMYJI JIJIsT 9acCTO-
THOI'O 3CyBY, 3CyBY HEPUTEJIIIO Ta BiXUJIEHHS CBITJIa. Y NOJIOBHOMY
nopsAaKy HabsuykeHHs (popMysIa A1 9aCTOTHOrO 3CyBY 30iraerncs
3 IIMPOKO BiJIOMUM BHPa30M 3araJibHol Teopil BiagnocHocTi. OpHak
IJIsI 3CYyBY IIEPUTENIIIO Ta BIAXUJIEHHS CBITVIa OTPHMYEMO (OpPMY-
s Drrg/[(D — 2)a(l — €2)] Ta (D — 1)rg/[(D — 2)p] Binnosinmo,
ne D — 3aranpHa KijnbKicTe npocroposux suMmipis. Ili Bupasu me-
MOHCTPYIOTb J0Ope Y3rO/PKEeHHS 3 €KCIIEPUMEHTAJIbHUMU JAHUMU
JIMIIe y BUIAQJKY 3BHYaiiHoro tpusuMipaoro (D = 3) mpocropy.
Ileit pe3sysnbraT He 3ajIEXKUTH Bij PO3MIpYy JIOAATKOBUX BUMIpIB.
Mu Takox oTpuMyeMO TO4YHHIT 5-D cosriToHHMI PO3B’sI30K 3 IIpa-
BHJIBHOIO HEPEJISITUBICTCHKOIO HBIOTOHIBCHKOIO I'DaHHUIEI0. TeHzop
eHepTil-IMITy/IbCy ISl OO PO3B’sI3KYy Ma€ 4iTKy i3udHy iHTEp-
nperamifo. Tum He MeHIN, KjacUYHI TeCTH I Ii€] METPUKH He
3a0BIIBHAIOTE ekcrepuMenTaabai nami. Orxke, posriusHyTi 6ara-
ToBuMipHi Mojesni Kanyuu—Kieiina crosaTs mepeji cepiio3HOIO IIpo-
61emoro.
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