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First, we briefly review the definitions and the basic properties
of operads and trees. There are many useful types of operads,
and each type is determined by the choice of two categories: basic
symmetric monoidal category (C, �), which supports the classical
linear operads, and a category of graphs Γ reflecting the combi-
natorics of operadic data and axioms [1–6]. From this viewpoint,
the specific operad is a functor Γ → C. Second, our aim is the
construction of the category of Vilenkin–Kuznetsov–Smorodinsky–
Smirnov (VKSS) trees, which contains VKSS-trees as objects and
morphisms generated by a rotation of the n-dimensional space and
transforming functions of VKSS-trees.

1. Introduction

The method of trees was invented to elucidate some
problems of Lie group representations, and it was de-
veloped in the 1960-1970s by Vilenkin, Kuznetsov,
and Smorodinsky (VKS) [7–11]. The further develop-
ment of the Vilenkin–Kuznetsov–Smorodinsky method
to Vilenkin–Kuznetsov–Smorodinsky–Smirnov (VKSS)
trees was given by Yu. F. Smirnov [12, 13] on the
base of the conception of complementarity of Lie groups
(in the sense by Moshinsky [14]), which exists between
groups O(n) and Sp(2, R). In particular, the prob-
lem of calculation of operator matrix elements in the
method of K-harmonics is solved, which determined,
in the long run, the practical significance of these re-
sults.

2. Classical Operads

Let us recall (see [15]) that the symmetric monoidal cat-
egory (C,�) is a category endowed with the bifunctor

� : C × C → C together with the involutive commutativ-
ity constraint and the associativity constraint. Taken to-
gether, they define a family of compatible and functorial
isomorphisms s∗ : X1�· · ·�Xn→̃Xs−1(1)�· · ·�Xs−1(n),
for any of objects X1, . . . , Xn of C and all s ∈ Sn. The
symmetric group Sn is defined as a group of bijections
n→ n, where n = {1, . . . , n}.

Most of our monoidal categories will have an identity
object 1C = 1. The functors 1� and �1 : C → C are
canonically isomorphic to the identity functor. We as-
sume that C has small colimits preserved by any functor
X�. In particular, C must have an initial object 0.

Classical linear operads arise in the same way, when
we start with a linear space V endowed with a family P
of poly linear operators V ⊗m → V,m = 1, 2, 3, . . . (e.g.,
an associative algebra is such a space endowed with a
multiplication map V ⊗2 → V ). Closing P with respect
to compositions (of functions with many variables) and
linear combinations, we get a (specific) classical operad
together with its linear representation in V . Axiomatiz-
ing the universal properties of such an object, we arrive
at the following notion.

Definition 2.1 A classical operad P consists of
data a) – d) satisfying axioms A) – C) below.
a) A family of linear spaces P(l), for all l ≥ 1.
b) A left/right linear action of Sl on P(l), for all l ≥ 1 :
s ∈ Sl maps f ∈ P(l) to fs = s−1f .
c) A family of composition maps γ(k1, . . . , kl), for all
l ≥ 1, ka ≥ 1:

γ(k1, . . . , kl) : P(l)⊗P(k1)⊗· · ·⊗P(kl)→ P(k1+· · ·+kl) .
(1)

d) (Optional). An identity element I ∈ P(1).
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We will state the axioms for these data in two forms:
directly in terms of γ and in functional notation. For
the latter, put P = ⊕∞k=1P(k) and notice that (1) allows
us to consider each f ∈ P(l) as a polylinear function
P l → P:

f(g1, . . . , gl) := γ(f ⊗ g1 ⊗ · · · ⊗ gl) , (2)

where γ = γ((k1, . . . , kl) if ga ∈ P(ka). We will often
write simply γ for such multigraded components of the
operadic composition.

A) The symmetric group Sl acts on the functions (rep-
resented by) P(l) by a permutation of arguments:

(fs)(g1, . . . , gl) = f(s(g1, . . . , gl)) . (3)

In γ-notation:

γ(fs⊗ g1 ⊗ · · · ⊗ gl) = γ(f ⊗ s(g1 ⊗ · · · ⊗ gl)) . (4)

In addition, for s1 ∈ Sk1 , . . . , sl ∈ Skl , we denote, by
s1× · · ·× sl ∈ Sk1+...+kl , the image of (s1, . . . , sl) acting
blockwise upon

(1, . . . , k1|k1 + 1, . . . , k1 + k2| . . . |k1 + · · ·+ kl−1 + 1, . . . ,

. . . , k1 + · · ·+ kl) .

Then

f(g1s1, . . . , glsl) = (f(g1, . . . , gl))(s1 × · · · × sl) . (5)

In γ-notation:

γ(f⊗g1s1⊗· · ·⊗glsl) = (γ(f⊗g1⊗· · ·⊗gl))(s1×· · ·×sl) .
(6)

B) The composition maps are associative with respect to
the substitution (in functional notation). That is, for
any f ∈ P(l), ga ∈ P(ka), a = 1, . . . , l, and ha,b ∈
P(la,b), b = 1, . . . , ka, we have

[f(g1, . . . , gl)](h1,1, . . . , h1,k1 ; . . . ;hl,1, . . . , hl,kl) =

= f(g1(h1,1, . . . , h1,k1), . . . , gl(hl,1, . . . , hl,kl)) . (7)

In γ-notation:

γ(γ(f ⊗ g1 ⊗ · · · ⊗ gl)⊗ h1,1 ⊗ · · · ⊗ hl,kl) =

= γ(f ⊗ γ(g1 ⊗ h1,1 ⊗ · · · ⊗ h1,k1)⊗ · · ·
· · · ⊗ γ(gl ⊗ hl,2 ⊗ · · · ⊗ hl,kl)) . (8)

C) (Optional). If P is endowed with identity I ∈ P(1),
then I and I⊗n become, respectively, left and right iden-
tical functions:

I(g) = g; f(I, . . . , I) = f , (9)

γ(I ⊗ g) = g; γ(f ⊗ I ⊗ · · · ⊗ I) = f . (10)

An operad endowed with identity which is considered as
a part of its structure will be called a unital operad.

We can now define a classical operad P in C by closely
following Definition 2.1. Components P(n) will be ob-
jects of C endowed with the action of Sn,⊗ will be re-
placed by �, and operadic multiplications γ will be mor-
phisms in C. Axioms A)− C) must be written down as
commutative diagrams involving, in particular, permu-
tation isomorphisms of tensor products in C.

Remark 2.1 Let us consider the main classes of
monoidal categories. Sets with direct product and linear
spaces with tensor product form two archetypal classes
of symmetric monoidal categories. Variations include
imposing an additional structure on the objects. Sets
more often appear endowed with a topology or a mani-
fold structure (in the smooth or analytic category). Lin-
ear spaces come equipped with grading and/or differen-
tial. In this way, we get classical topological operads,
classical operads in the category of complexes, and so
on. Monoidal functors between symmetric monoidal cat-
egories extend to the respective categories of operads.

3. Combinatorial Trees

We give here a graph-theoretic definition of (finite,
rooted, planar) tree. The main subtlety is that the trees
we use are not quite finite graphs in the usual sense:
some of the edges have a vertex at only one of their
ends. This suggests the following definitions.

Definition 3.1

A (planar) input − output graph(Fig. 1,a) consists
of

• a finite set V (the vertices)

• a finite set E (the edges), a subset I ⊆E (the
input edges), and an element o ∈ E (the
output edge)
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Fig. 1. (a) Input-output graph with 4 vertices and 2 input edges
i1, i2, (b) combinatorial tree with 4 vertices and 3 input edges
i1, i2, i3. In both, the numbers indicate the order on the edges
arriving at each vertex

• a function s : E\I −→ V (source) and a function
t : E\{o} −→ V (target)

• for each v ∈ V , a total order ≤ one on t−1{v}.

We write v e−→ to mean that e is a non-input edge with
s(e) = v and, similarly, e−→ v′ to mean that e is a non-
output edge with t(e) = v′. Of course, v e−→ v′ means
that e is a non-input, non-output edge with s(e) = v

and t(e) = v′. A tree is, roughly speaking, a connected,
simply connected graph, and the following notion of path
allows us to express this.

Definition 3.2 A pathfrom a vertex v to an edge e in
an input-output graph is a diagram

v = v1
e1−→ v2

e2−→ · · · el−1−→ vl
el=e−→

in the graph. That is, a path from v to e consists of

• an integer l ≥ 1,

• a sequence (v1, v2, . . . , vl) of vertices with v1 = v,

• a sequence (e1, . . . , el−1, el) of edges with el = e

such that

v1 = s(e1), t(e1) = v2 = s(e2), . . . , t(el−1) = vl = s(el),

and all of these sources and targets are defined.

Definition 3.3 A combinatorial treeis an input-
output graph such that, for every vertex v, there is pre-
cisely one path from v to the output edge.

Fig. 2. Tamari order on T3 and T4

Figure 1,b shows a combinatorial tree. The ordering
of the edges arriving at each vertex encodes the pla-
nar embedding. “Tree” is an abbreviation for “finite,
rooted,planar tree”. If we were doing symmetric oper-
ads, then we would use non-planar trees; if we were do-
ing cyclic operads, then we would use non-rooted trees;
and so on.

4. Geometric Interpretation of Trees

Let Tn be the set of rooted planar binary trees with n

interior nodes (and thus n+1 leaves). The Tamari order
(see [5]) on Tn is the partial order, whose cover relations
are obtained by moving a child node directly above a
given node from the left to the right branch above the
given node. Thus,

−→ −→ −→

is an increasing chain in T3 (the moving vertices are
marked with dots). Only basic properties of the Tamari
order are needed in this subsection; their proofs will be
provided. For more properties, see [5]. Figure 2 shows
the Tamari order on T3 and T4.

Let 1n be the minimum tree in Tn. It is called a right
comb, as all of its leaves are right pointing:

14 = , 17 = .

Given trees s ∈ Tp and t ∈ Tq, the tree s ∨ t ∈ Tp+q+1

is obtained by grafting the root of s onto the left leaf

of the tree
{

•QQ ��
}

and the root of t onto its right
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Fig. 3. Two views of the associahedron A3

leaf. Below, we display trees s, t, and s ∨ t, indicating
the position of the grafts with dots.

For n > 0, every tree t ∈ Tn has the unique decompo-
sition t = tl ∨ tr with tl ∈ Tp, tr ∈ Tq, and n = p+ q+1.
Thus, Tn is in bijection with

⊔
p+q−1 Tp × Tq. Since

T0 = { } and T1 =
{

•QQ ��
}
, Tn contains the Catalan

number (2n)!
n!(n+1)! of trees [7].

The Hasse diagram of Tn is isomorphic to the 1-
skeleton of the associahedron An, an (n−1)-dimensional
polytope. (See [16] and [17].) The faces of An are
in one-to-one correspondence with collections of non-
intersecting diagonals of a polygon with n+2 sides
(an (n+2)-gon). Equivalently, the faces of An corre-
spond to polygonal subdivisions of an n+2-gon with
facets corresponding to diagonals and vertices to tri-
angulations. The dual graph of a polygonal subdi-
vision is a planar tree, and the dual graph of a tri-
angulation is a planar binary tree. If we distinguish
one edge to be the root edge, the trees are rooted,
and this furnishes a bijection between the vertices of
An and Tn. Figure 3 shows two views of the asso-

ciahedron A3; the first as polygonal subdivisions of
the pentagon, and the second as the corresponding
dual graphs (planar trees). The root is at the bot-
tom.

Let Sn be the group of permutations of [n], which
denotes the set {1, 2, . . . , n}. We describe the map
λ : Sn → Tn in terms of triangulations of the (n+2)-gon,
where we label the vertices with 0, 1, . . . , n, n+1 begin-
ing with the left vertex of the root edge and proceeding
clockwise. Let σ ∈ Sn, and let wi := σ−1(n+ 1− i), for
i = 1, . . . , n. This records the positions of the values of
σ taken in decreasing order. We inductively construct
the triangulation, beginning with the empty triangula-
tion consisting of the root edge. After i steps, we have
a triangulation τi of the polygon

Pi := Conv{0, n+1, w1, . . . , wi} .

Some edges of Pi will be edges of the original
(n+2)-gon, and others will be diagonals. Each
diagonal cuts the (n+2)-gon into two pieces, one
containing Pi and the other containing a poly-
gon, which is not yet triangulated and whose root
edge we take to be that diagonal. Subsequent
steps add to the triangulation τi and its support
Pi.

First set τ1 := Conv{0, n+1, w1}, the triangle with
base the root edge and apex the vertex w1 = σ−1(n).
Set P1 := τ1 and continue. After i steps, we have con-
structed τi and Pi in such a way that the vertex wi+1 is
not in Pi. Hence, it must lie in some untriangulated poly-
gon consisting of some consecutive edges of the (n+2)-
gon and a diagonal that is an edge of Pi. Add the join
of the vertex wi+1 and the diagonal to the triangulation
to obtain a triangulation τi+1 of the polygon Pi+1. The
process terminates when i = n.

For example, we display this process for the permuta-
tion σ = 316524, where we label the vertices of the first
octagon:

3 4

2 5

1 6
7−→ 7−→ 7−→ 7−→
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The last two steps are suppressed, as they add no new
diagonals. The dual graph to the triangulation τn is
the planar binary tree λ(σ). Here is the triangulation,
its dual graph, and a “straightened” version, which we
recognize as the tree λ(316524).

A subset S of [n] determines a face ΦS of the associ-
ahedron An as follows. Suppose that we label the ver-
tices of the (n+2)-gon as above. Then the vertices la-
beled 0, n+1 and those labeled by S form a (#S+2)-gon,
whose edges include a set E of non-crossing diagonals of
the original (n+2)-gon. These diagonals determine the
face ΦS of An corresponding to S. We give two examples
of this association when n = 6 below.

{1, 2, 5, 6} ←→

3 4

2 5

1 6
{2, 4, 5} ←→

3 4

2 5

1 6

We determine the image of fζ using the above de-
scription of the map λ : Sn → Tn. We say that a
face of A√+q of the form ΦS with #S = q has type

(p, q). If a face has a type, this type is unique. A per-
mutation ζ ∈ S(p,q) is uniquely determined by the set
ζ{p+1, . . . , p+q}. Therefore, a face of type (p, q) is the
image of fζ for a unique permutation ζ ∈ S(p,q). This
allows us to speak of the vertex of the face corresponding
to a pair (s, t) ∈ Tp × Tq (under fζ).

5. Classical Operads as Functors

By Treeclas, we denote the category, whose objects are
finite rooted trees with the following properties: a) the
multiplicity of each vertex is at least two; b) at each
vertex, either all incoming flags are halves of edges, or
all incoming flags are tails. Morphisms are generated by
the following two classes of maps:

a) Isomorphisms compatible with orientation.
b) Contraction of all edges having a common vertex

with some outgoing flag and keeping orientation.
More formally, a morphism ϕ : σ → τ consists of two

maps ϕV : Vσ → Vτ and ϕF : Fτ → Fσ compatible
with boundaries and involutions and such that ϕF sends
tails to tails. Composition of the morphisms corresponds
to the composition of the induced maps on vertices and
flags. A morphism contracts an edge e if ϕV glues its

vertices, and both flags of this edge do not belong to the
image of ϕF .

Contractions of different edges commute in an evident
sense.

Let v be a vertex of a rooted tree T . Its star Tv is
a one-vertex tree with vertex v, tails FT (v), and the
outcoming flag as a root.

Proposition 5.1 The category of classical operads
(without identity) in a symmetric monoidal category
(C,�) is equivalent to the category of functors P :
Treeclass → C isomorphic to a functor satisfying the fol-
lowing condition:

P(T ) = �v∈VTP(Tv) . (11)

Sketch of Proof see in [6].

Definition 5.1 From the graph-theoretic viewpoint, it
would be more natural to allow all rooted trees with |v| ≥
2 as objects, and contractions of any subset of edges as
morphisms. The functors from this category TreeM to
C satisfying (11) (up to functor isomorphism) are called
Markl′s operads.

Remark 5.1 Consider now the category Treecyc of fi-
nite non-rooted trees with |v| ≥ 2, with morphisms gener-
ated by the contraction of edges and isomorphisms. Nei-
ther root nor orientation is a part of the structure. Func-
tors Treecyc → C satisfying (11) are essentially cyclic
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operads in the sense of [18]. The most essential new
feature of cyclic operads is the action of Sl+1 upon P(l).

6. Classifying Space of the Category of Stable
Trees

Let us consider a graphical definition of a category of
trees. By Definition 3.3, tr is the free plane operad on
the terminal object of SetN, and an n-leafed tree is an
element of trn. As we saw, the sets trn also admit the
following recursive description:

• | ∈ tr1

• if n, k1, . . . , kn ∈ N and τ1 ∈ trk1 , . . . , τn ∈ trkn
then (τ1, . . . , τn) ∈ trk1+···+kn .

A category of trees Tree is the disjoint union∐
n∈N Treen. An object of Treen is an n-leafed tree.

The set of maps in Treen is

(T 2
2 1)(n) = (T2(tr))(n),

that is, a map is an n-leafed tree τ, in which each k-
ary vertex v has assigned to it a k-leafed tree σv; the
domain of the map is the tree obtained by gluing the
σv’s together in the way dictated by the shape of τ , and
the codomain is τ itself. Put another way, what a map
does is to take a tree σ (the domain), partition it into a
finite number of (possibly trivial) subtrees, and replace
each of these subtrees by the corolla

•QQ
· · ·��

with the same number of leaves, to give the codomain
τ . Figure 4 depicts a certain map σ −→ τ in Tree4 in
three different ways: in (a) as a 4-leafed tree τ with a
k-leafed tree σv assigned to each k-ary vertex v, in (b)
as a 4-leafed tree σ partitioned into subtrees σv, and
in (c) as something looking more like a function. We
will return to the third point of view later; for now, just
observe that there is an induced function from the ver-
tices of σ to the vertices of τ , in which the inverse image
of a vertex v of τ is the set of vertices of σv. In some
texts, a map of trees is described as something that “con-
tracts some internal edges”. (Here, an internal edge is an
edge that is not the root or a leaf; maps of trees keep
the root and leaves fixed. To “contract”an internal edge

(b)

σ

(a)

τ

(c)

σ

τ

Fig. 4. Three pictures of a map in Tree4

means to shrink it down to a vertex.) With one impor-
tant caveat, this is what our maps of trees do: for in a
map σ −→ τ , the replacement of each partitioning sub-
tree σv by the corolla with the same number of leaves
amounts to the contraction of all the internal edges of
σv. For example, Fig. 5,a shows a tree σ with some of
its edges marked for contraction, and Figs. 5,b and 5,c
show the corresponding maps σ −→ τ in two different
styles (as in Figs. 4,b and c); so τ is the tree obtained by
contracting the marked edges of σ. The caveat is that
some of σv’s may be the trivial tree, and these are re-

placed by the 1-leafed corolla •. This does not amount

to the contraction of internal edges: it is rather the ad-
dition of a vertex to the middle of a (possibly external)
edge. Any map of trees can be viewed as a combination
of contractions of internal edges and additions of vertices
to existing edges. For example, the map illustrated in
Fig. 4 contracts two internal edges and adds a vertex to
one edge.

Some further understanding of the category of trees
can be gained by considering just those trees, in which
each vertex has at least two branches coming up out of
it. We call these “stable trees”, following Kontsevich and
Manin [19]. Formally, StTreen is the full subcategory of
Treen with objects defined by the recursive clauses

• | ∈ StTree1

• if n ≥ 2, k1, . . . , kn ∈ N, and T1 ∈
StTreek1 , . . . , Tn ∈ StTreekn
then (T1, . . . , Tn) ∈ StTreek1+···+kn ,

and an n-leafed stable treeis an object of StTreen. Since

a stable tree can contain no subtree of the form •, all

maps between stable trees are “surjections”, that is, con-
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(b)

σ

(a)

σ

(c) σ

τ

Fig. 5. Three pictures of an epic in Tree6

(a) (b)

Fig. 6. (a) The category of 3-leafed stable trees, and (b) its classifying space

(a) (b)

Fig. 7. (a) The category of 4-leafed stable trees, and (b) its classi-
fying space

sist of just contractions of internal edges, without inser-
tions of new vertices.

The first few categories StTreen are trivial:

StTree0 = ∅,
StTree1 = { | },

StTree2 =
{

•QQ ��
}

where, in each case, there are no arrows except for identi-
ties. The cases n = 3, 4, and 5 are illustrated in Figs. 6,a,
7,a, and 8,a.

Identity arrows are not shown, and the categories
StTreen are ordered sets: all diagrams commute. Ver-

Fig. 8. About half of the category of 5-leafed stable trees

tices are also omitted; since the trees are stable, this
causes no ambiguity. Parts (b) of the figures show
the classifying spaces of these categories, solid poly-
topes of dimensions 1, 2, and 3. In the case of 5-
leafed trees (Fig. 8), only about half of the category
is shown, corresponding to the front faces of the poly-
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tope; the back faces and the terminal object of the
category (the 5-leafed corolla), which sits at the cen-
ter of the polytope, are hidden. The whole poly-
tope has 6 pentagonal faces, 3 square faces, and the
3-fold rotational symmetry about the central vertical
axis.

For n ≤ 5, the classifying space B(StTreen) is home-
omorphic to the associahedronAn (see Fig. 3 above
and Fig. 9 below), and it seems very likely that this
persists for all n ∈ N. Indeed, the family of cate-
gories (StTreen)n∈N forms a sub-Cat-operad STTR
of Cat-operad TR, and the classifyingspace functor
B : Cat −→ Top preserves finite products, so there
is a (non-symmetric) topological operad B(STTR),
whose nth part is the classifying space of StTreen.
(To make B preserve finite products, we must inter-
pret Top as a category of compactly generated or Kel-
ley spaces: see [20] and [21].) This operad B(STTR)
is presumably isomorphic to Stasheff’s operad K =
(Kn)n∈N. A K-algebra is called an A∞-spaceand
should be thought of as an up-to-homotopy version of
a topological semigroup; the basic example is a loop
space.

The categories StTreen also give rise to the notion
of an A∞-algebra (see [22]). For each n ∈ N, there is
a chain complex P (n), whose degree k part is the free
Abelian group on the set of n-leafed stable trees with
(n− k − 1) vertices.

When the signs are chosen appropriately, this de-
fines an operad P of chain complexes. A P -algebra
is called an A∞-algebra, to be thought of as an up-
to-homotopy differentialgraded non-unital algebra; the
usual example is the singular chain complex of an A∞-
space.

A P -category is called an A∞-category(see [3]) and
consists of a collection of objects, a chain complex
Hom(a, b) for each pair (a, b) of objects, maps defin-
ing binary composition, chain homotopies witness-
ing that this composition is associative up to homo-
topy, further homotopies witnessing that the previ-
ous homotopies obey the pentagon law up to homo-
topy, and so on. Finally, since the polytopes Kn =
B(StTreen) describe higher associativity conditions,
they also arise in definitions of higher-dimensional cat-
egory. For example, the pentagon K4 occurs in the
classical definition of bicategory [3], and the polyhe-

Fig. 9. Classifying space of the whole category of 5-leafed stable
trees

dron K5 occurs as the “non-Abelian 4-cocycle condition”
in Gordon, Power, and Street’s definition of tricate-
gory [23].

We have already described the operad of trees as a set
trn of n-leafed trees. Maps σ −→ τ between trees are
described by induction on the structure of τ :

• if τ = | , then there is only one map into τ ; it has
domain | and we write it as 1 | : | −→ |

• if τ = (τ1, . . . , τn) for τ1 ∈ trk1 , . . . , τn ∈ trkn ,
then a map σ −→ τ consists of trees ρ ∈ trn), ρ1 ∈
trk1 , . . . , ρn ∈ trkn such that σ = ρ◦(ρ1, . . . , ρn),
together with maps

ρ1
θ1−→ τ1, . . . , ρn

θn−→ τn,

and we write this map as

σ = ρ◦(ρ1, . . . , ρn)
!ρ∗(θ1,...,θn)−→ (τ1, . . . , τn) = τ.

(12)

It follows easily that the n-leafed corolla νn = ( | , . . . , | )
is the terminal object of Treen: the unique map from
σ ∈ trn to νn is written as !σ ∗ (1 | , . . . , 1 | ). The rest of
the structure of a Cat-operad TR can be described in
a similarly explicit recursive fashion.

To make precise the intuition that a map of trees is a
function of some sort, the functors

V : Tree −→ Set, E : Treeop −→ Set
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(a)

V (θ)

σ

?
τ

θ

(b)

1

2

3 4
5

6

7

1
2

3 4

5,6 7

6
E(θ)

Fig. 10. Effect of a certain map of 4-leafed trees on (a) vertices
and (b) edges

can be defined, encoding what happens on vertices
and edges, respectively. Both functors turn out to
be faithful, which means that a map of trees is com-
pletely determined by its effect on either vertices or
edges. The following account of V and E is just a
sketch.

The more obvious of the two is the vertex functor V
defined on objects by

• V ( | ) = ∅

• V ((τ1, . . . , τn)) = 1 + V (τ1) + · · ·+ V (τn).

The edge functor E can be defined by firstly defin-
ing a functor En: Tree(n)op −→ (n + 1)/Set for
each n ∈ N, where (n + 1)/Set is the category of
sets equipped with (n + 1) ordered marked points.
This definition is again by induction, the idea be-
ing that En associates to a tree its edge-set with the
n input edges and the one output edge (root) dis-
tinguished. Figure 10 illustrates a map θ: σ −→
τ in Tree(4); part (a) (= Figure 4,c) shows its ef-
fect V (θ) on vertices; part (b) shows E(θ), taking
E(τ) = {1, . . . , 7} and labelling the image of i ∈
{1, . . . , 7} under E(θ) by an i on the edge (E(θ))(i)
of σ.

A map of trees will be called surjective if it is built
up from contractions of internal edges. Formally, the
surjective maps in Tree are defined by:

• 1 | : | −→ | is surjective

• with notation as in (12), !ρ ∗ (θ1, . . . , θn) is surjec-
tive if and only if each θi is surjective and ρ 6= | .

The crucial part is the last: the unique map !ρ from
ρ ∈ trn to the corolla νn is made up of edge-contractions
just as long as ρ is not the unit tree | .

Dually, a map of trees is injectiveif, informally, it is
built up from adding vertices to the middle of edges.
Formally,

• 1 | : | −→ | is injective

• with notation as above, !ρ ∗ (θ1, . . . , θn) is injective
if and only if each θi is injective, and ρ is either νn
or | (the latter is possible only if n = 1).

7. Morphisms in Classifying Space of the
Category of VKSS-Trees

In the rotation group of the n-dimensional space, it is
possible to choose n(n − 1)/2 different one-parametric
subgroups carrying out, for example, the transformation
of only variables xi and xk(i 6= k) with the other vari-
ables to be unchanged [24]:

gik(t)=



(i) (k)
1 0 . . . 0 0 . . . 0 . . . 0 0
0 1 . . . 0 0 . . . . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 0 . . . . . . . . . 0 0
0 0 . . . 0 cos t . . . sin t . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 − sin t . . . cos t . . . 0 0
. . . . . . . . . . . . 0 . . . . . . . . . . . . . . .

0 0 . . . 0 0 . . . . . . . . . 1 0
0 0 . . . 0 0 . . . 0 . . . 0 1



(i)

(k)

.

(13)

For the sake of convenience, let us construct a ma-
trix of finite rotations in the space of VKSS-trees cor-
responding to the canonical reduction of the space
[25]. Because the functor to other types of the cate-
gory of VKSS-trees is known [11], we shall construct
the morphism in any space of VKSS-trees, by doing
so.

The canonical reduction of the space Rn ⊃ Rn−1 ⊃
· · · ⊃ R1 involves the tree (Fig. 11) and the solution of
the Laplace equation [9]
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θ
1

α
1

θ
2

α
2

θ
3

θ
n–2

α
n–2

θ
n–1

α
n–1

1 2 3 n–2 n–1 n

=
n−2∏
i=1

{N li+1,li+1
ni }− 1

2 (1− y2
i )

αi+1
2 Pli+1,li+1

ni (yi)
eiαn−1θn−1

√
2π

=
n−2∏
i=1

ψi(yi)
eiαn−1θn−1

√
2π

, (14)

Fig. 11

where ni = αi−αi+1; yi = cosθi, li = αi+(n−i−1)/2 =
2ji + 1.

The normalized solution exp(iαn−1θn−1)/
√

2π corre-
sponds to the fork formed by coordinates xn−1 and xn:

x
n–1

x
n

θ
n–1

α
n–1

= exp(iαn−1θn−1)/
√

2π. (15)

It is obvious that, at the rotation in the (xn−1xn)-
plane, fork (15) will be multiplied by an exponent.

Therefore, in order to construct the matrix of transfor-
mations of the functions of VKSS-trees arising at the
rotation of coordinates, it is necessary to construct the
fork from the coordinates, in the plane of which the ro-
tation is carried out (in other words, to make transition
to the other VKSS-tree by replanting the branches (see
[11])), to implement the rotation through the angle ϕ,
and then to come back to the initial VKSS-tree, by using
the inverse replantation.

Let us suppose that the rotation through an angle ϕ is
carried out in the plane (xkx′k) (k′ = k+m). By carrying
out the consecutive replantation of the k-th branch from
the k-th place to the (k + m)-th one, we come to the
formula

ψl1,...,ln−1
can (y1, y2, . . . , yn−1) =

∑
lκ+1,lκ+3,...,lκ+2m−3

 lk, lk+1, . . . , lk+m+1

lκ+2m−2

lκ+1, lκ+3, . . . , lκ+2m−3,

×
× ψ

l1,...,lk;lκ+1,...,lκ+2m−3
per lκ+2m−2,lk+m+1,...,ln−1

(y1, . . . , yk−1; y′, y′κ+1, yκ+3, . . . , y
′
κ+2m−3, ϕ

′; yk+m+1, . . . , yn−1), (16)

where ψ
l1,...,ln−1
can (y1, . . . , yn−1) is defined by (14), and

ψ
{l}
per{l}({y}) by
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n–1k–1

k+1

k+2 k

k+3

1 2
n

k+m+1

k+m

θ
n–1

α
1

α
2

α
k–1

α
k

α
æ+1

α
æ+3

α
æ+2m–3

α
n–1α

k+m+1θ'
1

θ'
3

θ'
θ
k–1

θ
1

α
æ+2m–2

φ' =
k−1∏
i=1

ψi(yi){N lκ+1,lκ+1
αk−ακ+1

}−1/2(1− y
′2)

ακ+1
2 P

lκ+1,lκ+1
αk−ακ+1

(y′)×

×
2m−3∏
j=3,5,...

{N lκ+j ,lκ+j
ακ+j−2−ακ+j

}−1/2(1− y
′2
j−2)

ακ+j
2 ×

×P
lκ+j ,lκ+j
ακ+j−2−ακ+j

(y′j−2)2
n−k−m+2

4 {N ls,lc
n′ }

−1/2 ×

×(1− yκ+2m−3)
αk+m+1

2 (1 + yκ+2m−3)
ακ+2m+2

2 Pls,lc
n′ (yκ+2m−3)×

×
n−2∏

i=k+m+1

ψi(yi)
eiαn−1θn−1

√
2π

eiακ+2m−2ϕ
′

√
2π

. (17)

Fig. 12

where y′ = cos θ′; lκ+i = ακ+i + (n − k − i − 1)/2;
y′i = cos θ′i; yκ+2m−3 = cos 2θκ+2m−3; ls = αk+m+1 +
(n − k − m − 2)/2; lc = |ακ+2m−2|; n′ = (ακ+2m−3 −
ακ+2m−2 − αk+m+1)/2.

It can be seen from (14) and (17) that the functions
corresponding to these VKSS-trees differ from each other
from the k-th to the (k + m)-th branch for the VKSS-
tree depicted in Fig. 11, and from the (k + 1)-th to
the (k + m)-th branch for the VKSS-tree depicted in
Fig. 12. In other words, in order to calculate the
transition matrix from (16), it is sufficient to calcu-
late only the overlapping integral between these por-
tions.

Starting from the rules set out in [10, 11], we ob-
tain the matrix of transition to expression (16) in the
j-representation in the form jk, jk+1, . . . , jk+m+1

jκ+2m−2

jκ+1, jκ+3, . . . , jκ+2m−3,

 =

=
∑

jκ , jκ+2, . . . , jκ+2m−4︸ ︷︷ ︸
m−1

∥∥∥∥ − 3
4 − 3

4 jk+m+1

jκ+2m−2 jκ+2m−3 jk+m

∥∥∥∥×

×
m∏
i=2

∥∥∥∥ − 3
4 − 3

4 jk+1

jκ+2i−4 jκ+2i−5 jk+i−1

∥∥∥∥×
×(−)

2jκ+2i−4+1
2

∥∥∥∥ − 3
4 − 3

4 jk+i
jκ+2i−4 jκ+2i−5 jκ+2i−3

∥∥∥∥ , (18)

for m = 2, 3, . . . , n−2; and for m = 1, if the neighboring
xk and xk+1 do not make a fork jk, jk+1

jk+2

jκ−1, jκ

 =
∥∥∥∥− 3

4 − 3
4 jk+2

jκ jκ−1 jκ+1

∥∥∥∥ , (19)

and

(jk, jk+1, jk+2) ≡ 1, (20)

if xk and xk+1 make a fork.

The quantities
∥∥∥∥ j1 j2 j3
j12 j j23

∥∥∥∥ in (18)–(20) are T -

coefficients, which are, in the particular case under con-
sideration, the Clebsch–Gordan coefficients (up to a
phase), i.e.,∥∥∥∥− 3

4 −
3
4 j3

j12 j j24

∥∥∥∥ =

= (−)j−3j23+j12−2j3−5/4C2j23+1/2,2j3+1
jj3−j12,jj3+j12+1. (21)

In general, they turn out to be 6j-symbols analytically
continued into the non-physical (from the point of view
of the momentum theory) range of j [26, 27].

Acting by the operator Rk,k+m(ϕ) (operator of rota-
tion at the place ((k, k + m) through an angle ϕ) on
the function ψ

l1,...,ln−1
can (y1, . . . , yn−1) with regard for its

connection with the function

ψ
l1,...,lk;lκ+1,...,lκ+2m−3
per lκ+2m−2,lk+m+1,...,ln−1

(y1, . . . , yk−1, y
′, ϕ′),

436 ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 4



CATEGORY OF VILENKIN–KUZNETSOV–SMORODINSKY–SMIRNOV TREES

we obtain the following expression for the rotation matrix

R
{jk+1,...,jk+m},{j′k+1,...,j

′
k+m}

k,k+m (ϕ) =
∑

jκ+1jκ+3...jκ+2m−3

 jk, jk+1, . . . , jk+m+1

jκ+2m−2

jκ+1, jκ+3, . . . , jκ+2m−3,

×
×eilκ+2m−2ϕ

 jk, j′k+1, . . . , j′k+m, jk+m+1

jκ+2m−2

jκ+1, jκ+3, . . . , jκ+2m−3,

 . (22)

The quantities

. . ..
. . .

 in (22) are defined by (18)–(20) and are one of the types of 3nj-symbols (as for 3nj-symbols,

see, e.g., [28]).

The product of n(n − 1)/2 such matrices with coefficients

. . ..
. . .

, defined by (18)–(20), gives the function of

a “symmetric top” in the (2α1+n−2)(n+α1−3!)
(n−2)!α1!

-dimensional space, i.e. the matrix of finite rotations in the space of
VKSS-trees. For example, in the 4-dimensional space at m = 1, relation (22) yields

R
jk+1,j

′
k+1

k,k+m (ϕ) =
∑
jκ

∥∥∥∥− 3
4 − 3

4 jk+2

jκ jκ−1 jκ+1

∥∥∥∥ ei(2jκ+1)ϕ

∥∥∥∥− 3
4 −

3
4 jk+2

jκ jk j′κ+1

∥∥∥∥−1

= (−)3(j
′
k+1−jk+1) ×

×
∑
iκ

C2jk+1+
1
2 ,2jk+1+1

jkjk+2−jκ ;jkjk+2+jκ+1
ei(2jκ+1)ϕC2j′k+1+

1
2 ,2jk+1+1

jkjk+2−jκ ;jkjk+2+jκ+1
.
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КАТЕГОРIЯ ДЕРЕВ ВIЛЄНКIНА–КУЗНЄЦОВА–
СМОРОДIНСЬКОГО–СМIРНОВА

С.С. Москалюк, Н.М. Москалюк

Р е з ю м е

У першiй частинi статтi дано короткий огляд означень та
основних властивостей операд i дерев. Iснує багато корисних
типiв операд, кожен з них визначається вибором двох кате-
горiй: симетричної моноїдальної категорiї (C, �), яка є носiєм
класичних лiнiйних операд, та категорiї графiв Γ, що вiдобра-
жає комбiнаторику операдних даних i деяких аксiом. З цiєї
точки зору, конкретна операда є функтором Γ → C. Основ-
ною метою другої частини роботи є побудова категорiї де-
рев Вiлєнкiна–Кузнєцова–Смородiнського–Смiрнова (ВКСС),

зокрема, ВКСС-дерев, як об’єктiв та морфiзмiв перетворень
ВКСС-дерев при поворотах n-вимiрного простору.
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