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A version of the thermodynamic perturbation theory based on a
scaling transformation of the partition function has been applied
to the statistical derivation of the equation of state in a high-
pressure region. Two modifications of the equations of state have
been obtained on the basis of the free energy functional perturba-
tion series. The comparative analysis of the experimental PV T -
data on the isothermal compression for the supercritical fluids of
inert gases has been carried out.

1. Introduction

Despite the essential progress achieved during the last
decades in the theoretical description of the equations
of state (EOS) for dense fluids [1–4], the equation de-
scribing the thermodynamics in wide intervals of pres-
sures and temperatures, including the stability bound-
aries, still remains to be solved. In our study, we have
developed a version of the thermodynamic perturbation
theory to elaborate EOS within the framework of a gen-
eralized approach. This approach can be extended to
all kinds of low-molecular fluids which can be described
by rotationally averaged intermolecular potentials simi-
lar to the potential of atomic fluids such as Ne, Ar, Kr,
and Xe. This was illustrated in [5], where the thermo-
dynamic properties of water are described by means of
an averaged potential.

A version of perturbation theory was first applied to
the problem involving the equation of state by Zwanzig
[6]. He proposed to treat the attractive forces in a fluid as
a perturbation of a hard-core potential. Then this idea
was studied by Smith and Alder [7] and by Frisch et al.

[8]. Mc Quarrie and Katz [9] combined the technique
of Zwanzig and Rowlinson [10] and derived the equation
of state which was satisfactory in the high-temperature
region. Later, Barker and Henderson [11] examined the
convergence of the perturbation expansion in the case of
a square-well potential and then devised a version [12]
of perturbation theory, which combined the techniques
of Zwanzig [6] for treating the attractive potential and
Rowlinson [10] to deal with the softness of a repulsive
potential. As a result, they obtained the equation of
state, which was in good agreement with a simulation
(Monte-Carlo and molecular dynamics) and experimen-
tal data for argon in the wide range of temperatures
and densities. We also mention the review by Barker
and Henderson [13], where some perturbation theories
applied to liquids have been discussed.

The basic idea of perturbation theory is that the po-
tential of a system can be presented as a sum of two
terms

U(r) = U0(r) + ΔU(r), (1)

where U0(r) is the potential energy of a reference sys-
tem, and ΔU(r) is the perturbation. Following Bogoli-
ubov [14], we use the scale transformation of the dynamic
variables

r̄ → qr̄, q3 =
V

V0
=
ρ0

ρ
, ρ0 =

N

V0
, (2)

where q is a scale factor, V and ρ are volume and the
density. We assume that a variation of the volume corre-
sponds to the variation of the intermolecular potential,
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considering the potential energy U(r) of the system as a
scale transformed function U0(r) → U0(qr) and the dif-
ference ΔU = U0(qr)−U0(r) as a perturbation; whereas,
q = 1 or V = V0 should be treated as the zero-order
approximation. Therefore, the main distinction of our
approach from the those referred above involves the as-
sumption that a functional form of the perturbed poten-
tial is identical to the potential of the reference system.
Thus, we consider the deviation of the potential of the
more compressed system from the potential of the less
compressed system as a perturbation. The scale trans-
formation of the variable r̄ by q times is equivalent to
the variation of the molecular size σ by q−1 times

σ = 3

√
V0

V
σ. (3)

Hereafter, we will discuss a development of perturbation
theory realized on the basis of a functional Taylor ex-
pansion of the free energy and will present some results
obtained by treating the derived EOS and by the com-
parison with experimental PV T -data.

2. Functional Expansion of the Free Energy

As is well known for a system of N particles enclosed in
a volume V at a given temperature T (canonical ensem-
ble), the partition function can be written as

Q(V0) =
1
N !

∫
V0

...

∫
V0

dr̄1...dr̄N exp

−∑
i<j

ϕ (rij)/(kT )

 ,
(4)

where dr̄1...dr̄N denote the set of spatial coordinates of
N particles, rij = |r̄i − r̄j |, i, j=1,. . . ,N , ϕ(r ij) – inter-
molecular potential. We restrict ourselves to a system
of particles interacting through central pair forces, for
which the total potential energy can be written as a sum
of pairwise additive terms, i.e.,

U (r̄1, ..., r̄n) =
∑

1≤i/j≤N

ϕ (|r̄i − r̄j |) . (5)

For a dense system, we can use the mean field approxi-
mation

〈U (r̄1, ..., r̄n)〉 = U (〈r̄1, ..., r̄n〉)

According to work [6], the free energy in the second ap-
proximation can be written as the average perturbed en-
ergy with a canonical distribution function in the refer-
ence state

F (V ) = F0 + 〈ΔU〉0 −
1

2kT

[〈
ΔU2

〉
0
− 〈ΔU〉20

]
, (6)

where F0 is the free energy of the reference system, and
〈...〉0 means the ensemble average with a distribution
function in the reference state. As was stated above, we
use a scale transformation [14] in order to describe the
increase of linear dimensions of the system. Then it is
easy to rewrite the expression for the partition function
(4) as follows:

Q(q) =

= q3N
1
N !

∫
V0

...

∫
V0

dr̄1...dr̄N exp

−∑
i<j

ϕ (qrij)/(kT )

 .
(7)

Here, V0 is the initial value of volume corresponding to
the reference state on the isotherm. After the scale trans-
formation (2), the expression for the free energy can be
presented as

F (V ) = F0 − 3kT
{
N ln q +

1
3

lnQ (V0)
}
, (8)

where F0 = − 3kTN
2 ln MkT

2π~2 , and M is the mass of
a molecule. Further, we analyze namely expression
(8), rather than (6). Our procedure is to expand
FV (V0) = −kT lnQ (V0) in the functional Taylor series

in Δe (rij) = e (rij)− e0 (rij) = e−
ϕ(qrij)

kT − e−
ϕ(rij)

kT . As
a result, we obtain the exact expression

FV (V0) = F0 (V0) +
∑
i<j

∫
dr̄idr̄Δe (r̄ij)

δF (V0)
δe (r̄ij)

+

+
1
2!

∑
i < j
e < m

∫
dr̄idr̄jdr̄ldr̄mΔe (rij) Δe (rlm)×

× δ2F (V0)
δe (rij) δe (rlm)

, (9)

where F0(V0) is the free energy of the reference ther-
modynamic state. This is the basic expansion for a fu-
ture consideration of the EOS for gases and liquids. The
functional derivatives in (9) can be expressed via partial
distribution functions as follows:

δF (V0)
δe (rij)

= −kT
V 2

0

exp
[
−ϕ(qrij)

kT

]
g2 (r̄i, r̄j) , (10)
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δ2F (V0)
δe (rij) δe (rlm)

= −kT
V 4

0

exp
[
−ϕ (qrij) + ϕ (qrlm)

kT

]
×

× [g4 (r̄i, r̄j , r̄l, r̄m)− g2 (r̄i, r̄j) g2 (r̄l, r̄m)] (11)

with the proviso that {i, j} 6= {l,m}. We restrict by
the first-order term and represent, for the sake of conve-
nience, (9) in the form

FV (V0) = exp
(
ζΛ̂
)
F (V0) , (12)

where Λ̂ =
∑
i<j

∫
dr̄idr̄jΔe (rij) δ

δe(rij)
, and ζ is an aux-

iliary parameter introduced for indicating the powers of

Δe (rij) = e−
ϕ(qrij)

kT − e−
ϕ(rij)

kT . In calculations, we set
ζ = 1. In general, expression (12) is inappropriate for
specific calculations, but it is an important initial point
for the resummation of series in the problem concerning
the determination of the EOS of a dense fluid.

In the high-pressure region, Eq. (12) must be consid-
ered with regard for the smallness of the dimensionless
parameter Δ, given by the relation Δ = V0−V

V0
. The re-

lation Δ � 1 works properly in a wide pressure range,
where the inequality ρkTβT = α � 1 holds, where βT
is the isothermal compressibility. This statement follows
from the approximate equality Δ ≈ P0α

ρkT
P−P0
P0

, which is
accurate for dense fluids in a wide interval of pressures
and temperatures, but far from the stability boundary
points. For illustrative purposes, the values of parame-
ter Δ in the certain ranges of pressures and temperatures
are presented in Table 1 for various substances.

It should be noted that similar small parameters of
the type V0−V

V or V0−V
V0

have been already proposed
by Bridgman [15] and Slater [16] to describe the elastic
properties of alkali metals. Indeed, one can see (Table 1)
that Δ has a small value and varies weakly in fairly wide
ranges of pressures and temperatures. In order to derive
the equation of state of dense fluids, it is necessary to
choose the initial (reference) value of V0 in the region of
thermodynamic variables, where the inequality Δ � 1
holds.

3. Realistic Potentials

At first, we consider a system with pair potential written
as the sum

ϕ (r) = Φ (r) + ψ (r) (13)

of a short-range function Φ (r) corresponding to repul-
sive forces and ψ (r) corresponding to attractive forces.

The latter is smoother than Φ (r) . For the attractive
potential, we can use the function ψ (r) ∼ r−n, with n
= 6 or 7 (the Lennard-Jones or Casimir–Polder poten-
tial model). Then the perturbation series (12) can be
written as

FV (V0) = exp
(
ζΛ̂Φ + ξΛ̂ψ

)
F (V0) , (14)

where Λ̂Φ =
∑
i<j

∫
dr̄idr̄j

[
e−

Φ(qrij)
kT − e−

Φ(rij)
kT

]
δ

δe(rij)

is the operator that corresponds to the repulsive
part of the potential. Since the attractive po-
tential is a smooth function, the operator Λ̂ψ =∑
i<j

∫
dr̄idr̄j [ψ (qrij)− ψ (rij)] δ

δψ(rij)
is an expansion

in the difference of Δψ (rij) = ψ (qrij) − ψ (rij), and
the parameter ξ has the same meaning as the parame-
ter ζ. Then the expression for the first-order functional
derivative can be given as

δF (V0)
δψ (rij)

=
kT

V 2
g2 (r̄i, r̄j) . (15)

At the calculation of functional derivatives, the condition
q = 1 means that the distribution functions g2 (r̄i, r̄j)
depend on the value of V0 on the isotherm and must be
calculated in the reference state. Thus, we can now write
the free energy as a series

F (V ) = F0 − 3NkT ln q + F0 (V0) +
kT

2
[Ω + Ξ] , (16)

where

Ω = −
∑
i<j

∫
dr̄idr̄j

[
e−

Φ(qrij)
kT − e−

Φ(rij)
kT

]
×

×
exp

[
−Φ(qrij)

kT

]
g2 (r̄i, r̄j)

V 2
0

(17)

and

Ξ =
∑
i<j

∫
dr̄idr̄j [ψ (qrij)− ψ (rij)]

g2 (r̄i, r̄j)
V 2

0

. (18)

T a b l e 1. Values of the parameter Δ

Substance Δ Pressure Temperature
neon
argon 0.02÷ 0.04 50–700 MPa 100–400 K
krypton
xenon

nitrogen 0.02÷ 0.06 10–2200 MPa 120–900 K
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For the homogeneous system, we omit the indices i
and jand use g2 (r) instead of g2 (r̄i, r̄j). Differentiat-
ing series (16) with respect to V and using the approx-
imate equality for the attractive part of the potential
ψ (qr)−ψ (r) ≈ dψ

dr r̄
Δ
3 , which works properly at Δ� 1,

we obtain the expression for the pressure

P − P0 =
NkTΔV

V
−

−ρ
2
0V0

6V

∫
V

g2 (r) exp [β (−Φ (qr) + Φ (r))]×

×dΦ (qr)
dr

rdr̄ +
ρ2
0

6

∫
V

g2 (r)
dΦ (qr)
dr

rdr̄. (19)

It should be noted that the term with the attractive
potential ψ (r) implicitly appears in the expression for
the pressure in the reference state

P0 =
NkT

V0
− ρ2

0

6

∫
V

g2 (r)υ0 (r) dr̄, (20)

where

υ0 (r) = −dφ (qr)
dr

r̄ |q=1 = −∇φ (r) r̄ (21)

is the virial of intermolecular forces in the reference state.
At the next stage, in order to evaluate the terms of

Eq. (19), we should specify the functional form of the
repulsive potential Φ (r). We assume that Φ (r) is a ho-
mogeneous function with the homogeneity exponent m,
the Euler’s theorem of homogeneous functions being ap-
plied to the potential function

Φ (qr̄1, ...qr̄n) = q−mΦ (r̄1, ...r̄n) . (22)

For example, function (5) that describes the sum of pair
potentials within the soft-sphere model takes the form

Φ (r) = ε
(σ
r

)m
. (23)

We may now rewrite Eq.(19) in the form

P − P0 =
NkTΔ
V

+
[
q−m − 1

]
[B (T ) + P0]−

−q−m ρ
2
0V0

6V

∫
V

g2(r)e[β(−Φ(qr)−q3Φ(r))]e[βΦ(qr)]×

×dΦ(r)
dr

rdr̄. (24)

The parameter B(T ) is the difference between the cohe-
sion and the ideal gas pressure in the reference state,

B (T ) = −ρ
2
0

6

∫
V

g2 (r)
dΦ (r)
dr

rdr̄−P0 = P a0 −
NkT

V0
, (25)

P a0 is the pressure corresponding to the repulsive forces
in the reference state, and m is the homogeneity ex-
ponent, which does not depend on the thermodynamic
variables within the framework of the statistical theory
of liquids. Unfortunately, the situation is more compli-
cated with regard for the integral term in (24). It is
impossible to calculate this term in an explicit form us-
ing some model potentials and the approximate form of
the function g2 (r). Indeed, the shift of the first maxi-
mum of the radial distribution function by a few percent
(2-3%) leads to the variation of pressure, i.e. the val-
ues of the integrals in (24), by two or three orders of
magnitude [17]. However, some conclusions about the
functional form of this term can be made under the as-
sumption that, for a sufficiently steep repulsive poten-
tial, the function e−βΦ(r) behaves as the Heaviside step
function Θ (r − σ) . In a similar way, e−βΦ(qr) at q ≤ 1
behaves as the function Θ (r − σ/q). Thus, their differ-
ence at Δ � 1 is a function concentrated on the in-
terval [σ, σ/q] with the length that satisfies the relation
l = O (ΔV ) = O (b1− qc) . This yields the relation

ρ2
0V0

6V

∫
V

g2 (r) e[β(−Φ(qr)−q3Φ(r))]e[βΦ(qr)] dΦ (r)
dr

r̄dr =

= D (T ) (1− q) +O (1− q) (26)

and the equation of state

P − P0 =
NkTΔ
V

+
[
q−m − 1

]
[B (T ) + P0]−

−q−mD (T ) (1− q) . (27)

The parameters B(T ), m, and D(T ) are constants on
the isotherm and can be calculated as adjustable pa-
rameters. The analysis of the experimental PV T -data
revealed that the term q−mD (T ) (1− q) ≈ 0 and, there-
fore, can be neglected in the PV T -data processing under
the isothermal compression. Finally, we reduce Eq. (27)
to the equation of state

P − P0 =
NkTΔ
V

+
[
q−m − 1

]
[B (T ) + P0] . (28)
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Another modification of this equation has been derived,
by assuming that the role of repulsive forces is domi-
nant in the high-pressure region (where the isothermal
compressibility βto is small or Δ � 1), and we use the
realistic potential (13) without attractive part. So, we
obtain

P =
NkT

V
+ P r0 (T )

(
V0

V

)m
3

, (29)

where P r0 (T ) is the pressure, which is caused by repul-
sive forces between molecules and is considered as an ad-
justable parameter. It should be noted that both Eqs.
(28) and (29) can be obtained on the basis of the first-
order perturbation series close to series (6) (Ref. [6]).
We will outline briefly some steps in the derivation of
Eq. (29) on the basis of expansion (6). By using a scal-
ing transformation, the first-order approximation of se-
ries (6) will be rewritten as

F (V )− F (V0) = 3NkT ln q − 〈ΔUr〉 , (30)

where F (V0) is the free energy of a reference state, and
ΔUr is a perturbation of the repulsive potential. To dif-
ferentiate the free energy with respect to the volume, it
is necessary to express the potential function as a func-
tion of the volume, so we present a perturbation of the
repulsive potential in the form

〈ΔUr〉 =
〈
∂Ur
∂σ

Δσ
〉
, (31)

where σ is a molecular size, Δσ = σ′−σ
σ . Using (3), we

can reduce Δσ to the approximate equality Δσ ≈ 1
3Δ

and write expression (31) as

〈ΔUr〉 = −Δ
3

∑
〈∇Ur · r〉. (32)

Having differentiated the free energy (30) with respect
toV,

P =
NkT

V
− 1

3V0

[∑
〈∇Ur · r〉

]
, (33)

and taking the virial theorem and the property of homo-
geneity for the potential function (22) into account, we
obtain the equation of state in the form (29).

4. Analysis of Experimental Data

In order to obtain the values of adjustable parameters
m, B(T ), and P r0 under the isothermal compression, we

used the experimental PVT-data. As far as it was of in-
terest to prove namely the extrapolation capabilities of
the equations of state, the values of parameters m and
Pr were considered as fitting constants. The analysis of
the data with the use Eqs. (28) and (29) was carried out
in two stages. At first, the parameters m, B(T ), and
P r0 were calculated at three reference points P0, P1, and
P2 (since P0 is the pressure in the reference state, we
choose any of those points for P0, where the isothermal
compressibility became as small as desired or the param-
eter Δ� 1; usually, it was equal to about 50 MPa). The
values of the parameters obtained in this way were then
substituted into Eq. (28) or Eq. (29) for the calculation
of a volume on the isotherm and the comparison with
experimental data.

The analysis carried out for supercritical fluids of in-
ert gases (Figure) showed that EOS (28) and (29) can be
used successfully. It turns out that both Eqs. (28) and
(29) reveal good extrapolation properties in describing
the isothermal compression in the range of the thermo-
dynamic variables, where the isothermal compressibility
is low, which corresponds to the pressure interval 50–
1000 MPa and temperatures 200–700 K. For comparison,
we used the experimental data from [1, 18].

The values of adjustable parameters of EOS (29) are
given in Table 2. For illustrative purpose, we present
only the parameters of Eq. (29), so their values demon-
strate a similar behavior.

5. Conclusion

Thus, the functional expansion of the free energy has
given a possibility to obtain, at a certain choice of the
parameter expansion, the equations of state for dense
fluids (Δ � 1). The question of special interest is the
variation of the homogeneity parameter m with the tem-
perature. This parameter can hypothetically be consid-
ered as a softness parameter within the framework of
the soft sphere potential model. However, to verify this,
the computer simulations of a series of isotherms with a

T a b l e 2. Values of the parameters of Eq. (29) for
supercritical fluids of inert gases on isotherms

Substance Parameter 300 K 400 K 600 K 700 K
Ar m 15.18 13.5 11.25 10.8

P r
0 (T ) MPa 7.25 3.87 2.69 2.23

Kr m 23.13 16.8 11.1 3.33
P r

0 (T ) MPa 8.51 5.39 4.90 4.66

Xe m 27.6 20.07 15.54 14.25
P r

0 (T ) MPa 19.87 12.37 3.88 2.94

616 ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 6
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Analysis of the experimental PV T -data for supercritical fluids of inert gases: a – neon, b – argon, c – crypton, d – xenon, (◦) –
experiment; (N) – Eq. (28); (line) – Eq. (29)

suitable choice of other parameters of the potential have
to be performed. In connection with this, one should
refer to a number of works [19–21], in which values of
this parameter have been varied as m =4, 6, 9, 12, 15,
or to work [22], in which the value of softness parameter
in the simulations ranged from 18 to the unusually high
value of 288. This fact was noted earlier in [23], where
the analysis of the temperature dependence of the sec-
ond and third virial coefficients for argon, krypton, and
xenon in view of the equation of state for these sub-
stances led to the conclusion that the repulsive potential
can be presented in the form

Φ (r) = ε

(
0.331

(rm
r

)28

+ 2.072
(rm
r

)18
)
,

where rm is the position of a minimum of the potential,
and the values of softness parameters are 28 and 18.
Specifically, this question has been already discussed in
our previous articles [24–26], where a modification of the
repulsive potential was proposed in the form of a power
series

U(r) = 4ε
[(
σ1n

1/3
)16

+
(
σ2n

1/3
)21

+
(
σ3n

1/3
)24
]
,

where, σ1, σ2, and σ3 are effective intermolecular pa-
rameters, and 〈r〉 = n−1/3. This formula was derived
on the basis of the analysis of statistical equations of
state, the high-frequency asymptotics of a depolarized
light scattering, and the processing of the temperature
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dependences for one-particle contributions to the self-
diffusion coefficient.
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ФУНКЦIОНАЛЬНИЙ РОЗКЛАД ВIЛЬНОЇ ЕНЕРГIЇ
ЯК УЗАГАЛЬНЕНИЙ ПIДХIД ДО РIВНЯННЯ
СТАНУ ГУСТИХ ФЛЮЇДIВ

В.Ю. Бардiк, Д.А. Нерух, Є.В. Павлов, М.С. Власюк

Р е з ю м е

Використано варiант термодинамiчної теорiї збурень, засно-
ваний на масштабному перетвореннi статистичної суми, для
отримання статистично обґрунтованого рiвняння стану в обла-
стi високих тискiв. На основi функцiонального розкладу вiль-
ної енергiї отримано двi модифiкацiї рiвняння стану i проведе-
но порiвняльний аналiз їх кiлькiсного опису експерименталь-
них PV T -даних для суперкритичних флюїдiв iнертних газiв.
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