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We study the effect of momentum correlations on the properties of
light and medium mass fragments by imposing the momentum cut
in clustering the phase space. The rapidity distributions, dN/ptdpt

spectra, and ratio of transverse to longitudinal energy (Erat) for
the reactions of 12C+12C and 40Ca+40Ca are analyzed. We have
found a significant influence of the momentum cut on these proper-
ties of the fragments. The results of our calculations are compared
with experimental data.

1. Introduction

Intermediate-energy heavy-ion collisions produce a rich
amount of information on correlations and fluctuations
and eventually on the dynamics and interactions among
the nucleons. The breaking of nuclei, i.e., multifragmen-
tation, is one of the rare phenomena that has attracted
the major attention in recent years [1]. The physics
behind the multifragmentation is so complicated that
many different theoretical approaches have been devel-
oped [1–3]. Since no theoretical model simulates frag-
ments, one needs afterburners to identify clusters. Since
correlations and fluctuations are the main features of
the molecular dynamics model, the quantum molecular
dynamics (QMD) model is very successful in explaining
the phenomenon of multifragmentation. Once the phase
space is accessible, one generally clusterizes the phase
space with a simple spatial correlation method, where
one binds the nucleons in a fragment that lies within a
distance of 4 fm. This method is known as the minimum
spanning tree (MST) method [4]. At the same time, the
fragments formed in the MST method will be highly un-
stable (especially in central collisions). So, in order to be
close to the reality and to filter out such unstable frag-
ments, we impose another cut in terms of the relative
momentum of nucleons. This method dubbed as the
minimum spanning tree with momentum cut (MSTP)
method was discussed by Kumar et al. [5]. In our recent

work, we studied the influence of the momentum cut on a
fragment structure [6]. We also studied the dependence
of the fragmentation on a collision geometry, when the
momentum cut is imposed. No study exists in the liter-
ature to see the effect of the momentum cut on the vari-
ous fragment properties like the rapidity distribution, pt
spectra, and Erat. Here, we will see the influence of the
momentum cut on various fragment properties and will
investigate how these properties depend on the impact
parameter within the QMD model [2] described in the
following section.

2. The Formalism

2.1. QMD model

We describe the time evolution of a heavy-ion reaction
within the QMD model [2], which is based on a molecu-
lar dynamics picture. This model has been successful in
explaining the collective flow [7], elliptic flow [8], multi-
fragmentation [9], as well as dense and hot matter [10].
In the QMD model, nucleons (represented by Gaussian
wave packets) interact via mutual two- and three-body
interactions. Here, each nucleon is represented by a co-
herent state of the form

ψi(r,pi(t), ri(t)) =

=
1

(2πL)3/4
exp

[
i

~
pi(t)× r− (r− ri(t))2

4L

]
, (1)

where, L defines the interaction range of particles. The
total N -body function is assumed to be a direct product
of the coherent states [Eq. (1)]

Φ =
∏

i
ψi(r, ri,pi, t). (2)

By doing this, one neglects the antisymmetrization. The
Wigner transforms of the coherent states are the Gaus-
sians in the coordinate and momentum spaces. The
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Wigner density reads

fi(r,p, ri(t),pi(t)) =

=
1

(2π~)3

∫
e−

i
~ p·r12ψi(r +

r12

2
, t)ψ∗i (r−

r12

2
, t)d3r12,

=
1

(π~)3
e−(r−ri(t))

2/2Le−(p−pi(t))
22L/~2

. (3)

Here, ri(t) and pi(t) define the classical orbit or the
center of a Gaussian wave packet in the phase space.
The density of the ith particle is

ρi(r) =
∫
fi(r,p, ri(t),pi(t))d3p,

=
1

(2πL)3/2
e−[r−ri(t)]

2/2L. (4)

The equations of motion for a many-body system are
then deduced by means of a generalized variational prin-
ciple: we start from the action

S =

t2∫
t1

L[Φ,Φ∗]dτ, (5)

with the Lagrange functional

L = 〈Φ|i~ d
dt
−H|Φ〉. (6)

The time evolution is obtained by the requirement that
the action is stationary under the allowed variation of
the wave function, i.e.,

δS = δ

t2∫
t1

L[Φ,Φ∗]dt = 0. (7)

The Hamiltonian H contains a kinetic term and mutual
interactions Vij , which can be interpreted as the real
part of the Brueckner G matrix supplemented by the
Coulomb interaction. The time evolution of the param-
eters is obtained by the requirement that the action be
stationary under an allowed variation of the wave func-
tion. This yields an Euler–Lagrange equation for each
parameter. We obtain the Euler–Lagrange equation for
each parameter λ:

d

dt

∂L
∂λ̇
− ∂L
∂λ

= 0. (8)

If the true solution of the Schrödinger equation is
contained in the restricted set of wave functions
ψi(r, ri(t),pi(t)), this variation of the action will give
the exact solution of the Schrödinger equation. If the
parameter space is too restricted, we obtain the wave
function in a restricted parameter space which comes
closest to the solution of the Schrödinger equation. For
the coherent states and a Hamiltonian of the form H =∑
i Ti+

1
2

∑
ij Vij (Ti = kinetic energy, and Vij = poten-

tial energy), the Lagrangian and the variation can easily
be calculated, and we obtain

L =
∑
i

[
− ṙipi − Ti −

1
2

∑
j 6=i

〈Vij〉 −
3

2Lm

]
, (9)

ṙi =
pi
m

+∇pi

∑
j

〈Vij〉 = ∇pi
〈H〉, (10)

ṗi = −∇ri

∑
j 6=i

〈Vij〉 = −∇ri〈H〉, (11)

with the centroids pi and r̃i, and r̃i = ri + pi

m t and
〈Vij〉 =

∫
d3r1d

3p2〈ψ∗i ψ∗j |V (r1, r2)|ψiψj〉. These equa-
tions represent the time evolution and can be solved nu-
merically. Therefore, the variational principle reduces
the n-body Schrödinger equation to 6× (AP +AT )
time-evolution equations, where AP and AT are the
masses of the projectile and target nuclei. The equations
of motion now have a similar structure like the classical
Hamiltonian equations

ṗi = −∂〈H〉
∂ri

; ṙi =
∂〈H〉
∂pi

. (12)

The expectation value of the total Hamiltonian reads

〈H〉 = 〈T 〉+ 〈V 〉 =

=
∑
i

p2
i

2mi
+ V Skyrme + V Yuk + V Coul. (13)

Here, V Skyrme, V Yuk, and V Coul are, respectively, the lo-
cal (two and three-body) Skyrme, Yukawa, and Coulomb
potentials. The local Skyrme interaction is written as

V Skyrme =
1
2!

∑
j;i6=j

V
(2)
ij +

1
3!

∑
j,k;i6=j 6=k

V
(3)
ijk . (14)

Here, V (2)
ij and V (3)

ijk represent, respectively, the two- and

three-body interactions. The two-body interactions V (2)
ij
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are obtained by folding the two-body potential with the
densities of both nucleons.∑
j;i 6=j

V
(2)
ij =

∑
j;i 6=j

∫
fi(ri,pi, t)fj(rj ,pj , t)V (ri, rj)×

×d3rid
3rjd

3pid
3pj . (15)

The three-body interactions can be calculated as follows:∑
j,k;i 6=j 6=k

V
(3)
ijk =

∑
j,k;i 6=j 6=k

∫
fi(ri,pi, t)fj×

×(rj ,pj , t)fk(rk,pk, t)V (ri, rj , rk)×

×d3rid
3rjd

3rkd
3pid

3pjd
3pk, (16)

where the function fi(ri, pi, t) is the same function as
fi (r, p, ri(t), pi(t)) defined in Eq. (3), though the ar-
guments are formally different. The finite-range Yukawa
(V Yuk) and effective Coulomb potential (V Coul) read

V Yuk =
∑
j;i6=j

t3
exp(−|ri − rj |/µ)
|ri − rj |/µ

, (17)

V Coul =
∑
j;i 6=j

Z2
effe

2

|ri − rj |
. (18)

The Yukawa term (with t3 = −6.66 MeV and µ = 1.5
fm) has been added to improve the surface properties
of the interaction, which plays an important role in the
multifragmentation. In nuclear matter where the den-
sity is constant, the interaction density coincides with
the single-particle density, and the two-body Skyrme, as
well as Yukawa, interactions are directly proportional to
(ρρo). The three-body part of the Skyrme interaction is
proportional to (ρρo)

2. In nuclear matter, the local po-
tential energy has the form

V Skyrme =
α

2

(
ρ

ρ o

)
+

β

γ + 1

(
ρ

ρ o

)2

. (19)

The above potential has two free (α and β) parameters,
which can be fixed by the requirement that, at the nor-
mal nuclear matter density, the average binding energy
should be −15.75 MeV, and total energy should have a
minimum at ρo. In order to investigate the influence of

different compressibilities K [= 9ρ2 ∂2

∂ρ2 (EA )], the above
potential energy [Eq. (19)] can be generalized to

V Skyrme =
α

2

(
ρ

ρ o

)
+

β

γ + 1

(
ρ

ρ o

)γ
. (20)

This equation leads to the nuclear matter equation of
state which connects the pressure and the energy. By
varying the parameter γ, one can study different equa-
tions of state. Naturally, a larger value of γ leads to
a hard equation of state, whereas a smaller value of γ
results in a soft equation of state. The relativistic ef-
fect plays no role in the low incident energy region of
the present interest [11]. The phase space of nucleons
is stored at several time steps. The QMD model does
not give any information about the fragments observed
at the final stage of the reaction. In order to construct
the fragments, one needs clusterization algorithms. We
will concentrate here on the MST and MSTP methods.
According to the MST method [4], two nucleons are al-
lowed to share the same fragment if their centroids are
closer than a distance rmin,

|ri − rj| ≤ rmin, (21)

where ri and rj are the spatial positions of both nucle-
ons, and rmin is taken to be 4 fm. The value of rmin

reflects the cut-off limit of the interaction between nu-
cleons. It should be noted that the value of rmin plays
a little role, when the system is dilute, and nucleons are
far apart from each other. This range of the clusteri-
zation parameter will be different in different physical
situations depending on the excitation energy and the
density at the freeze-out time. It has been shown in [12]
that a realistic value of rmin is 3 fm ≤ rmin ≤ 5 fm. So
we take rmin = 4 fm.

For the MSTP method,we impose an additional cut
in the momentum space, i.e., we allow only those nu-
cleons to form a fragment, which satisfy, in addition to
equation(21),

|pi − pj| ≤ pmin, (22)

where pmin = 150 MeV/c. The value of pmin = 150
MeV/c is the average Fermi momentum of the nucleons
bound in a nucleus in its ground state, as obtained from
the QMD simulations. While considering the space cor-
relations for the fragment formation, we argued that, at
a later stage of the reaction, the correlations in the mo-
mentum space do not play any role. This argument is
based on the assumption that, at a later stage of the
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Fig. 1. The rapidity distribution dN/dY vs the rapidity Y (=

Yc.m./Ybeam) for free nucleons and LCPs for the reaction of
12C+12C at an incident energy of 100 MeV/nucleon at the central
(left panels) and peripheral (right) geometries within the MST and
MSTP methods

reaction, the nucleons with large relative momenta dis-
sociate themselves from each other. If we take the value
of cut ≈ 150 MeV/c, we finds a strong effect of the cut on
the fragmentation, as shown in [5]. If we take the value
of cut greater than 150 Mev/c, this value is not realistic,
as this cut in the relative momentum is too large to keep
the nucleons bound in a fragment. If we take pmin to
be very small, we deny the nucleons to form a fragment
even if their relative momentum is small. So the natu-
ral choice of the value of cut in the relative momentum
of two nucleons is the average Fermi momentum. This
means that the nucleons with large relative momentum
cannot be in the same fragment, even if they are too
close in the coordinate space.

3. Results and Discussion

We simulated the reactions of 12C+12C and 40Ca+40Ca
at 100 MeV/nucleon at the central and peripheral col-
liding geometries, i.e., at b̂ (b/bmax) = 0.0 and 0.8, re-
spectively, where bmax = R0(A

1/3
P + A

1/3
T ), with R0 =

1.142 fm. We use a soft equation of state with the stan-
dard energy-dependent Cugon cross-section.

Figure 1 displays the rapidity distribution vs the ra-
pidity (Y = Yc.m./Ybeam), where Ybeam is the beam ra-
pidity. We define the rapidity of particles as

Y (i) =
1
2

ln
E(i) + pz(i)
E(i)− pz(i)

, (23)

where E(i) and pz(i) are, respectively, the total energy
and the longitudinal momentum of the ith particle. In
Fig. 1, we give the rapidity distribution (dN/dY ) of
free nucleons and light charged particles (2 ≤ A ≤ 4)
(LCPs) for the reaction of 12C+12C at an energy of 100
MeV/nucleon at the central (b/bmax = 0.0) (left pan-
els) and peripheral (b/bmax = 0.8) (right) colliding ge-
ometries. The solid and dashed lines indicate the cal-
culations within the MST and MSTP methods, respec-
tively. From the figure, we see that there is a quanti-
tative difference in the results of the MST and MSTP
methods, though both methods give qualitatively a sim-
ilar behavior of the rapidity distribution of nucleons and
fragments.

For central collisions (left panels), we see that the peak
of the dN/dY plot is pronounced for the MSTP method,
which indicates the enhanced production of free nucleons
for the MSTP method, as compared to the MST method.
This is due to the fact that, in the MST method, we have
a single big fragment, because no restriction is imposed
on the relative momenta of nucleons forming fragments.
In central collisions (b/bmax = 0.0), the production of
LCPs is more within the MST method, as compared to
the MSTP method, which is supported by [5, 6]. At the
peripheral collisions, the behavior of the rapidity plots
of free nucleons is similar to that at the central ones,
whereas the trend reverses for the LCPs plot. For LCPs
at the peripheral collisions, we have a greater production
within the MSTP method. We also see that the dN/dY
distribution of free nucleons peaks at a mid-rapidity,
by indicating their origin from the participant matter,
whereas the peaks at the target and projectile rapidities
indicate that IMFs originate from the spectator matter.

In Fig. 2, we show the rapidity distributions of free
nucleons, LCPs, and intermediate mass fragments (5 ≤
A ≤ A/3) (IMFs) for the reaction of 40Ca+40Ca. Left
(right) panels display the results for b/bmax = 0.0 (0.8).
We find a similar behavior of free nucleons and LCPs,
as reported for the reaction of 12C+12C. The IMFs also
follow the similar trend as for LCPs, i.e., we have a more
(less) production of IMFs within the MST method at the
central (peripheral) collisions.
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Fig. 2. Same as in Fig. 1, but for the reaction of 40Ca+40Ca

In Figs. 3 and 4, we present dN/ptdpt versus pt for the
reactions of 12C+12C and 40Ca+40Ca, respectively. We
see that the dN/ptdpt spectra follow the a similar be-
havior for both MST and MSTP methods. In Fig. 3, we
have a higher peak in the spectra of free nucleons within
the MST method at both the colliding geometries. The
difference between the MST and MSTP methods in the
spectra of LCPs is less significant. A similar behavior is
also observed for the reaction of 40Ca+40Ca (see Fig. 4)
for free nucleons, LCPs, and IMFs.

In Fig. 5, we display the time evolution of the ratio
of transverse to longitudinal energy Erat of free nucleons
and LCPs for the reaction of 12C+12C at the central (left
panel) and peripheral (right) colliding geometries. For
the MST and MSTP methods, we find a significant dif-
ference between the MST and MSTP methods for both
free nucleons and LCPs. The difference is more for the
central collisions as compared with the peripheral one.

In Fig. 6, we show the time evolution of Erat of free
nucleons, LCPs, and IMFs for the reaction of 40Ca+40Ca
at central (left panel) and peripheral (right) collisions.
The solid (dashed) lines represent the results of the MST
(MSTP) method. From the figure, we find a significant
difference of Erat within the MST and MSTP methods,
as for the reaction of 12C+12C. We also find that the

Fig. 3. dN
ptdpt

(1/(MeV/c)2) as a function of the transverse energy
pt for free nucleons and LCPs for the reaction of 12C+12C at the
central (left panels) and peripheral (right) geometries within the
MST and MSTP methods. Lines have the same meaning as in
Fig. 1

Fig. 4. Same as in Fig. 3, but for the reaction of 40Ca+40Ca
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Fig. 5. Time evolution of Erat for free nucleons and LCPs for the
reaction of 12C+12C at central (left panels) and peripheral (right)
collisions

Fig. 6. Same as in Fig. 5, but for the reaction of 40Ca+40Ca

Fig. 7. Charge distribution for central and semicentral collisions of
the 197Au+197Au reactions. The experimental values for central
collisions at 150 MeV/nucleon are taken from [13], whereas the
ones for semicentral collisions at 150 MeV/nculeon are gathered
from [14]. All experimental data for collisions at 250 MeV/nucleon
are taken from [15]. Circles represent our theoretical calculations

difference between the MST and MSTP methods reduces
at the peripheral colliding geometry.

As a last step, we also compare our results with the
experimental data. In Fig. 7, we display the charge dis-
tribution for the 197Au+197Au reaction at 150 (left pan-
els) and 250 (right) MeV/nucleon at the central (b = 0–
3.5 fm) and semicentral (b = 0–8 fm) colliding geome-
tries. The data are taken from [13–15]. Solid (open) cir-
cles represent the results for the MST (MSTP) method.
From the figure, we see that both MST and MSTP meth-
ods obey the qualitative behavior of charge distribution,
though, quantitatively, the MST method overestimates
the data at both energies and at both colliding geome-
tries. On the other hand, we find that the MSTP method
matches the data well at both energies and colliding ge-
ometries.

4. Summary

Using the quantum molecular dynamics model, we have
studied the effect of momentum correlations on the prop-
erties of fragments. This was achieved by imposing a cut
in the momentum space during the process of clusteri-
zation. The idea of imposing a cut in the momentum
space is to avoid the creation of fragments, which are
not properly bound and will decay after a while or emit
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nucleons in the course of time. By imposing this momen-
tum cut, we have filtered out the unstable fragments, in
which nucleons may lie close in the coordinate space, but
are far away in the momentum space and hence cannot
be a part of the same fragment. Thus, this cut takes
us to a more realistic picture. We have shown that this
cut on the relative momentum plays a significant role
in the rapidity distributions, dN/ptdpt spectra, and the
Erat behavior of free nucleons, as well as of light and
medium mass fragments. Thus, we have found that this
cut yields a significant difference in the fragment prop-
erties of the system at all colliding geometries. We have
also compared our theoretical results with the experi-
mental data, which also signifies the importance of mo-
mentum correlations.
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ВПЛИВ КОРЕЛЯЦIЇ IМПУЛЬСIВ НА ВЛАСТИВОСТI
ФРАГМЕНТIВ, НАРОДЖЕНИХ У ЗIТКНЕННЯХ
ВАЖКИХ IОНIВ

С. Гаутам, Р. Кант

Р е з ю м е

Дослiджено вплив кореляцiй iмпульсiв на властивостi фра-
гментiв з легкими та середнiми масами при введеннi обрiзання
по iмпульсах i кластеризацiї фазового простору. Проаналiзо-
вано розподiл швидкостей, dN/ptdpt спектри, i вiдношення по-
здовжньої та поперечної енергiй (Erat) для реакцiй 12C+12C i
40Ca+40Ca. Виявлено суттєвий вплив обрiзання за iмпульсами
на властивостi фрагментiв. Результати розрахункiв порiвняно
з експериментальними даними.
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