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This paper is devoted to constructing the microscopic and macro-
scopic theories of a system of N interacting two-level atoms cou-
pled with a strong near resonant pumping field and a weak probe
electromagnetic one. Microscopic kinetic equations for the density
matrix elements of N -atom states including atomic motion are
deduced with regard for the atom-field and atom-atom interac-
tions. The corresponding macroscopic kinetics is built for the one-
and two-particle density matrix distribution functions. The self-
consistent system of macroscopic one-particle equations for the av-
eraged density matrix elements along with the Maxwell equations
allow us to describe the emission and absorption properties of the
system and to explain the dependence of the optical properties on
the particle density in terms of the “long-range” dipole-dipole in-
teraction between the atoms.

1. Introduction

Here, we will construct the microscopic and macroscopic
theories of a system of N interacting two-level atoms
coupled with a strong near resonant pumping field and
weak probe electromagnetic one. A theoretical investiga-
tion of the medium of “long-range” interacting particles
placed in a driving strong coherent electromagnetic field
needs to use complex mathematical tools and to seek
a suitable model for the system. To develop a macro-
scopic model, we construct the exact microscopic evolu-
tion equations for an N -particle system interacting with
near resonant fields.

The importance of many-particle effects for the opti-
cal properties of quite dense atomic gases were exper-
imentally revealed. For instance, in [1, 2], the dipole-
dipole spectral broadening of a resonance line was in-

vestigated in a dense rubidium vapor in the presence
of a far-detuned pump beam. The experimental evi-
dences of the influence of the atom-atom interaction on
spectral characteristics can be found in [3] and, for ex-
ample, [4–6]). The theoretical description of the effects
including the spectral narrowing, spectral broadening,
and radiation trapping caused by the long-range and
short-range (“hard core” collisions) atom-atom interac-
tions starts its development approximately from the sec-
ond half of the twentieth century (see, e.g., [7–14]), by
reaching the modern state, for example, in [15–17]. In
the current investigation, we emphasize on the influence
of the long-range interactions on line shapes, which was
not previously explained theoretically.

Many techniques for deriving the master equation are
in use today, but most of them are limited to the case
of the non-interacting atoms (see, e.g., [18, 19–26]) or
frozen positions for each atom (see, e.g., [27–31]). A
review of the relatively early developments in the the-
ory of binary collisions forming specific spectral profiles
is presented in [32] with respect to the simplified mas-
ter equations for one-particle density matrix elements,
including some phenomenological items with regard for
the atomic transitions at short-range collisions.

Other techniques, based on the Green’s function
method for non-equilibrium systems, under certain re-
strictions allow one to derive the kinetic equation for the
density matrix of two-level particles [17]. The impact
theory can be developed from the evolution equations
for the quantum Green’s functions under special simpli-
fying assumptions about the correlations in the binary
approximation (see [14]). Based on the appropriate for-
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mulation of the correlation functions (as in [7, 9, 10]),
the impact approximation is an alternative to the den-
sity matrix formalism. The careful introduction of the
binary collision integral, describing the intrinsic transi-
tions in atoms during collisions, for the use in kinetic
equations is the central moment in the impact theory
(see [13, 14]). In our macroscopic theory, the items re-
sponsible for atomic transitions during short-range inter-
actions are simplified in the relaxation approximation.
This means that we represent the corresponding “short-
range” part of the collision integral through the change
of the density matrix relative to its equilibrium value re-
lated to the appropriate relaxation time (the details are
explained and argued throughout the text). As in the
impact theory, we neglect the space correlation between
any two collided particles after a time interval much big-
ger than the short-range collision time. The constructed
system of microscopic evolution equations allows us to
obtain any approximation in the sense of many-body cor-
relations, when the long-range interaction is taken into
account. For example, we provide the derivation of the
macroscopic evolution equations involving two-particle
density matrix elements that are not available in the lit-
erature. Here, we restrict the description to the case of
the absence of two-particle space correlations, but our
microscopic theory allows us to develop the macroscopic
description with regard for possible correlations. In com-
parison with the present paper, a number of works like
[11, 12] developed the theory for equilibrium statistical
systems within the Green’s function method, by neglect-
ing any kinetic processes in the medium of interacting
particles.

Using a model Hamiltonian with the quantized opti-
cal pumping and probing electromagnetic fields and the
quantized atomic motion, the idea of a collective atomic
recoil laser (CARL) including the atomic dipole-dipole
interaction was proposed in [33]. But, probably because
of the already mentioned mathematical difficulties, the
analysis of the possibility of CARL in a dense atomic
vapor used a too simplified semiclassical system of equa-
tions for each atom. The huge amount of the semiclas-
sical equations corresponding to the long-range many-
particle dipole-dipole interactions cannot be used for an
analysis. No macroscopic theory was developed in [33].
To make a system description, the authors proposed to
carry out an appropriate simulation under certain con-
ditions. It was revealed that the long-range interatomic
interaction can play the “negative role” in the lasing pro-
cess. This was referred to the non-coherent characteristic
of collective atomic recoil motions. In our opinion, the
results can be used for quite “cold” gases. In addition, as

we showed in another paper, an interatomic interaction
can act in different manner on the optical properties.
For example, the presence of the dipole-dipole interac-
tion can reduce or increase the “lasing ability” in quite
“hot” atoms and become the cause for the ordered popu-
lation and polarization distributions. We also propose a
complete microscopic-macroscopic theory of the system,
making a possibility to derive an analytic description.

In [34], the nonlinear dynamics of an open quan-
tum system is treated for an arbitrary number of two-
level non-colliding atoms coupled with a classical poly-
chromatic field and one quantized mode of this field,
but without consideration of the dipole-dipole interac-
tion. A deeper analysis of the same system, adding non-
adiabatic transitions, was provided in [35]. In [36], a sim-
ilar analytical method, based on the generalized Jaynes–
Cummings model, was used. That work discussed some
characteristics of light in a two-mode cavity with the
possibility of resonant two-photon transitions for non-
interacting fermions, but did not include dissipative pro-
cesses.

In this paper, we study the N -atom ensemble with
regard for the possibility of a two-photon excitation or
decay (jumps) involving a pair of atoms interacting with
the dipole-dipole coupling in the strong-field regime. For
comparison, the previous theoretical work [37] described
the evolution of two dipole-dipole interacting atoms in a
vacuum with only one atom being initially excited; work
[31] considered two two-level atoms independently in-
teracting with local thermal or squeezed reservoirs, tak-
ing the possibility of their initial simultaneous excita-
tion into account, but neglecting the dipole-dipole in-
teraction. Works [29, 30] followed the approximations of
[27,28], just adding an additional state to the model cor-
responding to two simultaneously excited atoms. They
examined possible two-photon jumps, which is different
from our description of “jumps” (we model the dipole-
dipole interaction by an operator keeping the appro-
priate pairs of atomic transition operators that are ne-
glected in the approach in [27]: see the more detailed
explanation in the next section).

As compared with works like [27, 37], where the well-
localized atoms were investigated, we consider the in-
teraction of atoms with a quantum radiation bath in
the model describing the dipole-dipole coupling between
atoms. The model is based on certain radiative effects,
including the radiation trapping. We formulate the evo-
lution equations for the system in terms of averaged one-
and two-particle density matrix elements. The obtained
macroscopic description allows us to examine the system
of atoms acting as a whole and to compute the emission
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and absorption properties of the medium in a straight-
forward manner in view of certain statistical properties.

2. Main Statements

We start from the Schrödinger equation for the N -atom
state

i~
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 with Ĥ = Ĥ + Γ̂, (1)

where Ĥ is a part of the Hamiltonian that involves both
the interaction of atoms with the electromagnetic field
and the dipole-dipole interaction between atoms:

Ĥ = ~ωa
N∑
i=1

σ+
i σi + ~ωb

N∑
i=1

σiσ
+
i −

−
N∑
i=1

(
℘iabσ

+
i + ℘ibaσi

)
· E(t, ri) +

1
2

1
4πε0

N,N∑
i,j;i 6=j

1
|rij |3

×

×
[(
℘iabσ

+
i + ℘ibaσi

)
·
(
℘jabσ

+
j + ℘jbaσj

)
−

−3r̂ij ·
(
℘iabσ

+
i + ℘ibaσi

)
r̂ij ·

(
℘jabσ

+
j + ℘jbaσj

)]
. (2)

Here, σ+
i = |a〉〈b|i and σi = |b〉〈a|i are the excited state

creation and annihilation operators for the i-th atom,
i = 1, . . . , N, respectively; N is the number of atoms; a
and b denote the excited and ground states of an atom;
ri is the position of the i-th atom; rij = ri − rj , r̂ij =
(ri − rj) /|ri − rj | is the unit vector pointing from atom
j to atom i. The off-diagonal dipole matrix elements are
defined by terms

(
℘iab
)∗ = ℘iba = 〈b|µ̂|a〉i, i = 1, . . . , N ;

where µ̂ is the dipole operator for the atom.
The external electromagnetic field E(t, ri) at the point

ri includes a pump field, a probe field with close frequen-
cies, and the far-field radiation from atoms. This can be
presented in the form

E (t, ri) = E (t, ri) + E∗ (t, ri) . (3)

In the case where only the “pump” field is taken into
account, we have E (t, r) = E0e

−i(ωt−k·r). Here, ω is the
pump frequency, and k is its wave vector.

In our approximation, the state vector |Ψ〉 has the
form

|Ψ〉 =
2N∑

α=(α1...αN )

Cα(t,X)|Ψ〉α

with

{|Ψ〉α} = {|α1 . . . αi . . . αN 〉, αi = (a, b)}, (4)

where X = (r1, r2, . . . , rN ) are the actual atomic posi-
tions. The coefficient Cα(t,X) corresponds to the prob-
ability amplitude to find the system in a state α with
defined N intrinsic atomic states (in the set α) and co-
ordinates X± dX at the moment of time t± dt. There-
fore, generally speaking, the state vector also describes
the correlations between all N atoms.

The part of the Hamiltonian, which describes the
dipole-dipole interaction between all pairs of N atoms, is
written with the following assumptions. First, all binary
combinations of atomic operators σi and σ+

j , like σ+
i σ

+
j

and σiσj , with i 6= j, are included in the way shown
above. This can be obtained on a “quite short time
scale” by eliminating the time-dependent field operators
in Hamiltonian (3) and by using the canonical transfor-
mation (7) in [27]. Next, the average distance between
two atoms is assumed to be smaller than a sixth of the
pump (and signal) wavelength. In addition, we consider
the average distance between atoms to be many times
bigger than the effective atomic size (diameter). Accord-
ingly, the summation over pairs of atoms appearing in
the Schrödinger equation has to take into account only
such pairs of particles having separations less than the
wavelength of a pump field over 2π (inverse of the wave
vector). In this approximation, the dipole radiation from
more distant atoms is included in the definition of the
external electromagnetic field E(t, ri).

Γ̂ is a part of the Hamiltonian Ĥ, which describes the
damping effects. In our approximation, we neglect the
collective atomic recoil, even though it can be present in
the experiment. It is supposed that the time scale for
the buildup of the gain is of the order of the spontaneous
emission time (e.g., < 20 ns, as in [3]), so that collision
processes and multiple spontaneous recoils (though pos-
sibly not stimulated recoils) play a negligible role. An
important role in defining the system behavior belongs
to a long-range interaction, which is treated separately
from the introduced “damping” operator Γ̂ in the model
Hamiltonian. The model operator Γ̂ is responsible for
the damping of atomic states during atomic “hard core”
collisions and under the interaction with the radiation
bath (including vacuum fluctuations).

On a theoretical basis, the quantum recoil effects can
be eliminated, as described in the recent work [37], be-
cause they require that the atomic motion on the time
scale of spontaneous emission be small compared to the
time taken to move a wavelength distance, as, other-
wise, the Rabi frequency cannot be considered a con-
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stant (see works [29, 30, 37]). The contribution to the
relaxation rates of collective states due to atomic “hard
core” collisions and the interaction with the radiation
bath is taken into account, by using the phenomeno-
logical decay coefficients in the kinetic equations given
below. This model of decay guarantees the normaliza-
tion of the system state vector and justifies the use of
averaged one-particle states. In the section “Proof,” we
derive the properties of the damping operator Γ̂ aver-
aged over the atomic quantum states, which is the phe-
nomenological damping.

Further, we do not quantize the motion of the atomic
center of mass, due to the approximation of hot gas, but
treat it semiclassically.

In the limit of a strong pump beam, we set ℘iab =
℘iba = ℘℘̂, i = 1, . . . , N (here, ℘̂ is the unit vector par-
allel to the direction of the off-diagonal dipole matrix
element), and assume a linear polarization of the pump,
so that the off-diagonal dipole matrix elements follow the
external pump polarization, by either reinforcing or can-
celling its amplitude E0. Then the following microscopic
evolution equations can be derived (see section “Proof”):

∂

∂t
ρiaa(t,X) = λa − γρiaa(t,X)+

+
i

~
(
ρiba(t,X)℘iab ·E(ri, t)− ρiab(t,X)℘iba ·E∗(ri, t)

)
−

− 1
4πε0

i

~

N∑
j;j 6=i

{[
ρi;jba;ba(t,X) + ρi;jba;ab(t,X)−

−ρi;jab;ab(t,X)− ρi;jab;ba(t,X)
]
Qijab (rij)

}
; (5)

∂

∂t
ρibb(t,X) = λb − γρibb(t,X)−

− i
~
(
ρiba(t,X)℘iab ·E(ri, t)− ρiab(t,X)℘iba ·E∗(ri, t)

)
+

+
1

4πε0
i

~

N∑
j;j 6=i

{[
ρi;jba;ba(t,X)+

+ρi;jba;ab(t,X)−ρi;jab;ab(t,X)−ρi;jab;ba(t,X)
]
Qijab (rij)

}
; (6)

∂

∂t
ρiba(t,X) = −γbaρiba(t,X) + iω0ρ

i
ba(t,X)+

+
i

~
(
ρiaa(t,X)℘iba − ρibb(t,X)℘iab

)
·E∗(ri, t)−

− 1
4πε0

i

~

N∑
j;j 6=i

{[
ρi;jaa;ba(t,X) + ρi;jaa;ab(t,X)−

−ρi;jbb;ab(t,X)− ρi;jbb;ba(t,X)
]
Qijab (rij)

}
; (7)

mi
d2

dt2
ri(t) = − ∂

∂ri

{
−
(
ρiba(t,X)℘iba ·E (ri, t) +

+ρiab(t,X)℘iab ·E∗ (ri, t)
)

+

+
1

4πε0

N∑
j;j 6=i

{[
ρi;jba;ba(t,X) + ρi;jba;ab(t,X)+

+ρi;jab;ab(t,X) + ρi;jab;ba(t,X)
]
Qijab (rij)

}}
. (8)

Here, we used the notation

Qijab (rij) =
[
℘iab℘

j
ab − 3(℘iabr̂ij)(℘

j
abr̂ij)

] 1
|rij |3

. (9)

The atomic resonant frequency is defined as ω0 = ωa−ωb
and is, generally saying, a function of the atomic ve-
locity because of the Doppler effect, so that each atom
has own resonant frequency (the notation is kept with-
out an atomic index here); λa = γn

(0)
a , λb = γn

(0)
b ;

n
(0)
a + n

(0)
b = 1, where n(0)

a and n
(0)
b are the equilibrium

solution of the equations above without external electro-
magnetic fields and without dipole-dipole interaction be-
tween the atoms. In accordance with our model, we use
the phenomenological decay coefficients γ and γba to in-
clude the spontaneous decay, collisions, and other inter-
actions with the external environment. Here and further
in the following text for simplicity, we count no difference
between ℘iba and ℘iab, or, in other words, ℘iba =

(
℘iba
)∗.

Moreover, we used the following definitions for the mi-
croscopic N -particle density matrix elements:

ρiaa =
2N∑
β

C∗β1...ai...βN
Cβ δβia;
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ρiab =
2N∑
β

C∗β1...bi...βN
Cβ δβia;

ρibb =
2N∑
β

C∗β1...bi...βN
Cβ δβib; (10)

ρi;jab;ba =
2N∑
β

C∗β1...bi...aj ...βN
Cβ δβia δβjb;

ρi;jaa;ba =
2N∑
β

C∗β1...ai...aj ...βN
Cβ δβia δβjb;

ρi;jba;ba =
2N∑
β

C∗β1...ai...aj ...βN
Cβ δβib δβjb. (11)

Here, β = (β1 . . . βi . . . βN ) , βi = (a, b) and δβjb is the
Kronecker delta. The coefficients Cβ = Cβ(t,X) are
defined in (4).

Averaging the above “N -particle” equations with an
ensemble distribution and using the symmetry of the en-
semble relative to the permutation of any two atoms, the
chain of one-, two-, three-, . . ., N -particle kinetic equa-
tions can be obtained. Then, assuming that a spatial
correlation between any two atoms quickly vanishes with
time (mathematically it is written as the expressions
(53)), we can obtain the following system of one-particle
self-consistent macroscopic evolution equations from the
corresponding N -particle microscopic equations (5)–(8)
or the one- and two-particle macroscopic equations (43)–
(46) based on the model Hamiltonian (see the detailed
definitions and derivations of the equations in the section
“Proof”) with the notation χ = 1

4πε0
(N − 1)℘2:

∂

∂t
ρaa (t, r) = λa

n (r)
N
− γρaa (t, r) +

+
i

~
℘ (ρba (t, r) ℘̂ ·E (t, r)− ρab (t, r) ℘̂ ·E∗ (t, r)) +

+
2
~
χ

∫
dr′ {2 Im (ρba(t, r)) Re (ρba(t, r′))Q (r, r′)} , (12)

where ρaa (t, r) is the excited state one-particle probabil-
ity density given by the averaged density matrix element,
which describes the probability to find an atom at the
time t± dt and the position r± dr in the excited state a
independently of whether the other atoms in the vapor
cell (volume V ) are in the excited a or ground b state.
We have

∂

∂t
ρbb (t, r) = λb

n (r)
N
− γρbb (t, r)−

− i
~
℘ (ρba (t, r) ℘̂ ·E (t, r)− ρab (t, r) ℘̂ ·E∗ (t, r))−

−2
~
χ

∫
dr′ {2 Im (ρba(t, r)) Re (ρba(t, r′))Q (r, r′)} , (13)

where ρbb (t, r) is the ground state one-particle probabil-
ity density given by the averaged density matrix element,
which describes the probability to find an atom at the
time t± dt and the position r± dr in the ground state b
independently of whether the other atoms in the vapor
cell (volume V ) are in the excited a or ground b state.
We obtain

∂

∂t
ρba (t, r) = −γbaρba (t, r) + iω0ρba (t, r) +

+
i

~
(ρaa (t, r)− ρbb (t, r))℘℘̂ ·E∗ (t, r)−

−2i
~
χ

∫
dr′
{

(ρaa (t, r)− ρbb (t, r))×

×Re (ρba (t, r′))Q (r, r′)
}
, (14)

where ρba (t, r) is the averaged “off-diagonal” density ma-
trix element, which determines a polarization of the gas
medium.

Finally, the equation for the quasiclassical particle
translational motion describing a change of the averaged
atomic velocity u (t, r) is as follows:

m
∂

∂t
u (t, r) = −m

(
u (t, r) · ∂

∂r

)
u (t, r)−

− ∂

∂r

{
−℘ (ρba (t, r) ℘̂ ·E (t, r) +ρab (t, r) ℘̂ ·E∗ (t, r)) +

+2χ
∫
dr′ {2 Re (ρba (t, r)) Re (ρba (t, r′))Q (r, r′)}

}
.

(15)

Here,

Q (r, r′) =
℘̂ · ℘̂′

|r− r′|3
− 3

(℘̂ · (r− r′)) (℘̂′ · (r− r′))
|r− r′|5

; (16)

ω0 is the atomic “resonant” frequency averaged over the
ensemble. This averaged value can depend on time and
coordinates, as shown in the subsection “From micro-
scopic description to macroscopic” of the next section.
The parameters λa, b like the previous microscopic case
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describe the non-averaged density matrix elements for a
system of non-interacting atoms without external elec-
tromagnetic field. These are defined in the next section.
By n (r) , we denote the number of atoms per unit vol-
ume.

To take the long-range atom-atom interactions into ac-
count, we need to use Maxwell’s equations for the macro-
scopic electromagnetic field propagating in the medium:

∇×∇×E (t, r) +
1
c2
∂2

∂t2
E (t, r) = −µ0

∂2

∂t2
P (t, r) , (17)

where the polarization P (t, r) of the system per unit
volume is given by

P (t, r) = N℘℘̂ (ρba (t, r) + ρab (t, r)) , (18)

and c is the light speed in the medium.
Here, we need to keep in mind the necessity to use

one mutual spatial scale for the three terms: the macro-
scopic one-particle distribution, the macroscopic density
matrix, and the macroscopic electromagnetic field. Ac-
cordingly, the the macroscopic density matrix elements
ρaa (t, r), ρba (t, r), and ρba (t, r) are not pure atom states
but include the action of the pump field and the ensem-
ble averaging.

3. Proof

Here, we derive the evolution equations for the state am-
plitudes of the N -atom system. The evolution equations
for the density matrix and coordinates of an atom are
first obtained. Then, after the microscopic description of
the system, we explain the method of transforming these
equations into a self-consistent system of one-particle
macroscopic kinetic equations.

3.1. Evolution equations for the state
amplitudes of the system

We multiply the left- and right-hand sides of Eq. (1) by
〈Ψ|β = 〈β1 . . . βi . . . βj . . . βN | and obtain

∂

∂t
Cβ(t,X) = −iωa

N∑
i=1

2N∑
α

Cα(t,X)〈Ψ|βσ+
i σi|Ψ〉α−

−iωb
N∑
i=1

2N∑
α

Cα(t,X)〈Ψ|βσiσ+
i |Ψ〉α+

+
i

~

N∑
i=1

2N∑
α

Cα(t,X)
(
℘iab〈Ψ|βσ+

i |Ψ〉α+

+℘iba〈Ψ|βσi|Ψ〉α
)
· E (t, ri)−

−1
2

1
4πε0

i

~

N,N∑
i,j;i 6=j

2N∑
α

Cα(t,X)
[
℘iab · ℘

j
ab〈Ψ|βσ

+
i σ

+
j |Ψ〉α+

+℘iab · ℘
j
ba〈Ψ|βσ

+
i σj |Ψ〉α+

+℘iba · ℘
j
ab〈Ψ|βσiσ

+
j |Ψ〉α + ℘iba · ℘

j
ba〈Ψ|βσiσj |Ψ〉α−

−3
(
(r̂ij · ℘iab)(r̂ij · ℘

j
ab)〈Ψ|βσ

+
i σ

+
j |Ψ〉α+

+(r̂ij · ℘iab)(r̂ij · ℘
j
ba)〈Ψ|βσ

+
i σj |Ψ〉α+

+(r̂ij · ℘iba)(r̂ij · ℘
j
ab)〈Ψ|βσiσ

+
j |Ψ〉α+

+(r̂ij · ℘iba)(r̂ij · ℘
j
ba)〈Ψ|βσiσj |Ψ〉α

)]
1

|ri − rj |3
−

− i
~

2N∑
α

Cα(t,X)〈Ψ|βΓ̂|Ψ〉α. (19)

After the substitution of the expressions for the averaged
operators (24), (25) (see in the next subsection), we have

∂

∂t
Cβ(t,X) = −iωa

N∑
i=1

Cβ1...ai...βN
δβia−

−iωb
N∑
i=1

Cβ1...bi...βN
δβib +

i

~

N∑
i

(
Cβ1...bi...βN

δβia℘
i
ab+

+Cβ1...ai...βN
δβib℘

i
ba

)
· E (t, ri)−

−1
2

1
4πε0

i

~

N ;N∑
i,j;i 6=j

[
Cβ1...bi...bj ...βN

δβiaδβja℘
i
ab · ℘

j
ab+

+Cβ1...bi...aj ...βN
δβiaδβjb℘

i
ab · ℘

j
ba+

+Cβ1...ai...bj ...βN
δβibδβja℘

i
ba · ℘

j
ab+

+Cβ1...ai...aj ...βN
δβibδβjb℘

i
ba · ℘

j
ba−

−3
(
Cβ1...bi...bj ...βN

δβiaδβja(℘
i
ab · r̂ij)(℘

j
ab · r̂ij)+

+Cβ1...bi...aj ...βN
δβiaδβjb(℘

i
ab · r̂ij)(℘

j
ba · r̂ij)+

+Cβ1...ai...bj ...βN
δβibδβja(℘

i
ba · r̂ij)(℘

j
ab · r̂ij)+

+Cβ1...ai...aj ...βN
δβibδβjb(℘

i
ba · r̂ij)(℘

j
ba · r̂ij)

)]
×

× 1
|ri − rj |3

− i

~

2N∑
α

Cα(t,X)〈Ψ|βΓ̂|Ψ〉α. (20)
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3.2. Equation of motion for an atom

In the semiclassical approximation, the equation of mo-
tion for an atom has the following form between colli-
sions:

mi
d2

dt2
ri(t) = − ∂

∂ri
〈Ĥi〉, (21)

where

Ĥi=−
(
℘iabσ

+
i + ℘ibaσi

)
· E (t, ri) +

1
4πε0

×

×
N∑

j;i 6=j

1
|ri − rj |3

[(
℘iabσ

+
i + ℘ibaσi

)
·
(
℘jabσ

+
j + ℘jbaσj

)
−

−3r̂ij ·
(
℘iabσ

+
i + ℘ibaσi

)
r̂ij ·

(
℘jabσ

+
j + ℘jbaσj

)]
. (22)

Then we have

mi
d2

dt2
ri(t) = − ∂

∂ri

2N∑
β

2N∑
α

C∗β(t,X)Cα(t,X)×

×
{

1
|ri − rj |3

−
(
℘iab〈Ψ|βσ+

i |Ψ〉α + ℘iba〈Ψ|βσi|Ψ〉α
)
×

×E (t, ri) +
1

4πε0

N∑
j;j 6=i

[
℘iab · ℘

j
ab〈Ψ|βσ

+
i σ

+
j |Ψ〉α+

+℘iab · ℘
j
ba〈Ψ|βσ

+
i σj |Ψ〉α + ℘iba · ℘

j
ab〈Ψ|βσiσ

+
j |Ψ〉α+

+℘iba · ℘
j
ba〈Ψ|βσiσj |Ψ〉α − 3

(
(r̂ij · ℘iab)(r̂ij · ℘

j
ab)×

×〈Ψ|βσ+
i σ

+
j |Ψ〉α + (r̂ij · ℘iab)(r̂ij · ℘

j
ba)×

×〈Ψ|βσ+
i σj |Ψ〉α + (r̂ij · ℘iba)(r̂ij · ℘

j
ab)〈Ψ|βσiσ

+
j |Ψ〉α+

+(r̂ij · ℘iba)(r̂ij · ℘
j
ba)〈Ψ|βσiσj |Ψ〉α

)]
1

|ri − rj |3

}
. (23)

After the substitution of the expressions for the averaged
operators, we obtain

σ+
i σi|Ψ〉α = (|a〉〈a|i) |α1 . . . αi . . . αN 〉 = δaαi

|Ψ〉α;

σ+
i |Ψ〉α=(|a〉〈b|i) |α1 . . . αi . . . αN 〉=δbαi |α1 . . . ai . . . αN 〉;

〈Ψ|βσ+
i |Ψ〉α = δbαi

δβ1α1 . . . δβia . . . δβNαN
;

σi|Ψ〉α=(|b〉〈a|i) |α1 . . . αi . . . αN 〉=δaαi
|α1 . . . bi . . . αN 〉;

〈Ψ|βσi|Ψ〉α = δaαi
δβ1α1 . . . δβib . . . δβNαN

; (24)

σ+
i σ

+
j |Ψ〉α = σ+

i δbαj |α1 . . . aj . . . αN 〉 =

= δbαi
δbαj
|α1 . . . ai . . . aj . . . αN 〉;

〈Ψ|βσ+
i σ

+
j |Ψ〉α =

= δbαiδbαjδβ1α1δβ2α2 . . . δβia . . . δβja . . . δβNαN
;

σ+
i σj |Ψ〉α = σ+

i δaαj
|α1 . . . bj . . . αN 〉 =

= δbαiδaαj |α1 . . . ai . . . bj . . . αN 〉;

〈Ψ|βσ+
i σj |Ψ〉α = δbαi

δaαj
δβ1α1 . . . δβia . . . δβjb . . . δβNαN

;

〈Ψ|βσiσ+
j |Ψ〉α = δaαi

δbαj
δβ1α1 . . . δβib . . . δβja . . . δβNαN

;

〈Ψ|βσiσj |Ψ〉α = δaαiδaαjδβ1α1 . . . δβib . . . δβjb . . . δβNαN
;

〈Ψ|βσ+
i σi|Ψ〉α = δaαi

δβ1α1 . . . δβia . . . δβNαN
(25)

and the following equation of motion for atom i:

mi
d2

dt2
ri(t) = − ∂

∂ri

2N∑
β

C∗β(t,X)×

×
{

1
|ri−rj |3

−
(
Cβ1...bi...βN

δβia℘
i
ab+Cβ1...ai...βN

δβib℘
i
ba

)
×

×E (t, ri) +
1

4πε0

N∑
j;j 6=i

[
Cβ1...bi...bj ...βN

δβiaδβja℘
i
ab · ℘

j
ab+

+Cβ1...bi...aj ...βN
δβiaδβjb℘

i
ab · ℘

j
ba+

+Cβ1...ai...bj ...βN
δβibδβja℘

i
ba · ℘

j
ab+

+Cβ1...ai...aj ...βN
δβibδβjb℘

i
ba · ℘

j
ba−

−3
(
Cβ1...bi...bj ...βN

δβiaδβja(℘
i
ab · r̂ij)(℘

j
ab · r̂ij)+

+Cβ1...bi...aj ...βN
δβiaδβjb(℘

i
ab · r̂ij)(℘

j
ba · r̂ij)+

+Cβ1...ai...bj ...βN
δβibδβja(℘

i
ba · r̂ij)(℘

j
ab · r̂ij)+

+Cβ1...ai...aj ...βN
δβibδβjb(℘

i
ba · r̂ij)(℘

j
ba · r̂ij)

)]
×

× 1
|ri − rj |3

}
. (26)
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3.3. Evolution equations for the density matrix
and coordinates of an atom

Now, we can write down expressions for the time deriva-
tive of the density matrix

∂

∂t
ρiaa(t,X),

∂

∂t
ρiba(t,X),

∂

∂t
ρibb(t,X), (27)

where

ρiaa =
2N∑
β

C∗β1...ai...βN
Cβ δβia,

ρiab =
2N∑
β

C∗β1...bi...βN
Cβ δβia,

ρibb =
2N∑
β

C∗β1...bi...βN
Cβ δβib, (28)

and make necessary transformations in the equations
for the atomic coordinates. Note, here and in defini-
tions (10) and (11), the above notations involving the
Kronecker-delta mean the following:

2N∑
β

C∗β1...ai...βN
Cβ δβia =

2N∑
β

C∗β1...ai...βN
Cβ1...ai...βN

;

2N∑
β

C∗β1...bi...βN
Cβδβia =

2N∑
β

C∗β1...bi...βN
Cβ1...ai...βN

;

2N∑
β

C∗β1...bi...βN
Cβ δβib =

2N∑
β

C∗β1...bi...βN
Cβ1...bi...βN

.

(29)

3.3.1. Normalization condition and the operator Γ̂

To satisfy the normalization condition

ρiaa(t,X) + ρibb(t,X) = 1, (30)

we accept such model “relaxation” operator Γ̂ that

− i
~

2N∑
β

C∗β1...ai...βN

2N∑
α

Cα〈Ψ|β1...ai...βN
Γ̂|Ψ〉α+

+
i

~

2N∑
β

Cβ1...ai...βN

2N∑
α

C∗α

(
〈Ψ|β1...ai...βN

Γ̂|Ψ〉α
)∗

=

= γbbρ
i
bb (t,X)− γaaρiaa (t,X) . (31)

By analogy, we have

− i
~

2N∑
β

C∗β1...bi...βN

2N∑
α

Cα〈Ψ|β1...bi...βN
Γ̂|Ψ〉α+

+
i

~

2N∑
β

Cβ1...bi...βN

2N∑
α

C∗α

(
〈Ψ|β1...bi...βN

Γ̂|Ψ〉α
)∗

=

= γaaρ
i
aa (t,X)− γbbρibb (t,X) . (32)

But,

− i
~

2N∑
β

C∗β1...ai...βN

2N∑
α

Cα〈Ψ|β1...bi...βN
Γ̂|Ψ〉α+

+
i

~

2N∑
β

Cβ1...bi...βN

2N∑
α

C∗α

(
〈Ψ|β1...ai...βN

Γ̂|Ψ〉α
)∗
=

= −γbaρiba (t,X) . (33)

3.3.2. Equations of motion for density matrix elements

To obtain the promised equation of motion, we substitut
expression (20) into the formulae for partial derivatives
introduced previously. For example,

∂

∂t
ρiaa(t,X) =

2N∑
β

Cβ δβia
∂

∂t
C∗β1...ai...βN

+

+
2N∑
β

C∗β1...ai...βN

∂

∂t
Cβ δβia. (34)

Consequently, using the results from previous subsec-
tions and the identity above, the system of dynamic (mi-
croscopic) equations (5)–(8) for atom i can be obtained
in the rotating-wave approximation for the atom-field
interaction.

3.4. From the microscopic description to the
macroscopic one

Let D (t, r1(t), r2(t), . . . , rN (t)) = D (t,X) be the proba-
bility density to find the system in a state with X± dX.
Then the averaged probability density to find atom i in
the excited state at the position ri ± dri can be defined
as

ρiaa (t, ri) =
∫

D(t,X)ρiaa(t,X)×
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×dr1dr2 . . . dri−1dri+1 . . . drN . (35)

To describe the system of atoms on different space-
and time-scales, we develop a kinetic approximation, by
introducing the splitting of the two-particle density ma-
trix into a product of two one-particle density matrices,

ρi;jab;ba(t, ri, rj) =
∫

D(t,X) ρi;jab;ba(t,X)×

×dr1 . . . dri−1dri+1 . . . drj−1drj+1 . . . drN '

' ρiab(t, ri) ρ
j
ba(t, rj), (36)

along with Bogolyubov’s splitting approach (see, e.g.,
[38]), which can describe the vanishing of the correlations
between particles with time in their motion in the three-
dimensional space r:

f(r, t)f(r′, t) ' f(r, t) f(r′, t). (37)

where

f(r, t) =
∫ N∑

i

δ(r− ri(t))δ(p− pi(t))dp (38)

is the space distribution function, where N is the to-
tal number of particles, and pi(t) is the momentum of
particle i.

At the next level of the hierarchy of approximations,
we can make hydrodynamic approximation:
the local distribution function of particles in the six-
dimensional velocity-coordinate space is the Maxwell–
Boltzmann distribution describing the local equilibrium
state of the atoms. Then the collisions between atoms
will not contribute to the averaged evolution equa-
tion for the position of a physical volume element dr
(Boltzmann–Enskog’ integral vanishes) (see, e.g., [39]).

Therefore, we can obtain the averaged evolution equa-
tions in the following way.

The definitions of the introduced N -particle density
matrix elements yield

ρiab(t,X) =
(
ρiba(t,X)

)∗
;

ρi;jab;ba(t,X) =
(
ρi;jba;ab(t,X)

)∗
,

ρi;jba;ba(t,X) =
(
ρi;jab;ab(t,X)

)∗
,

ρi;jaa;ba(t,X) =
(
ρi;jaa;ab(t,X)

)∗
,

ρi;jbb;ab(t,X) =
(
ρi;jbb;ba(t,X)

)∗
, (39)

and, correspondingly,

ρiba(t,X)− ρiab(t,X) = 2iIm
(
ρiba(t,X)

)
,

ρiba(t,X) + ρiab(t,X) = 2Re
(
ρiab(t,X)

)
,

ρi;jba;ba(t,X) + ρi;jba;ab(t,X)− ρi;jab;ab(t,X)− ρi;jab;ba(t,X) =

= 2iIm
(
ρi;jba;ba(t,X) + ρi;jba;ab(t,X)

)
,

ρi;jaa;ba(t,X) + ρi;jaa;ab(t,X)− ρi;jbb;ab(t,X)− ρi;jbb;ba(t,X) =

= 2Re
(
ρi;jaa;ba(t,X)− ρi;jbb;ba(t,X)

)
,

ρi;jba;ba(t,X) + ρi;jba;ab(t,X) + ρi;jab;ab(t,X) + ρi;jab;ba(t,X) =

= 2Re
(
ρi;jba;ba(t,X) + ρi;jba;ab(t,X)

)
. (40)

For convenience, we introduce the following notation:

P i;j (t,X) = ρi;jba;ba(t,X) + ρi;jba;ab(t,X); (41)

and

Ri;j (t,X) = ρi;jaa;ba(t,X)− ρi;jbb;ba(t,X); (42)

After averaging each of Eqs. (5)–(8) with the distri-
bution D(t,X, Ẋ) (the probability to find the system of
atoms at the phase domain (X ± dX, Ẋ ± dẊ) in the
time interval t ± dt ) in accordance with rule (35), we
obtain the system of equations given below. For ρiaa:∫
dr1dr2 . . . dri−1dri+1 . . . drN D(t,X)

∂

∂t
ρiaa(t,X) =

= λa
n (ri)
N
− γρiaa (t, ri) +

i

~

(
ρiba (t, ri)℘iab ·E (t, ri)−

−ρiab (t, ri)℘iba ·E∗ (t, ri)
)

+
2

4πε0
1
~

N∑
j;j 6=i

∫
drj×
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×

{
Im
(
P i;j (t, ri, rj)

)
Qijab (rij)

}
; (43)

for ρibb:∫
dr1dr2 . . . dri−1dri+1 . . . drN D(t,X)

∂

∂t
ρibb(t,X) =

= λb
n (ri)
N
− γρibb (t, ri)−

− i
~

(
ρiba (t, ri)℘iab ·E (t, ri)− ρiab (t, ri)℘iba ·E∗ (t, ri)

)
−

− 2
4πε0

1
~

N∑
j;j 6=i

∫
drj

{
Im
(
P i;j (t, ri, rj)

)
Qijab (rij)

}
;

(44)

and for ρiba:∫
dr1dr2 . . . dri−1dri+1 . . . drN D(t,X)

∂

∂t
ρiba(t,X) =

= −γbaρiba (t, ri) + iω0ρiba (t, ri) +

+
i

~

(
ρiaa (t, ri)− ρibb (t, ri)

)
℘iab ·E∗ (t, ri)−

− 2
4πε0

i

~

N∑
j;j 6=i

∫
drj

{
Re
(
Ri;j (t, ri, rj)

)
Qijab (rij) .

}
(45)

Finally, we present the quasiclassical equation of motion

mi

∫
dr1dr2 . . . dri−1dri+1 . . . drN dṙ1 . . . dṙN×

×D
(
t,X, Ẋ

)
r̈i(t)=−

∂

∂ri

{
−
(
ρiba(t, ri)℘

i
ab ·E(t, ri)+

+ρiab (t, ri)℘iba ·E∗ (t, ri)
)

+

+
2

4πε0

N∑
j;j 6=i

∫
drj
{

Re
(
P i;j (t, ri, rj)

)
Qijab (rij)

}}
,

(46)

The averaged quantities P i;j (t, ri, rj) and Ri;j (t, ri, rj)
are defined by rule (36). Here, we used the identities

ω0ρiαβ (t, ri) =

=
∫

dr1dr2 . . . dri−1dri+1 . . . drN dṙ1 . . . dṙN ×

×ρiαβ (t,X)D(t,X, Ẋ)ω0 (ṙi) , (47)

where α ∈ (a, b) and β ∈ (a, b). We also have

n(ri)
N

= ρiaa (t, ri) + ρibb (t, ri) =

=
∫
dr1 . . . dri−1dri+1 . . . drN dṙ1dṙ2 . . . dṙN×

×D(t,X, Ẋ), (48)

where

D(t,X) =
∫

dṙ1dṙ2 . . . dṙN D(t,X, Ẋ). (49)

The normalization condition reads∫
V N

dXD(t,X) =
∫

dX dẊD(t,X, Ẋ) = 1, (50)

where the integration over each coordinate ri (i =
1, . . . , N) is within the volume V physically filled by a
gas of atoms. Therefore, because of the normalization
condition or, in other words, the particle number con-
servation in the volume V , the N -particle distributions
D and D do not explicitly depend on time: the normal-
ization condition is true for any moment time t. Then
we have

∂

∂t

∫
V N

dXD(t,X) =
∂

∂t

∫
dX dẊD(t,X, Ẋ) = 0

⇔ ∂

∂t
D(t,X) = 0. (51)

Using the above identities and properties, we can rep-
resent the averaged partial derivative with respect to the
time for the variables ρiaa (t,X), ρibb (t,X), ρiba (t,X) in
the following way:∫
dr1dr2 . . . dri−1dri+1 . . . drN D(t,X)

∂

∂t
ρi
αα′ (t,X) =

=
∂

∂t

∫
dr1dr2 . . . dri−1dri+1 . . . drN D(t,X)ρi

αα′ (t,X)−

−
∫
dr1dr2 . . . dri−1dri+1 . . . drN ρiαα′ (t,X)

∂

∂t
D(t,X) =

=
∂

∂t
ρi
αα′ (t, ri) , (52)

where α = {a, b} and α
′
= {a, b}.
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To do an approximation, we assume that two atoms
become statistically uncorrelated through a quite small
time interval such that the following expressions are true
on the appropriately chosen time-scale:

ρi;jba;ba (t, ri, rj) ≈ ρiba (t, ri) ρ
j
ba (t, rj) ;

ρi;jba;ab (t, ri, rj) ≈ ρiba (t, ri) ρ
j
ab (t, rj) ;

ρi;jaa;ba (t, ri, rj) ≈ ρiaa (t, ri) ρ
j
ba (t, rj) ;

ρi;jbb;ba (t, ri, rj) ≈ ρibb (t, ri) ρ
j
ba (t, rj) . (53)

We describe the system that consists of only identical
atoms. So, we can approximate the averaged distribu-
tions by using the symmetry properties:

ρiba (t, ri) = ρba (t, r) ,

ρiaa (t, ri) = ρaa (t, r) ,

ρibb (t, ri) = ρbb (t, r) . (54)

Then the expressions under the sign of integration in
the round brackets in the evolution equations can be
presented as follows:

Im
(
ρi;jba;ba (t, ri, rj) + ρi;jba;ab (t, ri, rj)

)
≈

≈ 2 Im (ρba (t, r)) Re (ρba (t, r′)) ;

Re
(
ρi;jaa;ba (t, ri, rj)− ρi;jbb;ba (t, ri, rj)

)
≈

≈ (ρaa (t, r)− ρbb (t, r)) Re (ρba (t, r′)) ;

Re
(
ρi;jba;ba (t, ri, rj) + ρi;jba;ab (t, ri, rj)

)
≈

≈ 2Re (ρba (t, r)) Re (ρba (t, r′)) . (55)

Therefore, the above system of evolution equations for
the densities of atomic states becomes soluble and closed
in the variables that describe only “one-particle” distri-
butions (ρaa (t, r), ρbb (t, r), ρba (t, r)). Furthermore, we
suppose the local equilibrium distribution D within the
volume equal to the cube of a half-wavelength (π)3

k3 . Then
the collision effects vanish after the averaging over the
i-th particle acceleration dṙi(t)

dt :∫
dr1 . . . dri−1dri+1 . . . drN dṙ1dṙ2 . . . dṙN D×

×(t,X, Ẋ)r̈i(t) =
d

dt

∫
dr1dr2 . . . dri−1dri+1 . . . drN×

×dṙ1 . . . dṙND(t,X, Ẋ)ṙi(t)−
∫
dr1dr2 . . . dri−1×

×dri+1 . . . drN dṙ1dṙ2 . . . dṙN ṙi
d

dt
D(t,X, Ẋ) ≈

≈ d

dt
u (t, r) =

∂

∂t
u (t, r) +

(
u (t, r) · ∂

∂r

)
u (t, r) , (56)

where

d

dt
D(t,X, Ẋ) =

∂

∂X
D(X, Ẋ)

d

dt
X +

∂

∂ Ẋ
D(X, Ẋ)×

× d2

dt2
X = − D(X, Ẋ)

J(t,X, Ẋ)

[
∂

∂t
J(t,X, Ẋ) +

∂

∂X
J×

×(t,X, Ẋ) · Ẋ +
∂

∂ Ẋ
J(t,X, Ẋ) · d

2

dt2
X
]
. (57)

Here, J(t,X, Ẋ) is the Jacobian (determinant of the Ja-
cobian matrix Ĵ) of the transformation of phase coor-
dinates along the phase trajectories with time for the
atoms:(
X(t+ dt), Ẋ(t+ dt)

)
= Ĵ ·

(
X(t), Ẋ(t)

)
. (58)

Assuming ℘iab = ℘iba = ℘℘̂, i = 1, . . . , N , and dis-
tinguishing the directions parallel or antiparallel to the
external field E, we obtain the following system of the
evolution equations.
For ρaa (t, r):

∂

∂t
ρaa (t, r) = λa

n (r)
N
− γρaa (t, r) +

+
i

~
℘ (ρba (t, r) ℘̂ ·E (t, r)− ρab (t, r) ℘̂ ·E∗ (t, r)) +

+
2
~
χ

∫
dr′{2 Im (ρba(t, r)) Re (ρba(t, r′))Q (r, r′)}; (59)

for ρbb (t, r):

∂

∂t
ρbb (t, r) = λb

n (r)
N
− γρbb (t, r)−

− i
~
℘ (ρba (t, r) ℘̂ ·E (t, r)− ρab (t, r) ℘̂ ·E∗ (t, r))−

−2
~
χ

∫
dr′{2 Im (ρba(t, r)) Re (ρba(t, r′))Q (r, r′)}; (60)
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for ρba (t, r):

∂

∂t
ρba(t, r) = −γbaρba(t, r) + iω0ρba(t, r)+

+
i

~
(ρaa(t, r)− ρbb(t, r))℘℘̂ ·E∗(t, r)−

2i
~
χ

∫
dr′{(ρaa(t, r)−ρbb(t, rt)Re(ρba(t, r′))Q(r, r′)}.

(61)

Finally, we present the equation for the translational mo-
tion of a quasiclassical particle:

m
∂

∂t
u(t, r) = −m

(
u(t, r) · ∂

∂r

)
u(t, r)−

− ∂

∂r

{
−℘ (ρba(t, r)℘̂ ·E(t, r) + ρab(t, r)℘̂ ·E∗(t, r))+

+2χ
∫
dr′ {2Re (ρba (t, r)) Re (ρba (t, r′))Q (r, r′)}

}
. (62)

This proves the validity of (12)–(15).

4. Conclusion

Thus, we have constructed the microscopic and macro-
scopic kinetic equations for the density matrix elements
of N -atom states including the atomic motion with re-
gard for the atom-field and atom-atom interactions.

This theory with a certain modification can be applied
to the description of the phenomena involving collective
effects. The approximation used here can be related to
the systems of quite “hot” and dense atomic gases in-
teracting with the parallel or antiparallel near-resonant
laser beams. Such systems were investigated experimen-
tally (see, e.g., [3, 6]). The main difference between the
approach in [27] and our one lies in that the results in [27]
are applicable to the quite “cold” atomic gases with the
restrictions mentioned above and to the radiation pro-
cesses rather “slow” in comparison with the spontaneous
radiation time of atoms (as in [23, 30]). As a possible
application of the theory, the analytical solutions can
be obtained for the resulting macroscopic equations in
different limits, for example, for a system composed of
a strong coherent “pumping” field and a weak counter-
propagating “probe” field.

Another interesting “quite” fundamental result de-
serves a few words here. As we have seen, the used model
Hamiltonian allows one to model the dipole-dipole inter-
action between atoms and to build in a the microscopic

kinetic equations for the density matrix elements of a
system in a straightforward manner. Other methods in-
volving Green’s functions [13–17] can be more cumber-
some and, generally saying, do not allow one to formu-
late the kinetic equations (including the short-range and
long-range “collision integrals”) in terms of the conve-
nient density matrix elements.
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ДИНАМIЧНИЙ ТА МАКРОСКОПIЧНИЙ ОПИСИ
ГАЗУ ВЗАЄМОДIЮЧИХ АТОМIВ У СИЛЬНОМУ
ЕЛЕКТРОМАГНIТНОМУ ПОЛI ПОБЛИЗУ РЕЗОНАНСУ

А.С. Сiжук, С.М. Єжов

Р е з ю м е

Робота присвячена побудовi мiкроскопiчної та макроскопiчної
теорiй системи N взаємодiючих дворiвневих атомiв у сильному
та слабкому електромагнiтних полях. Побудованi мiкроскопi-
чнi кiнетичнi рiвняння для матричних елементiв густини ста-
нiв атомiв та атомного руху N -атомної системи, якi врахову-
ють взаємодiю мiж атомами та атомiв iз полем. Вiдповiдна ма-
кроскопiчна кiнетика побудована для одно- та двочастинкової
функцiй розподiлiв матрицi густини атомних станiв. Самоузго-
джена система макроскопiчних одночастинкових рiвнянь для
усереднених елементiв матрицi густини атомних станiв разом
iз рiвняннями Максвелла дозволяє описувати випромiнюваль-
нi та поглинальнi властивостi системи i пояснити залежнiсть
оптичних властивостей вiд густини частинок у термiнах дале-
кодiйної диполь-дипольної взаємодiї мiж атомами.
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