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The quantum-mechanical theory for the transmission coefficient
and the positive and negative conductivities of a monoenergetic
electron flux through an open plane asymmetric two-barrier res-
onance tunnel structure, which can serve as an active element in
quantum cascade lasers or quantum cascade detectors, has been
developed in the framework of effective-mass and rectangular-po-
tential models. The dependences of the transmission factor and
the conductivity in such a structure on the electron energy and the
frequency of an electromagnetic field are found. It is shown that
the properties of the active conductivity can be used for the ex-
perimental evaluation of resonance energies and resonance widths
of quasistationary electron states.

1. Introduction

The theory of electron transport through nano-sized
two-barrier resonance tunnel structures (2BRTSs) – see
Fig. 1 – is of importance, in particular, because those
structures serve as the active elements of quantum cas-
cade lasers and quantum cascade detectors operating in
the range of electromagnetic waves belonging to the so-
called atmosphere transparency windows. It is the prop-
erties of active conductivity in 2BRTSs that substan-
tially govern such physical characteristics as the laser
emission power, the excitation current, and so forth.

In the overwhelming majority of works [1–5], where
the theory of physical processes in quantum cascade
lasers and detectors was developed, the transport prop-
erties of electron fluxes through open resonance tun-
nel structures (RTSs) were studied. However, owing to
mathematical difficulties met while solving the nonlin-
ear differential equations, the electron-electron interac-

tion was not taken into account, as a rule. Note that,
although the problems arising in the theory of nonlinear
interaction between electrons in Bose systems and be-
tween quasiparticles in some other models were studied
in a considerable number of works [6–11], the mathe-
matical techniques developed there cannot be applied
directly to the problem of transport of electrons, which
interact with one another and with the electromagnetic
field through open RTSs.

A similar problem was considered in works [12, 13].
However, to avoid substantial mathematical difficulties,
a simplified RTS model, in which rectangular potential
barriers were approximated by δ-ones, was used there.
The known shortcoming of this model consists in that
the difference between the effective masses of electrons

Fig. 1. Energy diagram of an electron in a 2BRTS
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in wells and barriers, which does exist in real RTSs, turns
out automatically ignored. This circumstance, together
with the inadequacy of the δ-approximation itself, gives
rise to the overestimation of resonance energies for elec-
tron quasistationary states (QSSs) by tens percent and
of the resonance widths by several tens of times. As a
consequence, the electron lifetimes in all QSSs turn out
underestimated by several tens of times in this simpli-
fied model, so that the conductivities become underesti-
mated by several orders of magnitude.

This work aimed at developing the theory of transmis-
sion factor and active dynamic conductivity for a beam
of interacting electrons in an open 2BRTS. The consid-
eration is carried out with the use of the rectangular po-
tential barrier model and assuming the different effective
electron masses in wells and barriers of this nanosystem.
The interaction with an electromagnetic field is taken
into account in the weak-signal approximation.

2. Hamiltonian of the System. Transmission
Factor and Active Conductivity of an
Asymmetric 2BRTS

We consider an open plane asymmetric 2BRTS (Fig. 1)
in a Cartesian coordinate system with the axis OZ di-
rected normally to nanosystem planes. An insignificant
difference between the lattice constants in the well and
barrier layers of the nanostructure allows us to use the
models of effective masses and rectangular potentials,

m(z) = m0

2∑
p=0

(θ(z − z2p−1)− θ(z − z2p))+

+m1

1∑
p=0

[θ(z − z2p)− θ(z − z2p+1)], (1)

U(z) = U

1∑
p=0

[θ(z − z2p)− θ(z − z2p+1)]. (2)

Here, θ(z) is the Heaviside function, z−1 = −∞, and
z4 =∞.

Let monoenergetic electrons with energy E, current
density j+0 ∼

√
E, and concentration n0 move perpen-

dicularly to the 2BRTS planes, for definiteness, from the
left. Owing to this formulation of the problem, the mo-
tion of electrons can be considered as one-dimensional.
Therefore, the complete Schrödinger equation for the
wave function Ψ(E, z, t) looks like

i~
∂Ψ(E, z, t)

∂t
= [H(E, z) +H(z, t)]Ψ(E, z, t), (3)

where

H(E, z) = −~2

2
∂

∂z

1
m(z)

∂

∂z
+ U(z) + v|Ψ(E, z)|2 (4)

is the Hamiltonian of a quasistationary problem (of the
Gross–Pitaevskii type), which contains the nonlinear
electron-electron interaction energy v|Ψ(E, z)|2 in the
Hartree–Fock approximation, and the function Ψ(E, z)
satisfies the stationary nonlinear Schrödinger equation

H(E, z)Ψ(E, z) = EΨ(E, z). (5)

The interaction Hamiltonian H(z, t) for an electron
and a time-varying electromagnetic field with frequency
ω and a small strength ε can be considered small, in the
sense of perturbation theory. Consequently, this circum-
stance allowed us to write down the Hamiltonian in the
following non-Coulomb gauge, which is convenient for
analytical calculations:

H(z, t) = H(z)(eiωt + e−iωt), (6)

where

H(z) = −eε{z[θ(z)− θ(z − z3)] + z3θ(z − z3)}.

Equation (3) has no exact solution. Therefore, taking
into account that H(z, t) is small in the sense of per-
turbation theory, we can attempt to solve Eq. (3) in
the so-called weak-signal approximation, when the wave
function Ψ(E, z, t) is sought in the form

Ψ(E, z, t) = Ψ(E, z)e−iω0t + Ψ1(E, z, t) (7)

where ω0 = E/~, the function Ψ(E, z) satisfies Eq. (5),
and the first-order correction to the wave function in the
single-mode approximation is sought as

Ψ1(E, z, t) = Ψ+1(E, z)e−i(ω0+ω)t+Ψ−1(E, z)e−i(ω0−ω)t.

(8)

Preserving the quantities down to the first order of
smallness in Eq. (3) and taking Eqs. (7) and (8) into
account, we obtain the following system of two inhomo-
geneous equations for the functions Ψ±1(E, z):

[H(E, z)− ~(ω0±ω)]Ψ±1(E, z) +H(z)Ψ(E, z) = 0. (9)

To solve this system, it is necessary to know the an-
alytical expression for the function Ψ(E, z), which is a
solution of the nonlinear Schrödinger equation (5). Since
the 2BRTS is open, Eq. (5) has to be solved with regard
for the continuity conditions for the wave function and
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the flux density across all the boundaries and interfaces
(η → +0) of the system,

Ψ(p)(E, zp − η) = Ψ(p+1)(E, zp + η); (p = 0÷ 3),

∂Ψ(p)(E, z)
m(z)∂z

∣∣∣∣z=zp−η =
∂Ψ(p+1)(E, z)
m(z) ∂z

∣∣∣∣
z=zp+η

, (10)

and the normalization condition

∞∫
−∞

Ψ∗(k/, z)Ψ(k, z) = δ(k − k/). (k = ~−1
√

2m0E).

(11)

The wave function Ψ(E, z) in the nonlinear
Schrödinger equation (5) can be found using two
methods: (i) the Monte-Carlo numerical technique and
(ii) the iteration technique. The Monte-Carlo technique
was used to calculate wave functions for specific systems
with a relatively low nonlinearity, for which the results
obtained almost precisely coincided with those obtained
by the iteration technique. An advantage of the latter
consists in that it allows the wave functions for the
nonlinear Schrödinger equation (5) to be obtained
quickly and with a necessary accuracy within the
reasonable computation time interval of a personal
computer, even if the energy of a nonlinear interaction
between electrons is high.

The procedure of solving the nonlinear Schrödinger
equation (5) by the iteration technique is as follows.
First, we solve the linear Schrödinger equation (without
interaction)

H0Ψ0(E, z) = EΨ0(E, z). (12)

Its exact solution is known [14],

Ψ0(E, z) = (A0(E)eik0z +B0(E)e−ik0z)θ(−z)+

+
3∑
p=1

Ap(E)eikpz +Bp(E)e−ikpz

[
θ(z − zp−1)−

−θ(z − zp)
]

+A4(E)eik0z(z − z3), (13)

where the coefficients Ap(E),Bp(E),B0(E), and A4(E)
are determined unambiguously in terms of the coefficient
A0(E). The latter, in turn, is connected with the density
j+0 of the initial electron flux that arrives at the 2BRTS

by the relation j+0 = en0

√
2Em−1

0 |A0(E)|2, where n0

is the concentration of electrons in this flux, and e the
electron charge.

The quantities kp (p = 0 ÷ 4) are determined by the
dynamic characteristics of an electron,

k0 = k2 = k4 = k = ~−1
√

2m0E;

k1 = k3 = ~−1
√

2m1(E − U) (14)

whereas the quantities zp (p = 0÷ 3) by the geometrical
dimensions of elements in the 2BRTS,

z0 = 0; z1 = Δ−; z2 = b+ Δ−; z3 = b+ Δ−+ Δ+. (15)

The function Ψ0(E, z) found in form (13) does not al-
low the Schrödinger equation (5) to be solved directly.
However, the now known function |Ψ0(E, z)|2 can al-
ways be represented in the form of a sum of N piecewise
continuous functions,

|Ψ0(E, z)|2 = lim
N→∞

N∑
p=0

|Ψ0(E, z2p)|2×

×[θ(z − z2p−1)− θ(z − z2p+1)], (16)

where

zp =
p

2N
b; z−1 = z0 = 0; z2N = z2N+1 = b+Δ−+Δ+.

The examples of the dependence of this function on E
and z are depicted in Fig. 2,a.

Hence, if the value of N is large enough, N � 1, the
continuous function |Ψ0(E, z)|2 can always be approxi-
mated with a required accuracy by a piecewise continu-

ous function,
∣∣∣Ψ̃0(E, z)

∣∣∣2 ≈ |Ψ0N (E, z)|2. As a result,

the nonlinear potential v|Ψ0(E, z)|2 in Eq. (5) trans-

forms into a piecewise linear potential v
∣∣∣Ψ̃0(E, z)

∣∣∣2. The
latter provides the solution for the approximated nonlin-
ear Schrödinger equation (5), if the continuity equations
of type (10) are obeyed at each point z2p−1, so that the
nonlinear function Ψ(E, z) can be determined in the first
approximation, ΨI(E, z).

Knowing the function ΨI(E, z), we calculate
|ΨI(E, z)|2 and represent it as a piecewise continuous
function (provided that N � 1)

∣∣∣Ψ̃I(E, z)
∣∣∣2 = lim

N→∞

N∑
p=0

|ΨI(E, z2p)|2×
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b)

a)

Fig. 2. Dependences |Ψ(E, z)|2 for two first (n = 1, 2) QSSs in a 2BRTSs with the geometrical parameters Δ− = Δ+ = 2.1 nm and
b =10.8 nm calculated for v = 0 (panels a, n = 1, 2), 10−3 (panel b, n = 1), and 0.01 meV (panel b, n = 2)

×[θ(z − z2p−1)− θ(z − z2p+1)]. (17)

Being substituted into the Schrödinger equation (5), to-
gether with boundary conditions of type (10) at each

point z2p−1, the function
∣∣∣Ψ̃I(E, z)

∣∣∣2 linearizes the po-
tential in the z-intervals, which allows the Schrödinger
equation to be solved again and the wave function
Ψ(E, z) to be determined in a second iteration (approx-
imation), ΨII(E, z).

Using this iteration way, we determine the wave func-
tion Ψ(E, z) as a solution of the nonlinear Schrödinger
equation (5) in an arbitrary S-th iteration cycle,

Ψ(E, z) = ΨS(E, z). (18)

The number of iteration cycles, S, which are to be exe-
cuted while iteratively calculating Ψ(E, z), is associated
with a required accuracy, the latter being controlled by
the evident condition

ζ = max
E,z

{
|ΨS(E, z)|2 − |ΨS−1(E, z)|2

|ΨS(E, z)|2

}
� 1. (19)

It is clear that, for a given accuracy of Ψ(E, z)-
calculations ζ, the number of iterations depends on the
magnitude of electron-electron interaction potential v:
the larger the magnitude, the larger the number of iter-
ation cycles S is required.

The examples of the dependence of |Ψ(E, z)|2 on E
and z obtained for the studied system in a vicinity of
the energies of two first electron QSSs at various values
of potential v are exhibited in Fig. 2,b. Note that the
results of calculations shown in Fig. 2, which were ob-
tained by using both calculation techniques, are practi-
cally identical and, therefore, no difference between them
is observed. The found wave function (18), according to
the quantum-mechanical theory [15], allows the trans-
mission factor for a flux of interacting electrons through
a 2BRTS to be calculated as

D(E) = |A0(E)|−2Im
{

Ψ(E, z)
∂Ψ(E, z)
k ∂z

}
z=z3+η

. (20)

It is known [14, 15] that the transmission factor D(E)
is needed to calculate such spectral parameters of elec-
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tron QSSs, as the resonance energies and widths. The
positions of maxima in the dependence D(E) determine
the resonance energies, En, and their half-height widths
do the resonance widths, Γn, of QSSs. As an example,
the D(E)-properties of a 2BRTS that is often studied
experimentally [16–19] are analyzed in the next section.

The found wave function Ψ(E, z) allows the solutions
of the inhomogeneous equations (9) to be obtained in
the form

Ψ±1(E, z) = Ψ±(E, z) + Φ±(E, z), (21)

where Ψ±(E, z) are the solutions of homogeneous
Eqs. (9), and Φ±(E, z) are the exact partial solutions
of their inhomogeneous counterparts. The solutions of
the homogeneous equations are sought in the form

Ψ±(E, z) =

=
4∑
p=0

[
B

(p)
± (E)e−ik

(p)
± z +A

(p)
± (E)eik

(p)
± z
]
×

×[θ(z − zp−1)− θ(z − zp)], A(0)
± (E) = B

(4)
± (E) = 0,

(22)

where

k
(0)
± = k

(2)
± = k

(4)
± =

√
2m0(E ± ~ω)/~2,

k
(1)
± = k

(3)
± =

√
2m1 ((E − U)± ~ω) /~2. (23)

The partial solutions of system (9) are known,

Φ±(E, z) =

=
3∑
p=1

[
∓eεz

~ω
Ψ(p)

0 (E, z) +
eε

m(z)ω2

dΨ(p)
0 (E, z)
dz

]
×

×[θ(z − zp−1)− θ(z − zp)]∓
eεz3
~ω

Ψ(4)
0 (E, z3) θ(z − z3).

(24)

The continuity conditions for the wave functions (21)
and the corresponding fluxes at all boundaries and in-
terfaces of the nanosystem give rise to a system of
eight inhomogeneous equations, which is used to deter-
mine eight coefficients B(0)

± (E), A(4)
± (E), B(p)

± (E), and
A

(p)
± (E) (p = 1÷ 3). Hence, we have the unambiguously

determined functions Ψ±(E, z), the first-order correction
Ψ1(E, z, t), and the total wave function Ψ(E, z, t). Ac-
cording to quantum-mechanical theory, the total wave

function of electrons interacting with a periodic-in-time
electromagnetic field determines the density of an elec-
tron flux through a nanostructure by the formula

j(E, z, t) =
ie~ n0

2m(z)
×

×
(

Ψ(E, z, t)
∂

∂z
Ψ∗(E, z, t)−Ψ∗(E, z, t)

∂

∂z
Ψ(E, z, t)

)
.

(25)

Below, in view of the smallness of 2BRTS dimensions
in comparison with the electromagnetic wave length, in
the quasiclassical approximation and in the case of quan-
tum transitions accompanied by the energy emission (ab-
sorption), we calculate the reduced current, which de-
termines the absolute value of negative (positive) active
dynamic conductivity in the nanosystem,

σ(E,ω) = σ+(E,ω) + σ−(E,ω), (26)

where

σ+(E,ω) =
~2ωn0

2m0z3ε2

(
k

(0)
+

∣∣∣B(0)
+ (E)

∣∣∣2 − k(0)
−

∣∣∣B(0)
− (E)

∣∣∣2) ,
σ−(E,ω) =

~2ωn0

2m0z3ε2

(
k

(4)
+

∣∣∣A(4)
+ (E)

∣∣∣2 − k(4)
−

∣∣∣A(4)
− (E)

∣∣∣2) .
Here, σ+(E,ω) and σ−(E,ω) are the partial components
of the conductivity associated with fluxes of electrons
with energy E that interact with an electromagnetic field
with frequency ω and quit the system in the direction
that, respectively, coincides with or is opposed to that
of the initial electron flux incident onto the 2BRTS.

3. Influence of Nonlinear Electron-Electron
Interaction on the Transmittance and the
Dynamic Conductivity of 2BRTS

The influence of the nonlinear electron-electron inter-
action on the transmission coefficient and the dynamic
conductivity of an open 2BRTS will be studied on the
basis of a plane nanostructure composed of alternat-
ing In0.53Ga0.47As-wells and In0.52Al0.48As-barriers with
the parameters m0 = 0.046me, m1 = 0.081me, U =
516 meV, and n0 = 1016 cm−3. In what follows, we
assume that A0 = 1.

In order to understand why the transmission factor
D(E, v) and the active conductivity σ(E,ω, v) change,
by depending on the quantity v, we exhibit, in Fig. 2,b,

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 8 853
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Fig. 3. Dependences of the transmission factor on the electron energy in vicinities of two first QSSs at different values of electron-electron
interaction energy v for a 2BRTS with the parameters Δ+ = Δ− = 2.1 nm and b = 21.6 nm calculated in the (a) rectangular potential
and (b) δ-barrier models

the examples of the dependence of |Ψ(E, z)|2 on the en-
ergy E and the coordinate z in a vicinity of the energies
of two first QSSs calculated for different magnitudes of
electron-electron interaction energy, v. From this figure,
one can see that, irrespective of v-magnitude, the func-
tion |Ψ(E, z)|2 at E = const has n maxima in a vicinity
of the n-th QSS, similarly to what takes place in the
case of a closed nanosystem. If the coordinate value z
is fixed, the quantity |Ψ(E, z = const)|2 considered as a
function of the energy deviates more and more from the
Lorentzian shape, being so deformed that its high-energy
wing falls down more abruptly, whereas the low-energy
one gradually rises up and becomes flatter.

The revealed properties of |Ψ(E, z)|2 are responsible
for the corresponding evolution of the shape of the trans-
mission coefficient, D, depending on the energy E in
vicinities of the first and second QSSs at different values
of electron-electron interaction potential v (see Fig. 3,a).

For comparison, in Fig. 3,b, we also show the evolution
of D(E, v) with the varying v calculated for the same
2BRTS in the framework of the δ-barrier model. Figure 3
demonstrates that the δ-barrier model overestimates the
resonance energies of electron QSSs by tens percent and
the resonance widths by several tens of times in compar-
ison with the model of rectangular potentials. There-
fore, the selection of a realistic model for the electron-
electron interaction results in a substantial deforma-
tion of the transmission factor dependence, even if the
magnitude of electron-electron interaction is two orders
of magnitude weaker than that given by the δ-barrier
model. From Fig. 3, one can also see that the evolution
of D(E, v) at v = 0 is qualitatively identical in both
models. The transmission coefficient D(E, v) has the
Lorentzian shape with the maximum value D(En, v) = 1
at every resonance energy En and the half-height width
Γn(v) for every (n-th) QSS. As the electron-electron
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interaction energy grows, the shape of the coefficient
D(E, v) in vicinities of the renormalized resonance ener-
gies En becomes firstly quasi-Lorentzian for every QSS.
With a further increase of v, the function D(E, v) be-
comes more and more deformed, so that its low-energy
wing slowly rises in the maximum vicinity to acquire a
quasilinear dependence on E, whereas the high-energy
wing drastically—almost steeply—falls down. Hence, if
the v-value is large enough (for a larger QSS ordinary
number, this value should also be larger), the shape of
D(E, v) differs drastically from the Lorentzian in vicini-
ties of the resonance energies renormalized by the inter-
action, En, becoming wedge-like (see Fig. 3). Therefore,
we need to generalize the concepts of resonance energy,
En, and width, Γn, of a symmetric Lorentzian curve, so
that it could be extended to include the wedge-shaped
form of the D(E, v)-dependence.

A way to implement such a generalization is illustrated
in Fig. 4. Really, the generalization of the resonance en-
ergies En(v) is evident. At the same time, it is expedi-
ent to introduce the generalized resonance width Γn(v)
of the n-th QSS as a sum of low-, γnd(v), and high-
energy, γnh(v), half-widths, because, since γnd(v → 0) =
γnh(v → 0) = Γn(0)/2, the introduced quantities pro-
vide the correct passage to the limit Γn(v → 0) = Γn.
The expediency and the convenience of using the gener-
alized resonance energies and widths as generalized spec-
tral parameters of the coefficient D(E, v) are illustrated
in Fig. 4. The figure demonstrates the dependences of
the generalized resonance energy En and the generalized
resonance width Γn—the latter as the distance between
the curves En(v) + γnh(v) and En(v) − γnd(v)—on the
magnitude of electron-electron interaction v.

Asymmetric structures are often dealt with in prac-
tice. Therefore, an important task is to study the be-
havior of generalized resonance widths and energies with
respect to the electron-electron interaction energy in
2BRTSs with various thicknesses of the input, Δ−, and
output, Δ+, barriers. In order to generalize the results of
our research qualitatively and quantitatively, let us con-
sider an asymmetric 2BRTS, the thicknesses of both bar-
riers in which satisfying the condition Δ = Δ+ + Δ− =
const. In Fig. 4, the dependences of the generalized res-
onance energies and the widths of two first QSSs on the
electron-electron interaction energy v calculated at var-
ious Δ+- and Δ−-values are depicted. The plots com-
pletely explain the quasi-Lorentzian shape of the depen-
dence of the transmission factor D(E, v) on the energy
E.

Figure 4 demonstrates that, when the thickness of the
input barrier Δ− becomes narrower and the thickness
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Fig. 4. Dependences of the resonance energies and widths for first
two electron QSSs on the electron-electron interaction energy v

in a 2BRTS with the geometrical parameters b = 10.8 nm and
Δ− + Δ+ = 4.2 nm

of the output barrier Δ+ wider by the same amount,
the resonance energy and width grow. If the v-value is
low, the generalized resonance widths γnd(v) and γnh(v)
are, at first, almost identical (γnd(v) ≈ γnh(v)) irre-
spective of the barrier-to-width ratio. When the en-
ergy of the electron-electron interaction increases, γnh(v)
decreases, and γnd(v) increases. At some critical vcr,
we obtain Γn(vcr) = γnd(vcr) and γnh(vcr) = 0. Note
also that, when the electron-electron interaction energy
varies, the generalized resonance width practically re-
mains unchanged, Γn(v) = γnd(v) + γnh(v) = const.

Figure 4 also demonstrates that every two-barrier
nanostructure with a specific Δ−/Δ+-ratio is character-
ized by a corresponding critical value vcr, which grows,
if the difference between the thicknesses of both bar-
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a)

b)

Fig. 5. Dependences of the dynamic conductivity σ in a 2BRTS on
the electron energy E and the electromagnetic field energy Ω = ~ω
calculated for v = 5×10−4 meV and (a) a laser quantum transition
and (b) a detector quantum transition

riers increases. Whence it follows that the electron-
electron interaction in symmetric 2BRTSs manifests it-
self at lower values with respect to those in structures
with different thicknesses of input and output barriers.
Since the active dynamic conductivity σ depends on the
geometrical parameters of RTS (through the spectral pa-
rameters of quasistationary states of an electron), it also
considerably depends on the energy E of incident elec-
trons and the energy Ω = ~ω of an electromagnetic field
that interacts with them.

The characteristic dependences of the negative and
positive conductivities σ on E and Ω, which were cal-
culated for a 2BRTS with the geometrical parameters
b = 21.6 nm and Δ− = Δ+ = 2.4 nm are shown in

Fig. 5. The negative conductivity σ(E,Ω) at the laser
transition (2→ 1) was calculated in the energy interval
containing the energy E2 of the second electron reso-
nance, to which the electron flux is directed, and in the
range of the electromagnetic field energy containing the
energy Ω = E2−E1 of the electromagnetic wave emitted
as a result of quantum-mechanical transition from the
quasistationary state with the energy E2 into the state
with the energy E1. For the detector transition (1→ 2),
the calculation of σ(E,Ω) was carried out in the energy
range containing the energy E1 of the first electron res-
onance, to which the electron flux is directed, and in
the range of the electromagnetic field energy containing
the energy Ω = |E1 − E2| of the electromagnetic wave
absorbed as a result of the quantum-mechanical transi-
tion from the quasistationary state with the energy E1

into the state with the energy E2. The negative ac-
tive conductivity arises in the case of a laser transition
and the positive one in the case of a detector transi-
tion.

From Fig. 6, one can see the major properties of the
dynamic conductivity σ(E,Ω) as functions of E and Ω,
which are associated with quantum-mechanical transi-
tions between electron QSSs as a result of the emission
or absorption of the electromagnetic field energy. In the
(E,Ω)-plane, the function σ(E,Ω) has a minimum σ21 =
σ(E2,Ω21) at the point (E2,Ω21 = E2 −E1) in the case
of a laser transition and a maximum σ12 = σ(E1,Ω12) at
the point (E1,Ω12 = |E1−E2|) in the case of a detector
one.

Cross-sections of the surface σ(E,Ω) by the vertical
planes passing through σ21 and σ21 are curves with a
quasi-Lorentzian shape at v = 0 and with a wedge-like
one at large v’s (Fig. 6). From Fig. 6, one can also see
that the extrema of the functions σ(E,Ω = const) for a
laser (panel a) or detector (panel b) transition become
shifted toward higher energies as the interaction, v, in-
creases. On the electron energy scale, E, those extrema
correspond to the resonance energies of the second, E2,
and first, E1, QSSs, respectively. The increase of the
interaction, v, irrespective of the sign of the dynamic
conductivity σ, deforms the shape of its dependence on
E from quasi-Lorentzian to wedge-like, so that the low-
energy wing depends on E linearly, whereas the high-
energy one falls down abruptly by magnitude.

Cross-sections of the surface σ(E,Ω) by a hor-
izontal plane at the heights σ12/2 and σ21/2 are
closed contours (C12 and C21, respectively), the pro-
jections of which onto the corresponding axes (E,Ω),
as is seen from Fig. 7, practically coincide with the
spectral parameters of those working quasistationary
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Fig. 6. Dependences of the (a) negative and (b) positive dynamic
conductivities σ on the energy E (at Ω = const) and Ω (at E =

const) at v = 0 (bold solid and dashed curves) and 5× 10−4 meV
(thin solid and dashed curves)

states, between which the quantum transition respon-
sible for the peaks in σ(E,Ω) in the cases of the
laser (panel a) and detector (panel b) transitions takes
place.

In Fig. 8, some dependences of the absolute value of
negative conductivity, |σ(E,Ω, v)|, on the electromag-
netic field energy Ω calculated for a 2BRTS with the
geometrical parameters Δ+ = Δ− = 2.4 nm and b =
21.6 nm are shown. We presented the results obtained
for v = 0 and 5×10−5 meV and several values of electron
energy E within the range E2 − Γ2/2 ≤ E ≤E2 + Γ2/2.
The figure also exhibits the dependences of the trans-
mission factor on the electron energy in a vicinity of the
generalized resonance energy of the second (in the main

Fig. 7. Contours C(E,Ω) for (a) negative and (b) positive con-
ductivities. Relations of their projections onto the E- and Ω-axes
with the spectral parameters—the resonance energy and width—of
the first and second QSSs at v = 5× 10−4 meV

panel) and first (in the inset) QSSs on the same energy
E scale, as the Ω one, and for the same v-values. It is
evident that, in a vicinity of the generalized resonance
energy of the second QSS, the transmission coefficient
D(E, v) practically coincides (the difference is practi-
cally inobservable in the figure) with the dependence on
Ω of the normalized envelope function (with respect to
the energy E)

σ̃(E,Ω, υ) =
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= σ(E,Ω, υ)/σ(E2(υ), E2(υ)− E1(υ), υ) (27)

irrespective of the v-value. At the same time, in a vicin-
ity of the generalized resonance energy of the first QSS,
it coincides with the normalized active conductivity

σ̃(E2,Ω, v) = σ(E2,Ω, v)/σ(E2(v),Ω, v) . (28)

Figure 8 also demonstrates that the electron-electron in-
teraction practically does not affect the maximal value
of conductivity σ(E,Ω), but shifts—weakly and propor-
tionally to the interaction energy vmax |Ψ(E, z)|2 – the
function σ(E,Ω) toward lower frequencies and deforms
its shape from Lorentzian to wedge-like.

4. Conclusions

Taking the electron-electron interaction into account, a
quantum-mechanical theory of electron conductivity in
an open 2BRTS, considered as the active element in a
quantum cascade laser or a quantum cascade detector,
has been developed. The electron-electron interaction is
found to weakly affect the magnitude of dynamic conduc-
tivity and, irrespective of its sign, shifts the position of
its extremum toward higher electron energies and lower
energies of the electromagnetic field. If the electron-
electron interaction is considerable, the dynamic conduc-
tivity σ, as a function of the electron energy, becomes

wedge-shaped. At the same time, in absorption pro-
cesses, it remains quasi-Lorentzian as a function of the
electromagnetic field strength. The scanning of the ac-
tive dynamic conductivity of a 2BRTS using a monoen-
ergetic electron beam with energy E allows the depen-
dence of σ on E and Ω to be determined experimentally,
which enables important spectral parameters – the gen-
eralized resonance energies and widths of electron QSSs
– to be estimated.
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ВПЛИВ НЕЛIНIЙНОЇ
МIЖЕЛЕКТРОННОЇ ВЗАЄМОДIЇ
НА ТУНЕЛЮВАННЯ ЕЛЕКТРОНIВ
КРIЗЬ НЕСИМЕТРИЧНУ ДВОБАР’ЄРНУ
РЕЗОНАНСНО-ТУНЕЛЬНУ СТРУКТУРУ

М.В. Ткач, Ю.О. Сетi, I.В. Бойко

Р е з ю м е

У моделi ефективних мас i прямокутних потенцiалiв, вра-
ховуючи взаємодiю мiж електронами, розвинуто квантово-
механiчну теорiю коефiцiєнта прозоростi, позитивної i вiд’ємної
провiдностей моноенергетичного пучка електронiв крiзь вiд-
криту плоску несиметричну двобар’єрну резонансно-тунельну
структуру, яка може бути активним елементом квантового ка-
скадного лазера чи квантового каскадного детектора. На при-
кладi несиметричної двобар’єрної резонансно-тунельної стру-
ктури встановлено властивостi коефiцiєнта прозоростi i про-
вiдностi наносистеми залежно вiд енергiї електронiв та часто-
ти електромагнiтного поля. Показано, як властивостi активної
провiдностi можуть бути використанi для експериментальної
оцiнки резонансних енергiй та резонансних ширин електрон-
них квазiстацiонарних станiв.
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