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The critical exponents α, α′, β, γ′, and δ of the model of quark-
gluon bags with surface tension are found as functions of the most
general model parameters. Two versions of the model that gen-
erate the phase diagram of the strongly interacting matter with
critical or tricritical endpoint, respectively, are considered. The
analysis of the relations between the critical exponents (scaling
laws) shows that the scaling can be violated in a general case. The
question whether it is possible to restore the scaling laws with the
help of the Fisher definition of the α′s exponent and its general-
izations α′c and α′m is studied. It is shown that the Fisher scaling
relation can be recovered with the help of the generalizations α′c
and α′m, whereas no definition of the α′ index is able to recover
the Griffiths scaling relation in its traditional form. It is explicitly
demonstrated that the additional condition α = α′ is not sufficient
to restore the Griffiths scaling relation in the traditional form. A
generalization of this scaling relation which is valid for all known
models is suggested. The obtained results allow us to conclude
on the possible existence of the non-Fisher universality classes, for
which the traditional scaling relations can be violated, whereas the
generalized scaling laws can be established.

1. Introduction

While studying the thermodynamical properties of cer-
tain physical systems, the researchers are faced with ex-
tremely interesting phenomena such as various critical
ones. The starting point of studies in this field was the
discovery of “the absolute boiling temperature” made by
D.I. Mendeleev, at which the surface tension of two co-
existing phases disappears at a phase transition (PT)
of the liquid–vapor type. Hence, these phases become
nondistinguishable. In this case, the physical system ex-
ists in the critical state, and the corresponding point of
the phase diagram is called the critical point (CP). By
approaching this point along the PT curve, the differ-
ence of the densities of two phases decreases up to its
vanishing. The studies of thermodynamical properties
of magnetic systems have also demonstrated the exis-
tence of CP, at which the spontaneous magnetization of
the system disappears.

The further development of ideas of critical phenom-
ena was related to the experimental determination of
the thermodynamical quantities that characterize CPs
of some physical system: critical pressure, temperature,
and density. As a qualitative breakthrough, we mention
the comprehension of the fact that different physical sys-
tems manifest the extraordinary similarity of their be-
havior in the course of approaching CP. For example,
the existence of some universal curve for a PT of the
liquid–vapor type in the coordinates ρ − T normalized
to the critical values was demonstrated in work [1]. The
measurements on eight substances (Ne, Ar, Kr, Xe, N2,
O2, CO, and CH4) testified to the existence of a similar-
ity in the critical behavior of various physical systems,
which belong to a single universality class. It is natural
to ask how the universality class for a certain substance
can be determined. The possibility of the existence of
different universality classes is indicated by the fact that
many magnetic systems quite different by their nature
from simple fluids demonstrate also the universality of
the critical behavior.

The first attempt to determine the universality class
of certain physical systems was based on the analysis of
the properties of their CPs. Since the CPs are described
by critical exponents, the study of their values and the
scaling relations between them [2,3] became the founda-
tion of the proposed classification. The Fisher theorem
proved in these works asserts that the scaling relations
for physical systems with most general thermodynami-
cal properties have some specific form, and the systems
themselves fall in a single universality class. However,
the situation concerning the scaling relations between
critical exponents of real substances and some physical
models satisfying the requirements of the Fisher theo-
rem turned out to be not so simple. For example, the
scaling relations hold not in all the cases even in even
in the limits of the experimental accuracy for some sim-
ple liquids [4–8] and three-dimensional Ising model [9].
Moreover, it was shown in [3] long time ago that the
standard definition of the critical exponent α′ along the
critical isochore can lead to the violation of the scal-
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ing laws even for the models satisfying the requirements
of the Fisher theorem. Thus, the extremely important
question arose: Does the reason for the violation of the
scaling laws in the Fisher form for some exactly solvable
models lie in the incorrectness of the definitions of some
critical exponents (e.g., α′) or in the insufficient degree of
generality of the Fisher theorem? In turn, the latter can
testify to the existence of non-Fisher universality classes,
for which this theorem is not valid. In the present work,
we will analyze different definitions of critical exponents
in order to answer the question about the validity of the
scaling relations in the traditional form.

The indicated problems of the scaling systematiza-
tion of universality classes caused the development of
an alternative approach [10] based on the analysis of
the quite general requirements of stability of the criti-
cal state. Their analysis allowed one to separate four
basic types of CPs, which correspond to certain gen-
eral universality classes of the critical behavior of a sys-
tem. As one of the advantages of this approach, we
mention the clear classification of a number of statis-
tical models and real physical systems. However, it is
worth noting that the absence of the predictions as for
the form of scaling laws for a certain system is a sig-
nificant drawback of this approach. This circumstance
does not allow one to reject the Fisher classification, be-
cause namely the identity of critical exponents related
to the behavior of systems in a neighborhood of CP is
the experimentally observed manifestation of the fact
that the systems belong to a single universality class.
The attempt to partially solve this problem was made
in work [11], where the role of the condition for the scal-
ing relations in the Fisher form to be valid was played
by the equality of the critical exponents α and α′. The
validity of this condition together with requirements of
the Fisher theorem would be sufficient in order to re-
fer some physical system to Fisher’s universality classes.
Just therefore, it is very important to verify the valid-
ity of the scaling laws in the case where α = α′. In
what follows, we will demonstrate the existence of ex-
amples, where this equality together with requirements
of the Fisher theorem do not yield all three most gen-
eral scaling relations. However, it will be shown that
the physically substantiated definition of the exponent
α′c allows one to restore the Fisher relation, rather than
the Griffiths relation. Moreover, since the latter can be
violated in the traditional form for all available defini-
tions of the exponent α′, this relation must be reformu-
lated. Just these circumstances testify to, in our opinion,
the possibility of the existence of non-Fisher universality
classes.

The indicated difficulties of the definition of the uni-
versality class for a certain physical system must be re-
moved due to the reasons of a purely practical character,
which are related to the extremely wide use of the hy-
pothesis of similarity, rather than due to the abstract in-
terest. The bright example of the application of this hy-
pothesis is given by quantum chromodynamics (QCD).
It is assumed, though is not proved, that QCD in the case
of 2+1 quark flavors belongs to the universality class of
three-dimensional О(4) spin systems [12–14]. However,
according to the contemporary state of art, the quark-
gluon plasma (QGP) in the deconfinement PT region
is a strongly interacting liquid [15]. This circumstance
complicates strongly the determination of the universal-
ity class of QCD, on the one hand, and makes it ex-
tremely important, on the other hand. The presented
example demonstrates that it is very important to clar-
ify whether the universality classes different from the
Fisher one can exist. Indeed, the question about the
admissibility to use the hypothesis of similarity stops to
be trivial in this case, as was considered earlier. On the
basis of the schemes developed in [2, 3] and [10, 11], we
will demonstrate the possibility of the existence of uni-
versality classes different from the Fisher one.

We will study the posed questions on the basis of the
analysis of the critical exponents at CPs of the strongly
interacting matter and the scaling relations between
them. Unfortunately, QCD and even its lattice repre-
sentation do not allow us to make it. Just therefore, the
further analysis will be made with the help of one of the
phenomenological models [15, 16], which have recently
acquired the extraordinary meaning. The most pop-
ular models of this type are the Nambu–Jona–Lasinio
model [17], its modification on the basis of Polyakov’s
loops [18, 19], and the quark-meson model [20], which
are mean-field models. Another direction of the devel-
opment of the phenomenological approach is related to
the exactly solvable model of a gas of bags (MGB) [21]
(one of the modern versions of this model is given in work
[22]). MGB involves the physically inadequate mecha-
nism of generation of the tricritical point and, therefore,
cannot be considered as a reliable source of the informa-
tion about the thermodynamical properties of QCD. An-
other version of MGB is the model of quark-gluon bags
(QGBM) with surface tension [23]. The mechanism of
generation of CP in it is the same as that in the model
of statistical multifragmentation (MSMF) [24] and the
Fisher droplet model (FDM) [25]. It is typical of PT
of the liquid–vapor type and consists in the vanishing
of the coefficient of surface tension (CST) at CP, which
leads to the nondistinguishability of two phases. The
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extremely important advantage of QGBM with surface
tension consists in the fact that it is an exactly solv-
able model, rather than a mean-field one. Just therefore,
QGBM allows one to study the thermodynamical prop-
erties of a strongly interacting matter, by basing on the
first principles of statistical mechanics. In addition, it
was first shown in the mentioned work that QGBM with
surface tension has a high generality and can describe
the critical exponents of a number of known universal-
ity classes including the simple fluids, Ising model, and
О(2)-, О(3)-, and О(4)-symmetric spin systems. From
the viewpoint of the present work, the basically signifi-
cant circumstance is the fact that QGBM with surface
tension corresponds fully to requirements of the Fisher
theorem and, hence, can be useful in searching the an-
swer to the question about the possibility of the existence
of non-Fisher universality classes.

The present work is organized in the following way.
Section 2 gives the brief description of QGBM with sur-
face tension and its versions. Details of calculations of
the critical exponents of this model are presented in Sec-
tion 3. Section 4 is devoted to the analysis of the scaling
relations between critical exponents of QGBM and to
the possibility to satisfy them with the help of an al-
ternative definition of the exponent α′. The possibility
of the existence of non-Fisher universality classes is also
discussed in this section. The conclusions are presented
in Section 5.

2. QGBM with Surface Tension

QGBM with surface tension has two versions: the model
with tricritical point (TCP) [26] and the model with CP
[27]. In what follows, we denote them as М1 and М2,
respectively. Since they are significantly similar to each
other, it is expedient firstly to present their common
description and only then to consider each model sepa-
rately. For the first time, the exact analytic solution of
QGBM with surface tension was obtained in [23]. The
physical degrees of freedom of this model are hadrons
and bags in QGP. Their interaction is taken into ac-
count in the same way as that in MGB. The great num-
ber of the sorts of constituents allows us to consider the
attraction between them so, as it was made in the orig-
inal model of statistical bootstrap [28]. At the same
time, a repulsion of the van der Waals type is a conse-
quence of the interaction of the hard cores of hadrons
and bags in QGP [21, 23]. Applying the Laplace trans-
formation with respect to the variable V to the parti-
tion function Z(T, µ, V ) in the grand canonical ensem-
ble, we obtain the isobaric partition function Ẑ(T, µ, z)

[23]. The convenience of such a transformation consists
in that the most right singularity of the isobaric parti-
tion function z∗ determines the pressure of the system
p = Tz∗. Just therefore, in order to study the phase
structure of QGBM with surface tension, it is necessary
to analyze the structure of singularities of Ẑ(T, µ, z) de-
fined as follows:

Ẑ(T, µ, z) ≡
∞∫
0

dV e−zV Z(T, µ, V ) =
1

z − F (T, µ, z)
. (1)

The function F (T, µ, z) = FH(T, µ, z) + FQ(T, µ, z) in
the formula for Ẑ(T, µ, z) is the bulk spectrum of the
model. Its discrete part

FH(z, T, µ) =
n∑
j=1

gje
bjµ

T −vjzφ(T,mj) (2)

corresponds to light hadrons with masses mj , baryon
charges bj , own volumes vj , degenerations gj , and one-
particle densities

φ(T,mj) ≡
1

2π2

∞∫
0

p2dp e−
(p2 + m2

j )
1/2

T . (3)

The large-volume bags in QGP are described by the con-
tinuous part of the bulk spectrum,

FQ(T, µ, z) = u(T, µ)Iτ (Δz,Σ), (4)

where we used the notation

Iτ (Δz,Σ) ≡
∞∫
V0

dv

vτ
e−Δzv−Σvκ . (5)

In addition, Δz ≡ z − zQ(T, µ), and TΣ stands for CST
(Σ denotes the reduced CST). The effective surface area
of a quark-gluon bag with volume v is described in the
continuous part of the spectrum of bags with the help of
the parameter κ as vκ. As usual, κ is determined by the
space dimensionality d as κ = d−1

d , but we interpret it
here as a free parameter varying in the limits 0 < κ < 1.
The parameter τ is a Fisher exponent playing a signifi-
cant role. It is worth noting that it takes different values
in М1 (1 < τ ≤ 2) and М2 (τ > 2). The model is solv-
able for a wide class of functions u(T, µ) and zQ(T, µ),
for which the only restrictions are the boundedness and
the double differentiability for any values of arguments
[23, 26, 27]. The meaning of the function zQ(T, µ) con-
sists in that it determines the pressure pQ inside a bag
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Fig. 1. Graphical solution of Eq. (6) in the PT region (µ > µcep)
in М1. The PT curve lies below the curve with the zero value of
CST, i.e., Tc(µ) < TΣ(µ). Therefore, F (zQ, T, µ) remains bounded
for T < TΣ(µ), where Σ > 0. At small temperatures T1 < Tc(µ),

the simple pole is the most right singularity of Ẑ(T, µ, z), and,
therefore, the hadronic phase dominates. At higher temperatures
Tc(µ) < T2 < TΣ(µ), the pressure in the system is determined by
the essential singularity (7). Hence, the QGL phase dominates.
At the critical temperature Tc(µ), there occurs PT, at which sin-
gularities (6) and (7) of the isobaric partition coincide

in QGP, namely, pQ = TzQ(T, µ). Therefore, in view of
the data of lattice QCD, we may assert that zQ(T, µ) is
a monotonically increasing function of its arguments.

The very important specific feature of QGBM with
surface tension is the dependence of the reduced CST
Σ(T, µ) on the temperature T and the baryon chemical
potential µ. We note that it becomes zero on the curve
TΣ(µ) of the phase diagram in the µ − T coordinates,
i.e., Σ(TΣ, µ) = 0. For a certain value of the baryon
chemical potential µ, the reduced CST is positive below
this curve (Σ(T < TΣ, µ) > 0) and is negative above it
(Σ(T > TΣ, µ) < 0). It is worth to note that, as was in-
dicated in works [23, 26, 27], the negative values of Σ do
not contradict the fundamental physical ideas. Indeed,
CST in the grand canonical ensemble determines the sur-
face free energy of a cluster fsurf = esurf − Tssurf , where
esurf and ssurf are the surface energy and the entropy, re-
spectively. Therefore, the inequality Σ < 0 means only
that the entropic contribution to the surface free energy
exceeds that of the energy. This is a consequence of the
appearance of such huge number of nonspherical defor-
mations, which cannot be suppressed by the Boltzmann
exponential factor. Just such behavior of the surface
free energy (and, hence, CST) is foreseen by the exactly
solvable model of surface deformations [29]. It is nec-
essary to note that the conclusion on the possibility of

Fig. 2. Graphical solution of Eq. (6) in the PT region (µ >

µcep) in М2. The PT curve and the zero-CST curve coincide,
i.e., Tc(µ) = TΣ(µ). Therefore, F (zQ, T, µ) remains bounded for
T < Tc(µ), where Σ > 0. At small, T1 < Tc(µ), and large, T2 >

Tc(µ), temperatures, the simple pole is the most right singularity of
Ẑ(T, µ, z). Therefore, the hadronic phase dominates. QGL exists
only if singularities (6) and (7) of the isobaric partition coincide
during PT at the temperature Tc(µ)

negative values of CST was also made in works [30, 31]
on the basis of field-theoretic methods. Moreover, the
recent consideration of the relation between the tension
of confining color string and the surface tension of a bag
in QGP [32,33] has demonstrated that, in the cross-over
region, Σ is obligatorily negative.

As was noted above, the pressure in the system is de-
termined by the most right singularity z∗ of the isobaric
partition Ẑ(T, µ, z). The singularities are of two types:
a simple pole, which corresponds to the gas phase and
is defined by the equation

z∗ = F (T, µ, z∗), (6)

and the essential singularity, which corresponds to the
liquid phase and is given by

z∗ = zQ(T, µ). (7)

By graphically solving the equation z = F (T, µ, z), we
can determine the most right singularity from (6) and (7)
[26]. Let us make it for the simplest case of the constant
baryon chemical potential. First, we consider the region
of PT µ > µcep (Fig. 1 in the case of М1 and Fig. 2 in
the case of М2). CST is positive in this region at tem-
peratures less than TΣ(µ). Hence, integral (5) together
with the model spectrum F (z, T, µ) remain bounded for
z ≥ zQ(T, µ). Therefore, for T1 < TΣ(µ), the singularity
defined by Eq. (6) is located to the right from zQ(T1, µ),
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Fig. 3. Graphical solution of Eq. (6) in the cross-over region (µ ≤
µcep), where CST is negative [23, 26], and, therefore, F (zQ, T, µ)

remains bounded only at small temperatures. Then the simple pole
(6) is always the most right singularity of the isobaric partition

and the system exists in the hadron gas phase. We note
that the difference z∗ − zQ(T, µ) decreases, as the tem-
perature increases. Therefore, at its some critical value
Tc(µ) ≤ TΣ(µ), singularities (6) and (7) become identi-
cal, i.e., zQ(Tc, µ) = F (Tc, µ, zQ(Tc, µ)). It is worth not-
ing that since the pressure in the system is determined
by the most right singularity of the isobaric partition
function as p = z∗T, this condition is just the Gibbs cri-
terion of phase equilibrium [23, 26, 27]. Hence, the curve
Tc(µ) should be identified with the deconfinement PT
curve. Moreover, at temperatures T2 ∈ (Tc(µ), TΣ(µ)),
the most right singularity Ẑ(T, µ, z) is an essential one.
Therefore, the system exists in the state of a quark-gluon
liquid (QGL) undergone the deconfinement. Along the
curve with the zero value of CST TΣ(µ), singularities
(6) and (7) become again identical. Hence, there oc-
curs a surface-induced PT of the second or higher order
[26]. We note that it exists only in М1. In М2, this
phase transition coincides with the deconfinement PT,
because Tc(µ) = TΣ(µ) in this model. In addition, the
true QGL, whose pressure is determined by the essen-
tial singularity (7) in М2, exists only along the curve of
coexistence of phases, Tc(µ). These two circumstances
are basic for the difference in the phase structures of
М1 and М2. As the temperature further increases, CST
becomes negative, and F (T, µ, z) becomes divergent for
z ≤ zQ(T, µ). Hence, at temperatures higher than TΣ(µ),
the most right singularity of the isobaric partition func-
tion is the simple pole (6), which corresponds to QGP in
the deconfined gas phase. The above analysis concerns

Fig. 4. Schematic representation of the phase diagram in М1 in the
µ − T coordinates. CST changes the sign along the dotted curve
TΣ(µ). The deconfinement PT occurs along the continuous curve
Tc(µ) for µ > µcep. For µ < µcep, it degenerates in the cross-over
(dash-dotted curve TΣ(µ)). These regions are separated by TCP,
which is marked by a circle

the region µ > µcep of the phase diagram, where the first
order deconfinement PT exists. For µ < µcep, PT degen-
erates in the continuous cross-over transition (Fig. 3).
In this case, the type of the most right singularity of the
isobaric distribution is not changed, since Σ is negative
in this region [23, 26].

In the grand canonical ensemble, the pressures in the
liquid (QGL) and gas (hadrons or QGP) phases of the
given model are, respectively,

pL(T, µ) = TzQ(T, µ), (8)

pG(T, µ) = T [FH(z, T, µ) + u(T, µ)Iτ (Δz,Σ)] . (9)

Moreover, the pressure in the hadronic phase pH ≡
pG|T<TC , and pQGP ≡ pG|T>TΣ (in М2, TΣ = Tc) is the
pressure in QGP. It is convenient to denote the quantities
defined at the temperatures larger or smaller than Tc by
the indices − and +. Then, for example, pT=Tc±0 ≡ p±.

2.1. Model with tricritical point

М1 was exactly solved in [23, 26]. Its phase structure
includes the hadronic phase and the phases of QGP and
QGL. The phase diagram of М1 in the µ−T coordinates
is given in Fig. 4. In this model, p− = pH and p+ =
pQGL. The deconfinement PT from the hadronic phase
to the QGL phase occurs for µ > µcep along the curve
Tc(µ), which is positioned below the curve with the zero
value of CST TΣ(µ). For µ < µcep, PT degenerates in the
cross-over. These two regions are separated by TCP with
the coordinates (µcep, Tcep). The necessary condition for
the existence of a deconfinement PT of the first order
and its TCP in М1 is 3

2 < τ ≤ 2 [23].
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A new parametrization of the reduced CST was first
proposed in [23]. However, it is worth to note that, in
the present work, it will be studied in the more general
case,

Σ(T, µ) = sign (T − TΣ(µ))
σ

T

∣∣∣∣TΣ(µ)− T
TΣ(µ)

∣∣∣∣ζ , (10)

which admits any positive values of parameter ζ for the
validity of the condition Σ(TΣ) = 0. The parameter σ is
some positive constant, which has the meaning of CST
at the temperature T = 0. However, it can be inter-
preted also as a smooth regular function of the temper-
ature and/or the baryon chemical potential, which has
no influence on the results.

In a neighborhood of TCP, the behavior of the decon-
finement PT curve and the zero-CST curve in the µ−T
coordinates can be described by one parameter ξT > 0:

Tcep − TΣ(µ) ∼ Tcep − Tc(µ) ∼ (µ− µcep)ξ
T

. (11)

This is a consequence of the fact that the curves Tc(µ)
and TΣ(µ) do not intersect each other, but touch at TCP.
The proof of this assertion and the analysis of the con-
ditions sufficient for its validity will be presented below.
This parameter allows us to describe the phase diagram
of М1 in the most general way. Its extraordinary mean-
ing consists in that М1 can describe the critical expo-
nents of the three-dimensional Ising model, simple liq-
uids, О(4)-symmetric three-dimensional spin model, etc.
only due to it. For example, it is impossible for MSMF
[34]. In addition, the parameter ξT is uniquely connected
with the quantity Kc, which was introduced in [10, 11]
and plays the crucial role in the classification of the types
of critical points.

Along the curve of phase equilibrium, the Clapeyron–
Clausius equation can be written in the form dµc

dT =
− s−−s+
ρ−−ρ+

∣∣
T=Tc

. The baryon density ρ and the entropy
density s of each phase are determined as the partial
derivatives of the pressure of the given phase with re-
spect to the baryon chemical potential µ and the tem-
perature T. With the help of (8) and (9), this equation
can be written explicitly as

dµc
dT

= −
AT − ∂Σ

∂T uIτ−κ(0,Σ)
Aµ − ∂Σ

∂µuIτ−κ(0,Σ)

∣∣∣∣∣
T=Tc

, (12)

where

Ai ≡
∂FH
∂i

+
∂u

∂i
Iτ +

∂zQ
∂i

(
∂FH
∂z
− 1
)

(13)

for i ∈ {T, µ}. The parametrization of the reduced CST
(10) and the shape of the curve Tc(µ) (11) together with
(12) allow us to conclude that

AT |T=Tc ∼ (Tcep − Tc(µ))χ+ 1
ξT
−1
, (14)

Aµ|T=Tc ∼ (Tcep − Tc(µ))χ, (15)

where the exponent χ was first introduced in [35]. Its
appearance is a direct consequence of the Clapeyron–
Clausius equation which naturally follows from the
Gibbs criterion of phase equilibrium. Thus, the intro-
duction of the parameter χ is quite general and is valid
for any model with PT of the liquid–vapor type. How-
ever, this exponent was not used yet in the analysis of
critical exponents in other models. For example, this pa-
rameter was implicitly considered to be zero in MSMF
[34]. The possible values of this parameter are deter-
mined by the inequality χ ≥ max(0, 1 − 1

ξT
) due to the

boundedness of the integral Iτ and the functions FH , u,
and zQ together with their first derivatives for any values
of T and µ.

Let us turn to the question about the behavior of the
curves Tc(µ) and TΣ(µ) in a neighborhood of TCP, as
well as the reduced CST Σ = 0 and the parameter Δz =
0 along the curve TΣ(µ). Therefore, an analog of the
Clapeyron–Clausius equation (12) for this curve takes
the form dµΣ

dT = −ATAµ
∣∣
T=TΣ

. If the functions AT and Aµ
satisfy the quite general requirements of analyticity, we
may assert that such a relation between them holds to
within some insignificant factor f for any curve lying in
a neighborhood of TCP. In other words,

AT = −f Aµ
dµΣ

dT
(16)

in a neighborhood of TCP. It is worth noting that f must
be a smooth function of T and/or µ and have no singu-
larities or even be a constant. Basing on the relation
(Tc(µ) − TΣ(µ))µ→µcep → 0 and using the parametriza-
tion of the reduced CST (10), we obtain

∂Σ
∂T

∣∣∣∣
T=Tc

' −TΣ

Tc

dµΣ

dT

∂Σ
∂µ

∣∣∣∣
T=Tc

. (17)

This result together with Eqs. (12) and (16) allow us
to assert that dµc

dT = dµΣ
dT at TCP. This is possible only

under the condition that the curves Tc(µ) and TΣ(µ) do
not intersect each other, but touch at TCP. Hence, their
behavior can be described, as above, by one parameter
ξT . It is worth noting that, in this case, the functions
AT and Aµ must satisfy the quite general requirements
of analyticity in a neighborhood of TCP.
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Fig. 5. Schematic representation of the phase diagram of М2 in
the µ − T coordinates. The deconfinement PT occurs along the
continuous curve Tc(µ) for µ > µcep. For µ < µcep, it degenerates
in the cross-over (dotted curve TΣ(µ)). For µ larger than the
critical value µcep, CST changes the sign exactly on the phase
equilibrium curve, i.e., TΣ(µ) = Tc(µ) for µ > µcep. The regions
of PT and cross-over are separated by CP, which is marked with
a circle

2.2. Model with critical point

The exact solution in М2 was found in [27]. Like the case
of М1, the phase structure of М2 includes the hadronic
phase and the phases of QGP and QGL. The main dif-
ference of the phase diagram of М2 from that of М1 con-
sists in that CST changes the sign exactly on the curve
of phase equilibrium for the baryon chemical potentials
larger than µcep, i.e., TΣ(µ) = Tc(µ) for µ > µcep. Thus,
as was mentioned above, the surface-induced PT of the
second order in М2 “is hidden” inside of a deconfinement
PT of the first order. As a result, the true QGL ex-
ists only along the phase equilibrium curve Tc(µ). The
schematic representation of the phase diagram of М2 in
the coordinates (µ− T ) is presented in Fig. 5. We note
that, in this model, p− = pH and p+ = pQGP. In [27], it
was demonstrated that a deconfinement PT of the first
order and its CP exist in М2 for τ > 2.

The parametrization of the reduced CST in М2 is sim-
ilar to that in М1. However, it differs from (10) by that
the parameter

σ±(T, µ) = σ±0

(
T − Tcep +

dTc
dµ

(µcep − µ)
)ξ±

(18)

is not a constant. In addition, the values of constant
parameters σ±0 , ζ

±, and ξ± in the general case are differ-
ent above and below the phase equilibrium curve. This
follows from the fact that PT of the first order in М2
is generated due to the discontinuity of partial deriva-
tives of the reduced CST at the passage across the curve
Tc(µ) [27]. It is worth noting that the requirement for

the jump of the baryon density to be positive at the de-
confinement PT, i.e., ρ+(Tc) > ρ−(Tc), can be satisfied
only for ζ+ = 1.

The behavior of the PT curve in a neighborhood of CP,
like that in М1, is parametrized with the parameter ξT

with the help of Eq. (11), i.e., Tcep−Tc(µ) ∼ (µ−µcep)ξ
T

.
The analysis of the Clapeyron–Clausius equation, which
holds along the curve Tc(µ), allows us to describe the
behavior of the functions AT and Aµ like that in М1 in
terms of the parameter χ (see (14) and (15)).

3. Critical Exponents

Traditionally, the behavior of a system in a neighbor-
hood of the critical point is described by the critical ex-
ponents α, α′, β, γ′, and δ [3–5]. For example, the heat
capacity of the system, Cρ ≡ T

ρ
ds
dT

∣∣
ρ
, along the critical

isochore ρ = ρcep takes the form

Cρ ∼
{
|t|−α′ , for t ≤ 0,
t−α, for t > 0,

(19)

the jump of the baryon density Δρ ≡ (ρ+ − ρ−)T=Tc

vanishes, while approaching the critical point, by the
law

Δρ ∼ |t|β , t ≤ 0, (20)

and the jump of the isothermal compressibilities KT =
1
ρ
dρ
dp

∣∣
T

diverges at the critical point as

ΔKT ∼ |t|−γ
′
, t ≤ 0, (21)

where ΔKT ≡ (K+
T − K−T )T=Tc . Here, the variable

t ≡ T−Tcep
Tcep

means the reduced temperature. The shape
of the critical isotherm T = Tcep is determined by the
exponent δ:

pcep − p̃ ∼ (ρcep − ρ̃)δ, (22)

where the tilde marks the quantities defined at t = 0.
In order to determine the critical exponent α′, it is

necessary to find the total derivative of the entropy den-
sity along the critical isochore located inside the mixed
phase with respect to the temperature [2–5]. At fixed
values of T and µ, the state of the system on this curve
is determined by the volume fraction of the hadronic
phase λ:

ρ|T=Tc = λρ−|T=Tc + (1− λ)ρ+|T=Tc , (23)

s|T=Tc = λs−|T=Tc + (1− λ)s+|T=Tc . (24)
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It is worth noting that 1 − λ is the volume fraction of
QGL in М1 or QGP in М2. Using these equations, we
can obtain the expression for ds

dT along the critical iso-
chore. Together with the Clapeyron–Clausius equation,
it yields

Cρcep =
Tc
ρcep

[
(ρQ − ρcep)

d2µc
dT 2

+
dsQ
dT

+
dµc
dT

dρQ
dT

]
T=Tc

,

(25)

where the index Q marks, here and below, all quanti-
ties related to QGL. For some universality classes (e.g.,
for three-dimensional О(4)-symmetric spin systems), the
exponent α′ is negative. Therefore, in order to attain a
higher generality of the present model, it is of impor-
tance to ensure the generation of α′ < 0 in it. According
to definition (19), this occurs if Cρ is equal to zero at
the critical point. Expanding the difference ρQ− ρcep in
a series of deviations of the temperature and the chem-
ical potential from the critical values and using (11), it
is possible to show that the first term in (25) behaves as

|t|min
(
1, 1
ξT

)
+ 1
ξT
−2
. We also note that the baryon density

of QGL ρQ is defined as the derivative of pQ = TzQ(T, µ)
with respect to the baryon chemical potential µ. Thus,
by virtue of the boundedness and the double differentia-
bility of pQ, the behavior of the third term in (25) is de-
termined by the squared derivative dµc

dT , i.e., by |t|
2
ξT
−2
.

Hence, for 1
ξT

> 1, the first and third terms in (25) are
equal to zero at the critical point. Thus, the exponent
α′ in the present model can be negative only if ξT < 1
and dsQ

dT

∣∣
cep

= 0. The last relation holds for

∂sQ
∂T

∣∣∣∣
T=Tc

∼ |t|ω, (26)

where the parameter ω ≥ 0.Moreover, the relation ω = 0
corresponds to the derivative ∂sQ

∂T , which is bounded at
CP. For ω > 0, this derivative is equal to zero. Geo-
metrically, this means that, for positive ω, the function
sQ(T, µcep) has a deflection at the critical temperature.
Relation (26) implies that the second term in (25) be-

haves as |t|min
(
ω, 1
ξT
−1
)
. Hence, in view of definition (19),

we have

α′ = 2− 2 min

(
1
ξT
, 1 +

ω

2
,
1 + 1

ξT

2

)
. (27)

The formula for the critical exponent α′ allows us to
show that it is nonnegative for ω = 0, whereas α′|ω>0 <
0 for ξT < 1. This yields the result, which is extremely

important for the analysis of the values of critical expo-
nents. Namely, α′ < 0 if the derivative ∂sQ

∂T

∣∣
cep

equals
zero, and its finite values correspond to the nonnegative
values of this exponent. It is worth noting that the for-
mulas for α′ are completely identical in М1 and М2 and
include only the parameters ξT and ω. On the physical
basis, this can be explained by that the given exponent
describes the heat capacity of the system along the crit-
ical isochore. In both versions of QGBM with surface
tension, this isochore lies completely inside the mixed
phase, and its shape in the plane µ − T is described by
the parameter ξT .

In both versions of QGBM with surface tension, the
system exists in the state of QGP at temperatures higher
than the critical one. Therefore, in order to determine
the critical exponent α, it is necessary to find the total
derivative of the entropy s+ with respect to the tem-
perature along the critical isochore ρ+ = ρcep. Then, by
using the standard notations of the baryon density and
the entropy, we obtain with regard for Eq. (9) that, for
T ≥ Tcep,

Cρ = T
ρcep

d
dT

[
Δz + sQ + (ρcep − ρQ)AT−

∂Σ
∂T uIτ−κ

Aµ− ∂Σ∂µ uIτ−κ

]
ρcep

. (28)

Due to the analyticity of the function zQ for any finite
values of its arguments, we may assert that parametriza-
tion (26) holds not only on the PT curve, but also in the
whole neighborhood of the critical point. This implies

that the second term in (28) behaves as |t|min
(
ω, 1
ξT
−1
)
.

In addition, using the parametrization of CST and Eq.
(16) and expanding the difference ρcep − ρQ up to the
terms linear in the deviations of the temperature and
the chemical potential from the critical values, we obtain
that the behavior of the third term in (28) is described

by the formula tmin
(

1
ξT
−1, 2

ξT
−2
)
. Hence, in order to find

α, it is necessary to analyze the behavior of Δz, which
is defined in a neighborhood of the critical point as

Δz =
AT |cepΔT +Aµ|cepΔµ− ΣuIτ−κ

1− ∂FH
∂s + uIτ−1

. (29)

We note that the difference in the behavior of this quan-
tity in М1 and М2 leads to the formulas for the critical
exponent α, which are different in the general case in
these models.

The deviations of the densities of pure phases from
the critical value tend to zero, while approaching TCP
or CP. Therefore, it is convenient to introduce the expo-
nents β+ and β−, which describe their behavior, i.e.,

(ρ± − ρcep)T=Tc ∼ |t|β
±
. (30)
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In terms of these exponents, we have

β = min(β+, β−). (31)

It is worth noting that the condition of boundedness of
the volume fraction of the low-temperature phase λ and
the volume fraction of the high-temperature phase 1−λ
at CP in М2 yields the relation β < min

(
1, 1

ξT
, χ
)

[35].

In М1, its analog is β < min
(
1, 1

ξT

)
. Hence, in order to

determine β, it is necessary to study the behavior of the
deviations of the densities of pure phases from ρcep. For
the liquid phase, such as QGL, the expansion in a series
up to the terms linear in the deviations of T and µ from
the critical values gives

(ρL − ρcep)T=Tc ' ΔT
∂ρQ
∂T

∣∣∣∣
cep

+Δµ
∂ρQ
∂µ

∣∣∣∣
cep

. (32)

In the same way, we can show that, for the gas phase
including hadrons and QGP, a deviation of the density
from the critical value reads

(ρG − ρcep)T=Tc '

'

[
T

Aµ − ∂Σ
∂µuIτ−κ

1− ∂FH
∂z + uIτ−1

+ ρL − ρcep

]
T=Tc

. (33)

Formulas (32), (33), (11), and (15) and the parametriza-
tion of CST allow us to determine β+ and β− and, hence,
the critical exponent β.

In order to find the critical exponent γ′, it is conve-
nient to represent the derivative dρ

dp

∣∣
T

as the ratio of the
relevant differentials at a constant temperature. Then,
using the definition of the baryon density ρ = ∂p

∂µ , we
finally obtain

ΔKT =
[

1
ρ+2

∂2p+

∂µ2
− 1
ρ−2

∂2p−

∂µ2

]
T=Tc

. (34)

Relations (8) and (9) yield

∂2pL
∂µ2

= T
∂2zQ
∂µ2

(35)

for the liquid phase and

∂2pg
∂µ2

' T

(
∂Δz
∂µ

)2

uIτ−2 − ∂2Σ
∂µ2 uIτ−κ

1− ∂FH
∂z + uIτ−1

(36)

for the gas phase. We note that relation (36) includes
only the terms, which are most singular at TCP or CP.

In addition, the first term in the previous formula is
principal in М1, whereas the second term dominates in
М2. Just this leads to the difference of the formulas for
the exponent γ′ in both models.

The zero-CST curve is convex in the T −µ plane both
in М1 and М2 (see Figs. 4 and 5). Therefore, in both
models, the critical isotherm is located in the region,
where Σ is negative everywhere, except for TCP or CP.
As a result, in both versions of QGBM with surface ten-
sion for T = Tcep and µ 6= µcep, the system exists in
the state of QGP, which is a gas phase with the pressure
determined by Eq. (9). Therefore, expanding the devi-
ations of the pressure and the density of QGP from the
critical values up to the terms linear in Δµ = µ − µcep,
we obtain

p̃− pcep = Δµ ρcep, (37)

ρ̃− ρcep = Tcep
∂Δ̃z

∂µ
, (38)

where the definitions of the baryon density ρ = ∂p
∂µ and

the variable Δz were used. We note that the full formula
for the deviation of the density of QGP from the critical
value includes the term TcepΔµ∂

2zQ
∂µ2

∣∣
cep
. However, the

imposition of the condition δ > 1 makes it insignificantly
small, which gives (38). Thus, by analyzing the behavior
of

∂Δ̃z

∂µ
=

Aµ − ∂Σ
∂µuIτ−κ

1− ∂FH
∂z + uIτ−1

∣∣∣∣
T=Tcep

, (39)

we can determine the critical exponent δ.

3.1. Critical exponents of М1

At the supercritical temperatures, the shape of the iso-
chore ρ = ρcep is determined by the derivative dµρcep

dT =
− ∂ρ
∂T /

∂ρ
∂µ . Considering only the principal terms in the

derivatives of the baryon density, we can show that, in
a neighborhood of TCP, dµρcep

dT ' −∂Δz
∂T /

∂Δz
∂µ ∼ dµΣ

dT .
Hence, the shape of the critical isochore is also deter-
mined by the parameter ξT . Then, using (28) and (29),
we obtain that

α|χ6=1− 1
ξT

= α′, (40)

α|χ=1− 1
ξT

= max

[
α′,

ζ
κ min(κ, τ − 1)

τ − 1
− 1

]
, (41)
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in М1. Using (32) and (33) together with the
parametrization accepted in М1, we can show that

β+ = min
(

1,
1
ξT

)
, (42)

β− =
ζ

κ
(2− τ) + min

[
χ,
ζ

κ
min(κ, τ − 1)− 1

ξT

]
(43)

in the present model. The above-presented condition
β < min

(
1, 1

ξT

)
yields β = β− in М1. The other critical

exponents of this model are as follows:

γ′ =
ζ

κ
− 2β, (44)

δ|χ=0 =

min
[
ξT ζκ min(τ − 1, κ), 1

]
τ − 1

− 1

−1

, (45)

δ|χ>0 =

[
ξT ζκ min(τ − 1, κ)

τ − 1
− 1

]−1

. (46)

As is seen from formulas (27) and (40)–(46), the spec-
trum of the values of critical exponents of model М1
is quite wide. In this model, we can obtain both pos-
itive and negative values of exponent α′, all positive
values of exponents β and γ′, and the value of expo-
nent δ, which is more than 1. This testifies to a sig-
nificant degree of generality of the model, which al-
lows one to describe the critical exponents of the two-
and three-dimensional Ising models, simple liquids, and
three-dimensional О(2)-, О(3)-, and О(4)-symmetric
spin models, which are presented in Table 1. The values
of model parameters, which generate the critical expo-
nents of the indicated physical systems and models, are
given in Table 2.

Since model М1 is formulated for 1 < τ ≤ 2, and this
parameter takes the same values in MSMF [24], it is of

T a b l e 1. Critical exponents of the two-dimensional
Ising model [4], simple liquids [4], three-dimensional Ising
model [9], three-dimensional O(2)- [36], O(3)- [37], and
O(4)-symmetric [38, 39] spin models

Simple 2D 3D O(2) O(3) O(4)
liquids Ising Ising model model model

α′ 0.10(1) 0 0.1096(5) –0.0146(8) –0.1336(15) –0.19(6)
β 0.335(15) 1/8 0.3265(1) 0.3485(2) 0.3689(3) 0.38(1)
γ′ 1.25(5) 7/4 1.2373(2) 1.3177(5) 1.3960(9) 1.44(4)
δ 4.5(3) 15 4.7893(8) 4.780(2) 4.78(3) 4.82(5)

interest to analyze the interrelation of the critical expo-
nents in these models. The importance of such a com-
parison is related to the fact that the end point of PT is
namely TCP both in М1 and MSMF. In other words, the
phase diagrams of these models are similar to each other
to a significant degree. The explicit formulas for the crit-
ical exponents of the present model show that it realizes
a mode, where the critical exponents in М1 reproduce
the critical exponents of MSMF α′MSMF = 0, βMSMF =
ζ
κ (2 − τ), γ′MSMF = ζ

κ (2τ − 3), and δMSMF = τ−1
2−τ [34].

Indeed, this occurs for ζ
κ min(κ, τ − 1) − 1

ξT
≥ χ = 0

and 1
ξT
≥ 1. This fact testifies clearly that М1 is more

general, than MSMF. Therefore, the former includes the
solutions of the latter as a partial case. It is worth not-
ing that, for ξT > 1 and ζ

κ min(κ, τ − 1) − 1
ξT
≥ χ = 0,

model М1 can generate a mode, where the exponents
β, γ′, and δ coincide with the appropriate exponents of
MSMF, whereas α′ is positive and depends only on the
parameter ξT . Just this circumstance allows model М1,
as distinct from MSMF, to describe the critical expo-
nents of the three-dimensional Ising model and simple
liquids.

One more extremely interesting mode in М1 is realized
for χ ≥ ζ

κ min(κ, τ − 1)− 1
ξT

and κ ≥ τ − 1. In this case,
the formulas

γ′ =
1
ξT
− β, (47)

δ =
1
ξTβ

(48)

coincide with those in М2 (see (53) and (54)). Such a co-
incidence is not accidental, because the explicit formulas
for the critical exponents in models М1 and М2 are very
different, and testifies to the existence of connections be-
tween the values of critical exponents of different models
and properties of a PT curve, whose shape is described
by the exponent ξT . This result is of great importance
for the further development of model М1 in the context
of QCD. By the contemporary state of art, QCD in the
case of 2+1 quark flavors falls in the universality class of
the three-dimensional О(4)-symmetric spin model [12–
14, 40, 41]. At the same time, for О(N) spin models,
ξT equals the ratio of the magnetic yh and thermal yt
exponents [42–44]. For the О(4)-symmetric model, this
exponent is connected with the critical exponents β and
δ in the same way as in (48), i.e., ξT = (βδ)−1 [43].
Therefore, we may assert that М1 in this mode corre-
sponds to QCD in the case of 2+1 quark flavors.
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T a b l e 2. Parameters of М1, which generate the critical exponents with the values from Table 1. The values of
parameter ω obtained from the formulas for α′, α′s, and α′c are marked by ∗, ∗∗, and ∗∗∗, respectively. The symbol ∅
means that it is impossible to find a value of the relevant parameter, which would allow one to describe the critical
exponents from Table 1

Simple 2D model 3D model O(2) spin O(3) spin O(4) spin
liquids Ising Ising model model model

χ ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

ζ/κ 1.92(4) 2 1.8903(3) 2.0147(4) 2.1338(4) 2.20(3)
τ 1.818(9) 31/16 1.8273(5) 1.8270(5) 1.8271(5) 1.828(1)
κ ∈ [0.818(9), 1) ∈ [15/16, 1) ∈ [0.8273(5), 1) ∈ [0.8270(5), 1) ∈ [0.8271(5), 1) ∈ [0.828(1), 1)

ξT 0.631(19) 8/15 0.6395(9) 0.6002(4) 0.5666(45) 0.55(1)
ω∗ ∅ 0 ∅ 0.0146(8) 0.1336(15) 0.19(6)
ω∗∗ 1.565(18) ≥ 0 1.5639(5) 1.6661(8) 1.7647(15) 1.81(6)
ω∗∗∗ ≥ 1.565(18) ≥ 0 ≥ 1.5639(5) ≥ 1.6661(8) ≥ 1.7647(15) ≥ 1.81(6)

T a b l e 3. Parameters of М2, which generate the critical exponents with values from Table 1. The values of
parameter ω, which are obtained by the formulas for α′, α′s, and α′c, are marked by ∗, ∗∗, and ∗∗∗, respectively. The
symbol ∅ means that it is impossible to find the value of relevant parameter, which would allow one to describe the
critical exponents from Table 1

Simple 2D model 3D model O(2) spin O(3) spin O(4) spin
liquids Ising Ising model model model

ξT 0.631(19) 0.631(19) 8/15 8/15 0.6395(9) 0.6395(9) 0.6002(4) 0.6002(4) 0.5666(45) 0.5666(45) 0.55(1) 0.55(1)
ζ+ 1 1 1 1 1 1 1 1 1 1 1 1
ζ− 1 > 1 1 > 1 1 > 1 1 > 1 1 > 1 1 > 1

ξ+ 0.84(1) 0.84(1) 1 1 0.8902(5) 0.8902(5) 1.0143(4) 1.0143(4) 1.127(30) 1.127(30) 1.21(6) 1.21(6)
ξ− 0.84(1) > 0 1 > 0 0.8902(5) > 0 1.0143(4) > 0 1.127(30) > 0 1.21(6) > 0

ω∗ ∅ ∅ 0 0 ∅ ∅ 0.0146(8) 0.0146(8) 0.1336(15) 0.1336(15) 0.19(6) 0.19(6)
ω∗∗ ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

ω∗∗∗ ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0.0146(8) ≥ 0.0146(8) ≥ 0.1336(15) ≥ 0.1336(15) ≥ 0.19(6) ≥ 0.19(6)

3.2. Critical exponents of М2

The same reasoning as that for М1 demonstrates that
dµρcep
dT ' −∂Δz

∂T /
∂Δz
∂µ ∼

dµΣ
dT in М2. Just therefore, the

shape of the critical isochore at supercritical tempera-
tures is also determined in this model by the parameter
ξT . Hence, Eqs. (28) and (29) imply that

α = α′ (49)

in М2. In addition, Eqs. (32) and (33) and the
parametrization accepted in М2 allow us to find the
other exponents of this model:

β+ = 1 + ξ+ − 1
ξT
, (50)

β−|ζ−=1 = min
(

1,
1
ξT
, 1 + ξ− − 1

ξT

)
, (51)

β−|ζ−>1 = min
(

1,
1
ξT

)
. (52)

These formulas and the condition β < min
(
1, 1

ξT
, χ
)

yield β = β+ for ζ− > 1 and β = min
(
β+, 1 + ξ− − 1

ξT

)
for ζ− = 1. In addition, model М2 yields

γ′ =
1
ξT
− β, (53)

δ =
1

ξTβ+
. (54)

The explicit formulas for the critical exponents in М2
are very different from those in М1. Moreover, as dis-
tinct from М1, the exponents τ, κ, and χ do not gen-
erally enter formulas (50)–(54). Such a property of М2
is extremely interesting and exotic, because the critical
exponents in all other models involving the Fisher ex-
ponent τ (i.e., in М1, MSMF [24, 34], and FDM [25])
depend on τ. However, as it is seen from Table 3, this
model is quite able to describe the critical exponents
of the two- and three-dimensional Ising models, simple
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liquids, and three-dimensional О(2)-, О(3)-, and О(4)-
symmetric spin models.

It was mentioned in Section 3.1 that, despite the sig-
nificant distinctions of the explicit formulas for critical
exponents in М1 and М2, there exist the modes, where
the relations between exponents are completely identi-
cal in both models. In М2, such a mode is realized for
ζ− > 1 or for ζ− = 1 and ξ− > ξ+, where formulas (53)
and (54) in М2 completely coincide with the analogous
formulas (47) and (48) in М1. In this case, like that
in М1, ξT = (βδ)−1, which takes place for the О(4)-
symmetric model [43] and, hence, for QCD in the case
of 2+1 quark flavors [12–14, 40, 41]. Such a connection
between models М1 and М2, on the one hand, and the
parameters of lattice QCD, on the other hand, seems to
be not accidental and it ensures the possibility to reli-
ably simulate not only the equation of state of a strongly
interacting substance with the help of М1 and М2, but
also such nontrivial properties as the QCD matter criti-
cal exponents at TCP/CP.

4. Scaling Relations

The well-known scaling laws

α′ + 2β + γ′ ≥ 2, (55)

α′ + β(1 + δ) ≥ 2, (56)

γ′ + β(1− δ) ≥ 0 (57)

play traditionally the significant role in the systemati-
zation of universality classes [2, 3] and in the theory of
critical phenomena [5, 42]. For simple liquids, these laws
were proved by Fisher [2], Griffiths [45], and Liberman
[46], respectively. For magnetic systems, these laws are
called the Rushbrooke, Griffiths and Widom relations
respectively.

However, the situation concerning the validity of the
scaling laws for real physical systems is not so trivial,
as it seems at first glance. For example, there exist the
models [3, 34], where relations (55) and (56) are not sat-
isfied in the general case. Moreover, some experimental
works (e.g., [6] or [7, 8]) indicated the difficulties con-
cerning the validity of the Fisher and Griffiths laws. For
example, some unsolved problems exist even in the case
of the well-defined critical exponent β [7]. Its experimen-
tally determined value β = 0.300(4) for a binary ionic so-
lution PeNBr−H2O does not agree with the other data
on simple liquids and with the Ising model. In addition,

it leads to liquids and with the Ising model. In addi-
tion, it leads to the critical exponents for simple fluids:
α′ + 2β + γ′ = 1.95 < 2. In this case, the situation con-
cerning the Griffiths relation for simple fluids looks more
dramatic, since α′ + β(1 + δ) = 1.75 < 2, if the value
of β is taken from work [7]. It is worth noting that, on
the basis of available data, it is possible to assert that
these laws hold in the limits of experimental errors, but
these errors are very large sometimes. Just therefore, it
is quite interesting to verify the validity of the scaling
laws (55)–(57) for critical exponents in М1 and М2.

It is convenient to start with the analysis of the Liber-
man relation. In both versions of QGBM, the О(4) scal-
ing mode is realized with the relations γ′ = 1

ξT
− β and

δ = 1
ξT β

. It is easy to verify that, in this mode, relation
(57) holds as the equality. Moreover, model М1 includes
the mode for χ = 0, which reproduces the critical expo-
nents β, γ′, and δ in the same form as that in MSMF
[34]. Therefore, like the case of MSMF, the Liberman
scaling relation is valid in М1 always in this case. We
now demonstrate this, by using the explicit formulas for
the relevant exponents:

[γ′ + β(1− δ)]M1 =
min

(
0, ζκ min(τ − 1, κ)− 1

ξT

)
τ − 2

≥ 0.

(58)

Here, we used min(0, . . .) ≤ 0 and τ < 2. The validity of
relation (57) in М1 in all other cases can be proved in the
same way. For М2, the situation is completely analogous.
The explicit formulas for the critical exponents in this
model and the relation β ≤ β+ yield

[γ′ + β(1− δ)]M2 =
1
ξT

(
1− β

β+

)
≥ 0. (59)

Using the proved Liberman inequality, we can show
now that the relation α′ + β(δ+ 1) ≤ α′ + 2β + γ′ holds
always for М1 and М2. It is the important result with
several consequences. First, we may assert on this ba-
sis that the conditions for the Fisher law (55) and the
Griffiths one (56) to be valid coincide only under the con-
dition that the Liberman law is satisfied as the equality.
Second, this relation demonstrates that even if relation
(55) holds, the validity of relation (56) is not guaranteed
in the general case. Using the explicit formulas for the
critical exponents α′, β, and γ′, we can show that, in
М1,

[α′ + 2β + γ′]M1 = 2 +
ζ

κ
− 2 min

(
1,

1
ξT

)
< 2 (60)
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for ζ
κ < 2 min

(
1, 1

ξT

)
. In М2, we have that

[α′ + 2β + γ′]M2 = 2max
(

1,
1
ξT

)
− γ′M2 (61)

is obligatorily less than 2 for 1
ξT

< 1+ γ′M2
2 . Thus, we may

assert that the Fisher relation is not valid in models М1
and М2 in the general case for the traditional definition
of α′. It is worth noting that, according to the above-
presented conclusions, the Griffiths relation (56) is not
satisfied also in both versions of QGBM with surface
tension.

The appearance of difficulties concerning the validity
of the scaling laws including the exponent α′ (i.e., the
Fisher and Griffiths relations) was established else in [3].
To explain this fact, it was assumed that the definition of
this exponent was not proper. In order that the scaling
inequalities (55) and (56) be satisfied, the new exponent
α′s describing the behavior of the difference of the heat
capacities of two pure phases on the PT curve was in-
troduced:

ΔC ≡
(
C+ − C−

)
T=Tc

∼ |t|−α
′
s . (62)

Using the definition of the heat capacities of pure phases,
C = T

ρ
ds
dT , and the Clapeyron–Clausius equation, ΔC

can be presented in the form

ΔC
Tc

=

ρ− − ρ+

ρ+ρ−

d
(
sQ + dµc

dT ρQ

)
dT

− dµc
dT

d ln ρ+

ρ−

dT


T=Tc

,

(63)

which is valid both for М1 and М2. Since ρ+−ρ− ∼ |t|β
on the PT curve, relations (11) and (26) imply that the
first term in the formula for ΔC behaves in a neighbor-
hood of the critical point as |t|min(ω, 1

ξT
−2)+β

. Using the
approximation ln ρ+

ρ− '
ρ+−ρ−
ρ− , which is proper for the

small deviations of the density from the critical value, it
is possible to show that the behavior of the second term
is described by the expression |t| ∼

1
ξT
−2+β

. Hence,

α′s = max
(

1
ξT
− ω, 2

)
− β − 1

ξT
(64)

in both versions of QGBM with surface tension. Formula
(64) allows one to directly verify the Fisher hypothesis
and to answer the question: Can the scaling laws be sat-
isfied with the use of the exponent α′s instead of α′? In
both models, this hypothesis does work for the Fisher

law. In order to prove it for model М1, we use the rela-
tion βM1 ≤ ζ

κ (2− τ + min(κ, τ − 1))− 1
ξT
, which follows

from the explicit expression (43) for this exponent, and
obtain ζ

κ − β −
1
ξT
≥ 0. Hence,

[α′s + 2β + γ′]M1 = max
(

2,
1
ξT

)
+
ζ

κ
−β− 1

ξT
≥ 2, (65)

where the obvious inequality max(2, . . . ) ≥ 2 was used
on the second step. With the help of (53) and (64), it is
possible to show that the critical exponents in М2 satisfy
the relation

[α′s + 2β + γ′]M2 = max
(

2,
1
ξT

)
≥ 2. (66)

As it is seen, the redefinition of the critical exponent α′
according to the Fisher definition (62) does allow us to
satisfy the scaling law (55) in both versions of QGBM
with surface tension. However, this is not valid for the
scaling law (56). Indeed, model М2 meets certain prob-
lems concerning the validity of the Griffiths relation

[α′s + β(1 + δ)]M2 = max
(

1
ξT
− ω, 2

)
+

1
ξT

(
β

β+
− 1
)
,

(67)

which is less than 2 for β = β− < β+ min(1, (2 + ω)ξT ).
Thus, the hypothesis proposed by Fisher is not valid for
the Griffiths relation (56). We note that, from the view-
point of the validity of scaling relations, the reason for
the failure of the Fisher definition of α′s consists in the
following. In the course of calculations of ΔC, the most
singular terms can be cancelled if they are referred to two
phases of the same type. Just this happens in М2, since
hadrons and QGP, which coexist on both sides of the de-
confinement PT curve are the gas phases. We note that
the validity of the scaling laws with α′s in М1 is related
to the circumstance that, in this model, the deconfine-
ment transition is PT from the gaseous hadronic phase
to the QGL phase. We now prove that any definition of
the critical exponent α′ will not allow one to solve the
problem with the traditional formulation of the scaling
Griffiths relation (56). From the viewpoint of the valid-
ity of the scaling laws, the critical exponent α′c, being a
generalization of the Fisher definition (62), seems more
suitable than α′s. We have

Ctot ∼ |t|−α
′
c , (68)

where Ctot = [K+C+ +K−C−]T=Tc
. The coefficients

K+ and K−, which are bounded for all values of the
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temperature and the baryon chemical potential, are re-
lated to the contributions of pure phases to the total
heat capacity of the system in a neighborhood of the
critical point. It is clear that, by choosing a specific
functional dependence of these coefficients on T and µ,
various values of exponent α′c can be realized. For ex-
ample, K+ = 1 and K− = −1 for the Fisher definition
of α′s. The more suitable and physically substantiated
definition corresponds to positive K+ and K−, which
allows one to prevent the cancellation of any terms in
formulas for the heat capacities of two phases, C+ and
C−. In addition, this corresponds to the physical con-
tent of the heat capacity Ctot characterizing the system,
which exists in the state of the low-temperature or high-
temperature phase due to the significant fluctuations in
a neighborhood of TCP or CP with certain probabilities.
Just therefore, while determining α′c, the contributions
from each phase can be analyzed separately. With this
purpose, we represent the heat capacities of pure phases
on the PT curve in the form

C± =
T

ρ±

[
dsQ
dT
− d

dT

(
(ρ± − ρQ)

dµc
dT

)]
. (69)

We note that this formula is a consequence of the
Clapeyron–Clausius equation dµc

dT = − s±−sQ
ρ±−ρQ

∣∣
T=Tc

for
the gaseous phases (hadrons and QGP) and becomes
the identity for the QGL phase, since ρ = ρQ in the last
case. Using (69) and the proposed definition (68), we
can find Ctot. However, this should not be done, since
we can separately analyze the behavior of the heat ca-
pacities of pure phases by virtue of the positiveness of
the coefficients K+ and K−. In model М1, QGL is the
high-temperature phase, and, hence, the formula for its
heat capacity includes only the first term from (69). Re-
lation (26) implies that the behavior of QGL in a neigh-
borhood of TCP, like the behavior of the first term in
the formula for the heat capacity of the low-temperature
phase, is described by the power |t|ω. Taking the rela-
tion (ρ− − ρQ)T=Tc ∼ |t|β into account and using (11),
we can show that the second term in the formula for
C− behaves as |t|

1
ξT

+β−1
. The critical exponent α′c de-

scribes the behavior of the principal term in the formula
for Ctot. Therefore,

α′c = max
(

1
ξT

+ β − ω, 2
)
− β − 1

ξT
. (70)

To determine the exponent α′c in М2, we note that the
linear combination of the first terms in the formulas for
C± behaves as |t|ω in a neighborhood of CP. In addition,
using the definition of the baryon densities ρ± and ρQ as

the derivatives of the relevant pressures with respect to
µ and Eqs. (8) and (9), we obtain the following relation
for the gas phases, which coexist on both sides of the PT
curve:

(ρ± − ρQ)T=Tc = Tc
Aµ − u∂σ

±

∂µ Iτ−κ

1− ∂FH
∂z + uIτ−1

∣∣∣∣
T=Tc

. (71)

Parametrizations (10), (15), and (18) imply that, in a
neighborhood of CP, the behavior of (ρ± − ρQ)T=Tc is
described by the expression |t|min(χ,β±) for ζ± = 1 or by
|t|χ for ζ± > 1. We recall that ζ+ = 1 in М2 in all cases.
Using the explicit expression for the exponent β in the
present model, we can show that the linear combination
of other terms from the formulas for C+ and C− behaves
as |t|β+ 1

ξT
−2
. The above analysis allows us to determine

the exponent α′c in model М2. The expression for it
completely coincides with (70).

The explicit expressions (64) and (70) demonstrate
that α′c ≥ α′s. Therefore, the definition of the exponent
α′c does look more adequate relative to the validity of the
scaling laws. However, it does not allow us to satisfy the
Griffiths scaling relation in the form (56). For example,
in model М2, the combination of the critical exponents
corresponding to this relation can be less than 2 for β =
β− < β+ and β ≤ 2 + ω − 1

ξT
. Indeed, α′c = 2− β − 1

ξT

in this mode, and, hence,

[α′c + β(1 + δ)]M2 = 2 +
1
ξT

(
β

β+
− 1
)
< 2. (72)

Thus, even the most physically substantiated definition
of the critical exponent α′c does not allow us to satisfy the
scaling laws in the general case. In order to demonstrate
the absence of a definition allowing one to make it, we
consider also the exponent α′m defined by

Tc
ρtot

dstot
dT

∼ |t|−α
′
m , (73)

where the entropy stot = [K+s+ +K−s−]T=Tc
, and ρtot

is the baryon density corresponding to it. We note that
the coefficients K+ and K− should satisfy the same con-
ditions as those in the case of the definition of Ctot by
the reasons analogous to the above-indicated ones. The
derivative of stot contains the terms proportional to ds+

dT

and ds−

dT , and their behavior is described by the expres-
sion |t|−α′c . Parametrizing the temperature dependence
of K+ and K− in a neighborhood of the critical point
by K± ∼ |t|η± , we obtain that the terms in the expres-
sion for dstot

dT , which are proportional to the derivatives
of these coefficients, behave as |t|min(η+,η−)−1. We note
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that, as η+ → 0 and η− → 0, their behavior is the most
singular. Therefore, for the largest value of exponent
α′m, we obtain α′m = max(1, α′c). In addition, the ex-
plicit formulas for the exponents α′c and β yield α′c < 1.
Hence, we have finally:

α′m = 1. (74)

The same result for the largest value of α′ was obtained
in work [11]. Just this circumstance allows us to as-
sert that the exponent α′m defined according to (73) is
the most suitable in order to satisfy the scaling relation.
One more argument to the favor of this assertion is the
relation between the critical exponents α′, α′s, α′c, and
α′m:

α′ ≤ α′s ≤ α′c < α′m, (75)

which follows directly from formulas (27), (64), (70), and
(74). It is quite possible that such a hierarchy holds not
only for QGBM with surface tension, but also for other
models and physical systems. However, this cannot be
verified at the present time, unfortunately, due to the ab-
sence of the comprehension of experimental data. How-
ever, if it is true, then the violation of the scaling laws
with the critical exponent α′m is the unambiguous proof
of the existence of new non-Fisher universality classes,
where such laws take the forms different from (55)–(57).
We now verify whether this happens in the case of the
Griffiths scaling law

α′m + β(1 + δ) = 1 + β(1 + δ), (76)

which is not satisfied in the form (56) for β(1 + δ) < 1.
In model М2, this holds for β = β− < β+ and β− <
ξT β+

1+ξT β+ . The presented example demonstrates that any,
even commonly accepted, definition of the critical expo-
nent α′ does not allow one to satisfy the Griffiths scaling
relation in the traditional form. Since this violation of
the scaling happens in the model, which contains no de-
fects and is completely consistent with requirements of
the Fisher theorem [2], it is necessary to clarify whether
the requirements of this theorem can be supplemented
so that it would be always valid for a certain class of
physical systems. In works [10, 11] on the basis of the
analysis of the quite general requirements of stability
of the critical state of the system, it was assumed that
the Fisher and Griffiths scaling laws hold only under
the condition of the equality of the critical exponents α
and α′. Therefore, it is natural to verify whether this
condition together with the requirements of the Fisher
theorem lead to the validity of the scaling relations in

the forms (55) and (56) in QGBM with surface tension.
The explicit formulas for α, (40) and (41) in М1 and
(49) in М2, demonstrate that both versions of QGBM
realize the mode, where α = α′. In М1, this happens
for χ 6= 1 − 1

ξT
, which does not ensure the validity of

the Fisher (55) and Griffiths (56) scaling laws. In М2,
the equality α = α′ holds generally without the imposi-
tion of additional conditions on any model parameters.
Hence, the equality of the critical exponents α and α′

does not ensure the validity of the scaling laws (55) and
(56) in the general case.

Since neither the redefinition of the critical exponent
α′ [3], nor the imposition of the additional condition
α = α′ [11] allow one to satisfy the scaling law (56)
in QGBM with surface tension in the general case, we
make conclusion that QGBM belongs to a new (non-
Fisher) universality class, in which the Griffiths relation
has the form different from (56). Therefore, it is pos-
sible to conclude that the scaling problem is more pro-
found as compared with the thoughts of the previous
researchers about it and can require the reformulation
of the scaling laws for some physical systems. As was
mentioned above, their violation occurs namely in the
models, where the types of the phases coexisting on both
sides of the PT curve are identical. The example of such
a model is given by М2. Since the violation of the scaling
in М2 for all definitions of α′ is related to the Griffiths re-
lation and occurs for β = β− < β+, this relation should
be modified so that it would be true for arbitrary values
of β. The explicit formulas for the appropriate critical
exponents demonstrate that the relation

α′c + β + β+δ ≥ 2, (77)

which is an analog of (56), is always satisfied in М1 and
М2. This relation is written with the use of the critical
exponent α′c, because it is the most suitable from the
viewpoint of the validity of the scaling and simultane-
ously, as distinct from α′m, is physically substantiated.
However, at least in М1 and М2, relation (77) is also
satisfied with the use of α′s, whereas this inequality does
not hold for the traditional definition of α′. In addition,
the condition β ≤ β+ implies that, in the case where
inequality (56) is satisfied for a certain physical system,
relation (77) is satisfied automatically, but the opposite
is not true. The unique property of М2, which allowed
us to arrive at the necessity to modify the Griffiths scal-
ing law, consists in the following. In this model, the
mode, where β = β− < β+, is generated only at the
imposition of such conditions on the model parameters
that are inconsistent with this relation. For example, the
relation β− < β+ in М1 is an automatic consequence of
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the general requirement of boundedness of the volume
fraction of the hadronic phase at TCP. In MSMF and
in the spin and magnetic systems, this relation follows
generally from the fact that the value of a quantity in
the high-temperature phase, whose jump is described by
the critical exponent β (the density of the nuclear mat-
ter or the spontaneous magnetization) coincides with the
critical one. Indeed, for these systems, ρ+ = ρcep = 1

b
[24], where b stands for the volume of one nucleon, and
M+ = Mcep = 0. Therefore, according to definition (30),
the exponent β+ is formally equal in these cases to in-
finity, since 0 < |t| < 1 on the PT curve.

5. Conclusions

The extremely wide application of the hypothesis of sim-
ilarity to the critical behavior of various physical systems
leads to the necessity of the detailed consideration of
the question about the association of these systems with
various universality classes. The traditional scaling laws
(55)–(57) [2,3] hold for a quite wide spectrum of physical
systems and models, which belong to the Fisher univer-
sality classes. However, there exist the examples where
this pattern does not true.

With the purpose to answer the question about the
nature of such a violation, we have performed the com-
prehensive analysis of QGBM with surface tension. We
have considered its versions, which generate the phase
diagrams with TCP and CP. To attain a high generality
of the model, we have introduced three new parame-
ters. They are ξT , which determines the shape of the
PT curve in the µ− T coordinates, χ introduced due to
the validity of the Clapeyron–Clausius equation on this
curve, and ω, with the help of which the behavior of the
entropy density of the liquid phase is described. The
introduction of these exponents has allowed us to com-
pletely describe the critical exponents of various physical
systems and models.

The critical exponents α, α′, β, γ′, and δ of QGBM
with surface tension have been found as functions of the
model parameters. Despite the significant similarity of
М1 and М2, their critical exponents, except for α′, are
very different. This can be explained by the difference of
the mechanisms of generation of critical points in these
models. However, we have established the existence of
modes, where the relations between all critical expo-
nents of these models are identical. In addition, we have
demonstrated that the solutions of MSMF [34] enter into
М1, as a partial case. This fact should be considered as
the undoubtful proof of the generality of QGBM with
surface tension. The obtained formulas for critical ex-

ponents allow us to directly verify the validity of scaling
laws in the form (55)–(57). We have established that, in
both versions of QGBM with surface tension, the Fisher
(55) and Griffiths (56) scaling relations including the ex-
ponent α′ are violated in the general case, whereas the
Liberman law (57) holds in all cases. For the further
study of this problem, we have verified the Fisher hy-
pothesis [3] and have determined the critical exponent
α′s. The analysis of the scaling laws with this exponent
for models М1 and М2 allows us to clarify the condi-
tions, under which it is fruitful. We have revealed that,
in the general case, this hypothesis is suitable only for
models, where the types of phases existing on different
sides of the PT curve are different. By analyzing the
reasons for the failure of the Fisher definition of α′s, we
have introduced the new critical exponent α′c, which is
more suitable from the viewpoint of the validity of the
Fisher (55) and Griffiths (56) scaling relations. In addi-
tion, we have introduced the definition of the exponent
α′m with the purpose to attain the completeness of the
analysis. It is worth noting that this exponent possess-
ing the largest value among all α′ is not physically sub-
stantiated. In other words, its introduction is caused by
purely methodical reasons. Therefore, with regard for
the clear physical content of the heat capacity Ctot, we
insist that namely the critical exponent α′c introduced
by us is the most suitable and physically substantiated.
As the unexpected result, we indicate the circumstance
that none of the definitions of α′s, α′c, and α′m allows one
to satisfy at once all scaling relations (55)–(57) in the
general case. This circumstance testifies clearly to the
existence of models, М2 in the case under consideration,
for which these relations take the forms different from
(55)–(57). We note that this conclusion is supported by
the fact that, contrary to [10, 11], the imposition of the
additional condition α = α′ does not lead to the solution
of the scaling problem both in М1 and М2. We hope for
that the future experimental studies performed in a con-
sistent way will allow one to finally clarify this question.
It is worth noting that the measurements should be car-
ried out for a single substance to ensure the precision of
the results.

Though the results obtained require the further stud-
ies, they allow us to assert the existence of non-Fisher
universality classes, for which some of the scaling laws
can be different from their traditional forms (55)–(57).
On the basis of the analysis of models М1 and М2, we
have proved the existence of one of such relations (77).
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ПРО МОЖЛИВIСТЬ IСНУВАННЯ НЕФIШЕРIВСЬКИХ
КЛАСIВ УНIВЕРСАЛЬНОСТI

О.I. Iваницький, К.О. Бугаєв

Р е з ю м е

Критичнi показники α, α′, β, γ′ та δ моделi кварк-ґлюонних мi-
шкiв з поверхневим натягом знайдено як функцiї найбiльш за-
гальних модельних параметрiв. Розглянуто два рiзновиди мо-
делi, якi генерують фазову дiаграму сильновзаємодiючої мате-
рiї з критичною або трикритичною точкою вiдповiдно. Аналiз
спiввiдношень мiж критичними iндексами (скейлiнгових зако-
нiв) демонструє, що у загальному випадку скейлiнг може бути
порушено. Проаналiзовано питання про можливе вiдновлення
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скейлiнгових законiв за допомогою фiшерiвського означення
α′s та його узагальнень α′c, α′m. Показано, що скейлiнгове спiв-
вiдношення Фiшера можна вiдновити за допомогою узагаль-
нень α′c та α′m, в той час, як жодне означення α′ нездатне вiд-
новити спiввiдношення Грiффiтса у традицiйнiй формi. Також
явно показано, що додаткової умови α = α′ недостатньо для
вiдновлення спiввiдношення Грiффiтса у традицiйному вигля-

дi. Запропоновано узагальнення цього скейлiнгового спiввiд-
ношення, яке справедливе для всiх вiдомих моделей. Отрима-
нi результати дозволяють нам зробити висновок про можли-
ве iснування нефiшерiвських класiв унiверсальностi, для яких
традицiйнi скейлiнговi спiввiдношення можуть бути поруше-
нi, у той час, як для них виконуються узагальненi скейлiнговi
закони.
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