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A noncommutative space and the deformed Heisenberg algebra
[X,P] = ih\/l — BP? are investigated. The quantum mechanical
structures underlying this commutation relation are studied. The
rotational group symmetry is discussed in detail.

1. Introduction

The existence of a minimal length is one of the most
important predictions in theoretical physics. Such a
minimal length is due to the fact that the high-energy
particles for probing small scales of the order of the
Planck length disturb the very space-time they are prob-
ing. Otherwise, the very energetic particles cannot probe
distances smaller than the minimal length size. The ex-
istence of a minimal length leads to a modification of
the standard commutation relation between position and
momentum in usual quantum mechanics.

There are many realizations of the noncommutative
Snyder space, but only two particular realizations of its
algebra are known: the Snyder [1] and the Maggiore
[2] ones. The well-known Snyder commutation relation
reads

(X, P] = ih (1+ BP?), (1)

where $P? is a small correction. On the other hand, the
Maggiore algebra reads

[X, P] = ih/1 — BP? (2)

and is widely used in various fields of physics. In what
follows, it will be shown that the minimal length of a de-
formed space with the commutation relation (2) should
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be quantum-theoretically described by a nonzero oper-
ator A that can be expressed in terms of the Pauli or
Gell-Mann matrices.

The study of theories with deformed Heisenberg alge-
bra [3-16] belongs to an active area in theoretical physics
due to their applications in quantum gravity [17], per-
turbative string theory [18-23], black holes [2], as well
as noncommutative space-time [24-32]. Quantum de-
formations which lead to a noncommutative space-time
are strictly linked with quantum groups [33-36]. the
noncommutative space is also useful in describing the
deformed special relativity theories, originally called the
doubly special relativity [37—40].

The paper is organized as follows. In Sections 2 and 3,
we study a quantum mechanical structure that underlies
the commutation relation (2) and its generalization. Sec-
tions 4 and 5 are devoted to a discussion of the rotation
group. In Section 6, we discuss a relativistic generaliza-
tion.

2. Representation on the Momentum Space

In what follows, we use the momentum representation.
A convenient possibility is

Py = py,
X1p = ihn/1 — P20,

with respect to the scalar product

V*o

1
(WYlp) = ﬁ_l ﬁdgv

(4)
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where £ = v/Bp. The modified Heisenberg algebra (2)
leads to the deformed uncertainty relation

AXAP > g\/1 — B(AP?) — B(P?). (5)

Such an uncertainty principle is presented in Figure. We
note that, in the case of the Snyder noncommutative
space, there is no possibility to measure the coordinate
X with accuracy more than fi/B. But, in the case of the
Maggiore one, there exists the zero uncertainty in posi-
tion (see Figure). Therefore, one can exactly measure
the position X.

The eigenvalue problem for the coordinate operator
takes, on the momentum space, the form of a differential
equation

X% = A2 (6)

Taking the momentum representation (3) into account,
this equation reads

2 2
(1= 1) 5 7(0) = Po0pnto) + (3 ) ) = 0. (1)

Using standard techniques, the solutions of this Cheby-
shev equation [41] are given by

,l/)gl) o (1 _ /Bp2)1/2F <—7’L’TL —+ 2, g, % + ;\/Bp) )
MY =h/B- (n+1) ®)

and
11 1
1/)22) X F (n,n, ia 5 + 2\/Bp> )
AP =hy/Bn, 9)

where n =0,1,...,00.

3. Generalization to n Dimensions

The formalism described in the previous section straight-
forwardly extends to n spatial dimensions. A natural
generalization of (2) which preserves the rotational sym-
metry is

(X, ;] = ihd;;+/1 — BP2.

We also assume that the momenta p, which are trans-
formed as vectors under the Lorentz algebra satisfy the
commutation relation

(10)

[Py, P)] = 0. (11)
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Thus, the generalized representation of position and mo-
mentum reads

0
X = ihy/1 — P2 Bp-w' (12)
Therefore, one can write the commutation relation
ihf
(X, X;] = (XuP; — X, P), (13)

V1 - pP?

which indicates that we have a noncommutative space.

4. Representation of the Rotation Group

In quantum mechanics with a noncommutative space,
the generators of rotations can be expressed in terms of
the operators

1

Ly = ——(X; P, — X, P). 14
1= s il — X P) (149
There is also another convenient representation
1
Ly = ————¢€,i1 X0 P, 15
k 1— 3P2 Jk J (15)

where €;;;, is the Levi-Civita symbol. They generalize
the usual operators of orbital angular momentum. We
have, therefore, the commutation relations

(X, Ljx] = ih (0:e X, — 60;;Xk), (16)

[Py, Ljx] = ih (6;xP; — 04jPx) , (17)

[Lij, L] = ik (0:1Lj; — 0uLijr + 0L, — 0. La) . (18)

However, we also have

[Xi,Xj] = ihBL;; (19)
941



CH.M. SCHERBAKOV

leading to a noncommutative geometry. The algebra
generated by (16)—(19) satisfies the Jacobi identities.
One can verify that

X [XG, X + (X5, [Xe, Xal] + [Xk, [ X, X)) =

— inB([Xs, L] + [X;, Ll + [Xi, Lij]) =

ST (51-ka 84 Xt 0, X — 0, Xk

+(5ij¢— 51@in> =0,

il (X, [Xj, Lis)] + [ X5, [Lis, Xi]] + [Lis, [Xi, X5]] =
= ’LTL[XZ‘, (5jst — (Sijs] — ih[Xj, 51’st — 51’sz]+
+ihB[Lys, Lij] = *7125(5st¢1€ — 6Ly — OisLjp+
FOinLjs — OinLjs + 0isLjp — 655 Lk, + 5jk:Lis) =0,

iii  [Xy, [Ljk, Lall + [Ljr, [Lst, Xa]] + [La, [Xi, L)) =
= iﬁ([Xi, 8jsLii — 0j1Lis + 6 Ljs — OpsLji]+

+[0aXs — 05 Xy, Lji]) — [0 X5 — 5ink,Lsz]) =

—h? (5js(5isz — 0k X1) — 051(03s X — 03 Xs)+

+051 (035 X — 0 Xs) — Ops (00 X — 6:X1)+
+§il(5stj - 5stk) - 52'5(5[ka — 6lek)_

—0ik (01X s — 055 X1) + 045 (O Xs — 5kle)) =0,

+[1mm] [Lmna [ ij Lkl] =0

v [P, [Py, Be]] + [Py, [Pr, Bl + [Pe, [P, Py]] = 0,
vi [Xi7[Pj7PkH+[Pjv[Pk'?Xi]]+[Pk7[Xi7Pj”207

vii [Pi> [Pj>LkS]] + [Pjv [Lk87 PIH + [Lksz [Ph PJ]] =
= in([Ps, 634 P — 034P) = [Py, 1Py — 0 Pi] ) = 0,
viii (X, [X5, Pe]] + [ X5, [P, Xo]] + [Py, [Xi, X)) =
= hQﬂ((;jkPi - 5ikPj) - ﬁ25<5jkpi - 5ikpj) =0,

ix [Pi, [Ljks Lnn) +[Ljk, [Lmns P+ [Linn, [Piy Lik]] =
= ih[Ps, 85 Lin — S;nLiom + On Lim — O Lijn] —
—iH[Lj, Oin P — i Pa] — i3 P; — 853 Py L] =

— B2 (5jm(5mpk — 8 Pp) — 0 (Sim P — O3k P) +
O (Oim Py — 01 Pn) — O (8in Py — 653 P)+

0 Ok Py — Oumj P) — S (0o P — O Pi) —

83k (830 P = 83mPa) + 015 (Ohn Pon = S Pa) ) = 0.
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Now, instead of the operators X; and L;;, we prefer to
use new operators X; and Jj defined in a way such that
we have the commutation relations

[P, ;] = ihe;j P, (20)
X, ;] = iheijr Xr, (21)
[Ji, J;] = iheijudk, (22)
X, X,] = ihBeiuds. (23)

The nonzero components of operators X; and J; can be
expressed in terms of the Pauli matrices:

J=L+ ga, (24)
X=x+ %a’. (25)

There is the nonzero minimal length that can be de-

scribed by the operator %a.

5. A Particle with Spin 1

The generators of the rotational symmetry discussed
above can be applied to the study of the SU(2)-
symmetric quantum mechanics. There is also another
possibility. In particular, we now consider the motion
with spin s = 1. In order to make the study easier, we
prefer to consider the special case x = 0, L = 0. The
following representation is possible:

(Ji)jx = —iheiju, (26)
00 0 001

X, =hm/B[0 0 -1], Xo=n/g|000],
0 -1 0 100
010

Xs=hy/3[100 (27)
000

In addition, we also consider the vector I useful for the
following consideration:

00 0 -100

L=r/gl0o1 0|, L=r*/3[0 00],
00 —1 0 01
100

I, =12/ |0 -1 0 (28)
00 0
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One can verify that

L, X;] = ih*B0;j1 T, (29)
[L,J;] = —ih?0:1.Xs, (30)
(L, I;] =0, (31)
where 0;;;, = —(ei; — 20;5)0;1 (we do not sum here). Let
us consider the matrix
1 1 1
mAR wl e sh
W = th2 2 gl (32)
1 1
wpXs 78 sl
with the commutation relations
[N;’naug] =1 :;LI:LSNM (33>
where
121 _ §222 _ 112 _
ijk = Jijk = Jijk = €ijk
k= —fik = ik (34)
and the other components are zeros.
The matrices “; have the following properties:
Tr(ué-) =0, (35)
(ks 3} = 445. (36)

Note that the vectors A, J, and I are orthogonal ones.
The matrices ué can be expressed in terms of the Gell-
Mann matrices A,:

A= p} A2 = p3 Ag = pj

A1 = ph As = — 3 Ao = —pi

M=t As = 5208 + pd).

6. Relativistic Generalization

This section is devoted to the description of a standard
relativistic particle with a special emphasis put on the
way of introducing the time. The formal and conceptual
issues concerning the noncommutative Maggiore space
are discussed here as well. The quantized space-time
was also considered in [42-45].

The exploration of physical events by means of the
features from relativistic quantum theory will hopefully
bring more accurate explanations, by elucidating the ob-
servational issues and other perplexing problems in con-
temporary physics.

In the previous sections, we have studied the position
space without time generalization. In what follows, we

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 9

assume that the commutation relation between the de-
formed time T and Hamilton H operators reads

H2
[T,H] = - 1*60727 (38)
where the function v depends on 5. Similarly to relations
(refd) and (refe), we can calculate the eigenvalues 7, of

the time operator:

w0 = ), (39)
72 = Lig/ﬁ n (40)

Let T,’H, on the one hand, and X, P, on the other one,
act as operators

T—1t, (41)

H= % sin (\/fH> (42)

and

X =z, (43)
=7 sin(v/5p), (44)

where [z, p] = ih and [t, H] = —ih. Taking into account

that the relativistic Hamiltonian is given by

H? = 2 P? + m*c? (45)
and the expressions ( 42) and ( 44), we have

H
v? cos(2£)w (z,1) — cos(2v/Bp)v( (46)
:(y2—1—2fmc ) (47)

It can be rewritten as the equation in finite differences

V;(d;(a:,tJrQh\CFﬂ) +9(e t2w)>

_;<¢ (e-+21/B. )+ (z—20/3, t)) = - 1-28m>c%.
(48)

If we present the function v as a power series, i.e., as a

sum of powers of Bm?c?
1

v=1+ §ﬁm202 + (49)

then we recover the usual Klein-Gordon—Fock equation
as # — 0.
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7. Summary

The noncommutative space considered here has been
widely discussed for a long time. We have studied a
one-parameter deformed Heisenberg algebra. Such a de-
formation leads to the existence of a nonzero minimal
length.

In the framework of the chosen deformation, it is pos-
sible to study the SU(2) and SU(3) symmetries. It is
shown that a Maggiore-like deformed space can be de-
scribed in terms of the noncommutative geometry.

There are many experiments trying to prove the exis-
tence of the observable minimal length (see, e.g., [46]).
However, the theoretical estimates of the parameter (3
are far beyond the experimental precision.

I would like to thank T.V. Fityo, M.M. Stetsko, and
Prof. V.M. Tkachuk for the discussions.
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JIESIKI 3AYBAYKEHHSI 11010 PEJISITUBICTCLKOI
KBAHTOBOI MEXAHIKIA YACTUHKU B [IPOCTOPI
I3 MIHIMAJIBHOIO JIOBYKIHOIO

K.M. Iepbaxos
Peszowme

B crarTi focaiazKeHo HEKOMYTaTUBHUI ITPOCTIP 3 AedOPMOBAHOIO
anre6poro Daitsentepra [X, P] = ihy/1 — BP2. PosrasiyTo TaKox
poCcTi KBAHTOBO-MEXaHi4HI CTPYKTYDH, IO iMIJIEMEHTYIOTH PO3-
IRy TI KoMyTaliiiHi criBBigHOmeHHs. /lolaTKOBO IIpoaHasi3oBa-
HO CHUMeTpio Ipynu obepTaHb B IIPOCTOPi 3 MiHIMAJIBLHOIO JIOBXKHU-
HOIO.
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