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A theory of electron-phonon interaction in a combined cylindri-
cal semiconductor nanotube has been developed in the framework
of the effective mass model for electrons and a dielectric contin-
uum for phonons. Analytical expressions for Hamiltonians of elec-
tron interaction with confined and interface phonons have been
derived in the secondary quantization representation for electron
and phonon variables. Dependences of the phonon energies and the
interface phonon polarization field potential on the axial quasimo-
mentum and the geometrical parameters of a combined nanotube
fabricated on the basis of GaAs and Al0.4Ga0.6As semiconductors
have been studied.

1. Introduction

Semiconductor quantum wires have been studied both
theoretically and experimentally for 20 years. The im-
provement of methods aimed at their growing–such as
molecular-beam, gas-phase, and metal-organic epitaxy–
made it possible to form not only single wires, but
also the ensembles of quantum nanowires with a ra-
dial heterostructure, which are perfectly arranged in
space [1, 2]. On the one hand, such a heterostruc-
ture, which is perpendicular to the quantum wire axis,
can localize charge carriers in the wire core by reduc-
ing the surface scattering [3]. On the other hand, it
allows the spectral parameters of major quasiparticles
in the nanosystem (electrons, excitons, phonons) to be
changed purposefully by varying the geometrical param-
eters of a heterostructure. Unique properties of quasi-
particles in such systems allow them to be used as base
elements in tunnel nano-diodes, nano-transistors with
a high mobility of electrons, high-performance light-
emitting devices, photoconverters, and nanosensors for

the diagnostics of various biological and chemical com-
pounds [4].

Intensively studied semiconductor nanotubes belong
to quantum wires with a radial heterostructure. De-
pending on semiconductor materials that compose a
heterostructure, experimenters have already created
simple (with a single quantum well for an electron)
[5, 6] and complex (multi-well) multilayered nanotubes
[7, 8]. Simple quantum wires and nanotubes were
studied theoretically in detail in works [9–11]. The
cited authors developed a theory for the energy spec-
tra of electrons, holes, and phonons and for the in-
teraction of those quasiparticles with one another.
The theory allowed them to obtain not only qualita-
tive but also quantitative agreement with experimental
data.

Theoretical researches of combined multilayered semi-
conductor nanotubes are at their beginning. In partic-
ular, the theory of electron and exciton energy spectra
was elaborated in work [12], and their dependence on
the geometrical parameters of combined nanotubes was
analyzed. Today, as far as we know, there is no consis-
tent theory for the phonon spectrum in such systems.
As a result, the theory of the interaction between an
electron and phonons, which are considered as one of
the dissipation subsystems that should evidently affect
the radiative or absorption ability of a nanotube, is also
absent.

Therefore, this work aimed at constructing the the-
ory of phonon spectra and electron-phonon interaction in
combined cylindrical semiconductor nanotubes (Fig. 1).
As an example, we studied the features in the main
characteristics of the phonon field and their dependences
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on the geometrical parameters of nanosystems based on
GaAs and Al0.4Ga0.6As semiconductors.

2. Energy Spectrum and Wave Functions of an
Electron in a Combined Cylindrical
Semiconductor Nanotube without regard for
the Interaction with Phonons

Here, we analyze a nanosystem that is a combined cylin-
drical semiconductor nanotube. It consists of a quantum
core wire (medium 0), a thin semiconductor layer (a bar-
rier, medium 1), and a nanotube (medium 2), with the
entire nanosystem being located in the external environ-
ment (medium 3), as is shown in Fig. 1.

The lattice constants (a0 and a1) and the dielec-
tric permittivities of nanosystem components are sup-
posed to differ weakly from each other. In addition, the
nanosystem dimensions are supposed to satisfy the rela-
tion (ρ0,Δ, h) > (a0, a1). Therefore, the effective mass
(µ) approximation [13, 14] and the rectangular potential
(U) model can be used to calculate the energy spectrum
of electrons. Note that the dielectric permittivities, ef-
fective masses, and potential energy of an electron are
considered to be known in every region of the combined
nanotube. In the cylindrical coordinate system with the
axis OZ directed along the nanosystem axis, those quan-
tities are defined as follows:

ε(ρ, ω) =

{
ε0(ω)
ε1(ω) , µ(ρ) =

{
µ0

µ1
,

U(ρ) =
{

0, 0 ≤ ρ ≤ ρ0, ρ1 ≤ ρ ≤ ρ2

U0, ρ0 ≤ ρ ≤ ρ1, ρ > ρ2
. (1)

The Hamiltonian of an electron without regard for its
interaction with phonons looks like

Ĥe(ρ, ϕ, z) = − ~2

2µ(ρ)
∂2

∂z2
+ U(ρ)−

−~2

2ρ

[
∂

∂ρ

(
ρ

µ(ρ)

)
∂

∂ρ
+

1
ρ

∂2

∂ϕ2

]
. (2)

The stationary Schrödinger equation

Ĥe(ρ, ϕ, z)ψ(ρ, ϕ, z) = E ψ(ρ, ϕ, z) (3)

can be solved exactly, so that the sought wave functions
have the form

Ψmk(r) =
1√
2π L

R
(p)
mk(ρ) e

ikzeimϕ, p = 0, 1, 2, 3 (4)
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Fig. 1. Geometrical and energy diagrams of a combined cylindrical
nanotube

with the radial functions

R
(p)
mk (ρ) =

=


A

(0)
m Jm (χ0ρ) , 0 ≤ ρ ≤ ρ0,

A
(1)
m Im (χ1ρ) +B

(1)
m Km (χ1ρ) , ρ0 ≤ ρ ≤ ρ1,

A
(2)
m Jm (χ0ρ) +B

(2)
m Nm (χ0ρ) , ρ1 ≤ ρ ≤ ρ2,

B
(3)
m Km (χ1ρ) , ρ ≥ ρ2.

(5)

Here,

χ0 =
√

2µ0E
/
~2 − k2, χ1 =

√
2µ1(U0 − E)

/
~2 + k2,

(6)

k is the axial quasimomentum; m = 0,±1,±2, . . . is the
magnetic quantum number; L is the size of the effective
region for the electron motion along the nanotube axis;
Jm and Nm are the Bessel and Neumann, respectively,
functions of integer order; and Im and Km are the mod-
ified Bessel and Macdonald, respectively, functions [15].

Conditions for the wave functions and the correspond-
ing density probability flows to be continuous across all
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the three interfaces in the nanosystem (at ρ = ρ0, ρ1,
and ρ2),
R

(p)
mk(ρp) = R

(p+1)
mk (ρp), (p = 0, 1, 2)

1
µp

∂R
(p)
mk(ρ)
∂ρ

∣∣∣∣∣
ρ=ρp

=
1

µp+1

∂R
(p+1)
mk (ρ)
∂ρ

∣∣∣∣∣
ρ=ρp

,
(7)

together with the normalization condition
∞∫
0

|Rmk(ρ)|2 ρdρ = 1 (8)

allow us to determine all unknown coefficients A(p)
m and

B
(p)
m (p = 0, 1, 2, 3) in Eq. ([5]) and, therefore, to ob-

tain the analytical expressions for the wave functions
ψnρmk(r) and the dispersion equation. The solutions of
the latter are enumerated by the radial quantum number
nρ = 1, 2, . . . and determine the electron energy spec-
trum Enρm(k).

3. Interaction of an Electron with Confined and
Interface Phonons in a Combined Cylindrical
Nanotube

In the dielectric continuum model, the polarization field
of a combined nanotube is described by the system of
Maxwell equations for the corresponding media, D = ε (ρ, ω)E = E + 4πP,

E = −∇Φ,
∇D = 0,

(9)

where D is the vector of electric field induction, Φ the
polarization field potential, and P the polarization vec-
tor. From system (9), we obtain the equation

∇ (ε (ρ, ω) ∇Φ (r)) = 0, (10)

which has two probable solutions. This circumstance
is connected with the existence of phonon fields of the
following two types [16, 17]:
a) the polarization field of confined phonons, which cor-
responds to the conditions

εp (ρ, ω) = 0, ΔΦLp (r) 6= 0, p = 0, 1, 2, 3, (11)

b) and the polarization field of interface phonons, which
corresponds to the conditions

εp (ρ, ω) 6= 0, ΔΦIp (r) = 0, p = 0, 1, 2, 3. (12)

Below, we describe how the energy spectra for all
phonon branches and the corresponding potentials in the
nanotube can be obtained.

3.1. Confined Phonons

The dielectric permittivity of each semiconductor layer
in the combined nanotube is assumed to be a known
function of the frequency

εp (ω) = εp∞
ω2 − ω2

Lp

ω2 − ω2
Tp

, p = 0, 1, (13)

where εp∞ is the high-frequency dielectric permittivity,
and ωLp and ωTp are the frequencies of longitudinal and
transverse, respectively, phonons in the corresponding
massive crystal. From Eqs. (11) and (13), one can see
that the spectrum of characteristic energies for confined
phonons in the cylindrical nanotube coincides with the
frequencies of longitudinal optical phonons in the corre-
sponding massive crystals that the nanotube is made up
of,

ΩLp = ~ωLp . (14)

Afterward, we find the polarization field potential
ΦL(r) and the corresponding component of the displace-
ment vector uL, which are induced by confined optical
phonons. For this purpose, taking the cylindrical sym-
metry of the system into consideration, the components
of the potential ΦL(r) in every nanosystem region are
tried in the form of a series expansion in a complete set
of cylindrically symmetric functions

ΦL0 (r) |ρ≤ρ0=
∑
mk0q

Φmq (k0)Bk0Jm(k0ρ)eiqzeimϕ,

ΦLp (r) |ρp−1≤ρ≤ρp=

=
∑
mkpq

Φmq (kp)
(
BkpJm (kpρ) +AkpNm (kpρ)

)
eiqzeimϕ,

(p = 1, 2),

ΦL3 (r) |ρ≥ρ2=
∑
mk3q

Φmq (k3)Ak3Nm(k3ρ)eiqzeimϕ. (15)

Here, Jm(kpρ) and Nm(kpρ) are the Bessel and Neu-
mann, respectively, functions of integer order, and q is
the axial quasimomentum. All unknown coefficients Akp ,
Bkp , and Φmq(kp), as well as the quasiwave numbers
kp, are determined from the conditions for the polar-
ization potentials to be zero at the interfaces between
nanosystem media and the orthonormality condition for
the complete set of functions used at quantizing this
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phonon field. As a result, we obtain the Hamiltonian
of interaction between the electron and the polarization
field Φ̂L(r) in the secondary quantization representation
for phonon variables and the coordinate representation
for electron ones,

Ĥe−L (ρ, ϕ, z) = −e Φ̂L(r) =

= −

√
2e2ΩL0

L

(
1
ε∞0

− 1
ε00

)∑
mq

1
ρ0

√
k2
0 + q2

×

×Jm(k0ρ)eiqzeimϕ

|Jm+1(k0 ρ0)|
(b̂mqk0 + b̂+−m,−q k0)

∣∣∣
ρ≤ρ0

−

−
2∑
p=1

√
2e2ΩLp
L

(
1
ε∞p

− 1
ε0p

)
π

2

∑
mq

kp√
k2
p + q2

×

×
[

1
N2
m(kp ρp)

− 1
N2
m(kp ρp−1)

]−1/2

×

×
[
Jm (kp ρ)−

Jm(kp ρp−1)
Nm(kp ρp−1)

Nm(kp ρ)
]
×

×eiqzeimϕ(b̂mq kp + b̂+−m,−q kp)
∣∣∣
ρp−1≤ρ≤ρp

−

−

√
2e2ΩL1

L

(
1
ε∞1

− 1
ε01

) ∑
mq

1
ρ2

√
k2
3 + q2

×

×Nm(k3ρ)eiqzeimϕ

|Nm+1(k3 ρ2)|

(
b̂mqk3 + b̂+−m,−q k3

) ∣∣∣
ρ≥ ρ2

. (16)

Here, the operators of secondary quantization b̂mqkp and
b̂+mqkp satisfy the bosonic commutation relation

[ b̂mqkp , b̂
+
m′q′k′p

] = δmm′δkpk′pδqq′ . (17)

3.2. Interface Phonons

The polarization field of interface phonons is described
by Eqs. (12). Taking the cylindrical symmetry of a nan-
otube into account, it is expedient to seek the function
that would satisfy the Laplace equation in (12) in the
form

Φ(p)
I (r) = f (p)

m (ρ) eimϕeiqz (p = 0, 1, 2, 3). (18)

The substitution of Eq. (18) into Eq. (12) brings about
the Bessel equation for the function f (p)

m ,(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
−
(
m2

ρ2
+ q2

))
f (p)
m (ρ) = 0, (19)

Its solutions in various ρ-regions are the modified Bessel
functions

f (p)
mq (ρ) =


A0Im (qρ) , ρ ≤ ρ0,
A1Im (qρ) +B1Km (qρ) , ρ0 ≤ ρ ≤ ρ1,
A2Im (qρ) +B2Km (qρ) , ρ1 ≤ ρ ≤ ρ2,
B3Km (qρ) , ρ ≥ ρ2.

(20)

In accordance with electrodynamics laws, the po-
tential of the interface phonon polarization field, ΦI ,
must be such that the tangential component of the field
strength and the normal component of the induction
should be continuous across each interface in the com-
bined cylindrical nanotube,

Eτp (ρp) = Eτp+1 (ρp) , Dnp (ρp) = Dnp+1ρp,

(p = 0, 1, 2). (21)

Boundary conditions (21) lead to a system of linear ho-
mogeneous equations for the unknown coefficients Ap
and Bp. This system is used to derive the dispersion
equation, the solutions of which, ωms(q), are enumer-
ated by the quantum number s and determine the energy
spectrum of interface phonons in the system,

Ωms(q) = ~ωms(q) (22)

as well as the coefficients Ap and Bp. The dispersion
equation and the expressions for Ap and Bp are very
cumbersome so that their explicit forms are not pre-
sented here.

Thus, the Hamiltonian of interaction between an elec-
tron and the polarization field Φ̂I(r) expressed in the
secondary quantization representation for phonon vari-
ables and the coordinate representation for electron ones
looks like

Ĥe−I (ρ, ϕ, z) = −e Φ̂I(r) =

= −
∑
mqs

Φmqs(ρ)eiqseimϕ(b̂mqs + b̂+−m,−qs) =

= −
∑
mqs

√
~ e2

Lyqsωms(q)
eiqzeimϕ×

×[A0 Im (qρ)|ρ≤ρ0 +B3Km (qρ)|ρ≥ ρ2+

+
2∑
p=1

[ApIm (qρ) +BpKm (qρ)]|ρp−1≤ρ≤ρp ]×
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× (b̂mqs + b̂+−m,−qs)], (23)

where

yqs =
1
2

 (ε00 − ε∞0)ω2
T0

(ω2
ms(q)− ω2

T0)2
ρ0f

(0)
m (ρ0)

∂f
(0)
m (ρ)
∂ρ

∣∣∣∣∣
ρ0

+

+
(ε01 − ε∞1)ω2

T1

(ω2
ms(q)− ω2

T1)2
ρ2f

(3)
m (ρ2)

∂f
(3)
m (ρ)
∂ρ

∣∣∣∣∣
ρ2

+

+
2∑
p=1

(ε0p − ε∞p)ω2
Tp

(ω2
ms(q)− ω2

Tp)2
ρf (p)
m (ρ)

∂f
(p)
m (ρ)
∂ρ

∣∣∣ρp
ρp−1

)
. (24)

The transition in Hamiltonians (16) and (23) to the
occupation number representation for electron variables
is carried out, following the general theory, by using the
quantized wave functions

Ψ̂nρmk(r) =
∑
nρmk

Ψ̂nρmk(r)ânρmk,

Ψ̂+
nρmk(r) =

∑
nρmk

Ψ̂∗nρmk(r)â
+
nρmk, (25)

where ânρmk and â+
nρmk

are the Fermi operators of an-
nihilation and creation, respectively, of electron states
described by the wave functions Ψnρmk (r) (Eq. (4)). As
a result, the Hamiltonian of electrons and the electron–
phonon interaction in the secondary quantization repre-
sentation for all variables looks like

Ĥ =
∫

Ψ+
nρmk

(r) (Ĥe(r) + Ĥe−L(r)+

+Ĥe−I(r))Ψ
′

n′ρm
′k

(r)d3r =

= Ĥe + Ĥe−L + Ĥe−I . (26)

Here,

Ĥe =
∑
nρmk

Enρm (k) â+
nρmk

ânρmk (27)

is the Hamiltonian of electrons in the representation of
their occupation numbers,

Ĥe−L =
3∑
p=0

∑
kqkp

∑
mm1

∑
nρ1nρ2

F
nρ2m1+m
nρ1m1 k

(m, q, kp)×

×â+
nρ1m1 k+q

ânρ2m1+mk

(
b̂+mqkp + b̂−m−qkp

)
(28)

is the Hamiltonian of interaction between the electron
and confined L-phonons, which contains the coupling
functions

F
nρ2m1+m
nρ1m1 k

(m, q, k0) =

=

√
2 e2 ΩL 0

L

(
1

ε∞ 0
− 1
ε0 0

)
1

ρ0

√
k2
0 + q2

1
|Jm+1(k0ρ0)|

×

×
ρ0∫
0

R∗nρ1m1 k+q(ρ)Rnρ2m1+mk(ρ) Jm(k0ρ) ρ dρ, (29)

F
nρ2m1+m
nρ1m1 k

(m, q, k3) =

=

√
2 e2 ΩL 1

L

(
1

ε∞ 1
− 1
ε0 1

)
1

ρ2

√
k2
3 + q2

1
|Nm+1(k3ρ0)|

×

×
∞∫
ρ2

R∗nρ1m1 k+q(ρ)Rnρ2m1+mk(ρ)Nm(k3ρ) ρ dρ, (30)

F
nρ2m1+m
nρ1m1 k

(m, q, kp=1,2) =

=

√
2 e2 ΩLp

L

(
1

ε∞ p
− 1
ε0 p

)
π

2
kp√
k2
p + q2

×

×
[

1
N2
m(kpρp)

− 1
N2
m(kpρp−1)

]−1/2

×

×
ρp∫

ρp−1

R ∗nρ1m1 k+q(ρ)Rnρ2m1+mk(ρ)×

×
[
Jm(kpρ)−

Jm(kpρp−1)
Nm(kpρp−1)

Nm(kpρ)
]
ρ dρ. (31)

and

Ĥe−I =
∑
kqs

∑
mm1

∑
nρ1nρ2

F
nρ2m1+m
nρ1m1 k

(m, q, s)×

â+
nρ1m1 k+q

ânρ2m1+mk

(
b̂+mqs + b̂−m−qs

)
(32)

is the Hamiltonian of interaction between the electron
and interface I-phonons, which contains the coupling
functions

F
nρ2m1+m
nρ1m1 k

(m, q, s) =

=

√
e2 Ωms(q)
Lyq s

∞∫
0

R∗nρ1m1 k+q(ρ)Rnρ2m1+mk(ρ) ρ dρ×
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Fig. 2. Dependences of the energy of confined and interface phonons on the axial quasimomentum q at the fixed thicknesses of the
nanotube, h = 7a, and the layer-barrier, Δ = 4a, and for various radii of the core wire, ρ0

×[Im(qρ)ρ≤ ρ0 +B3 Km(qρ)|ρ≥ ρ2 +

+
2∑
p=1

[ApIm(qρ) +BpKm(qρ)]|ρp−1≤ρ≤ ρp

]
. (33)

The obtained Hamiltonian (26) is basic, while ana-
lyzing the renormalization of the energy spectrum of
electrons by their interaction with confined and inter-
face phonons. Its advantage consists in that the form
obtained is suitable for the application of methods of
quantum field theory, in particular, the Green’s function
method and the Feynman’s diagram technique. This
circumstance allows us to study various versions with
all possible coupling forces between quasiparticles and
phonons in a combined cylindrical nanotube.

4. Analysis and Discussion of Results

In work [12], we studied the dependences of the elec-
tron and exciton spectra on the geometrical parameters
of a combined cylindrical semiconductor nanotube in de-
tail. Therefore, now let us analyze the phonon spectra
and the polarization field potentials in a cylindrical nan-
otube made up of GaAs (medium 0) and Al0.4Ga0.6As
(medium 1) semiconductors. Their material parameters
are as follows: the energy of longitudinal and trans-
verse optical phonons in the corresponding media are
ΩL0 = 35 meV, ΩT0 = 32.2 meV, ΩL1 = 39.4 meV,
and ΩT1 = 35.95 meV; the lattice constants are a =
a0 ≈ a1 = 5.65 Å; and the dielectric permittivities are
ε∞0 = 10.85 and ε∞1 = 9.8.

The results of calculations of the phonon spectrum for
the examined nanosystem at fixed thicknesses (typical of
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Fig. 3. Dependences of the interface phonon energy Ωms on m at
ρ0 = 5a, Δ = 4a, h = 7a and q = 0 (a) or 0.2π/a (b)

experimentally created nanosystems [8]) of a nanotube,
h = 7a, and a layer-barrier, Δ = 4a, and various radii of
a core wire, ρ0, are depicted in Fig. 2, which illustrates
the properties of this spectrum and its evolution with
the variation of nanosystem geometrical parameters.

From Fig. 2,a, one can see that, if the internal medium
is absent, i.e. ρ0 = 0, the phonon spectrum includes
the dispersion-free energies of confined phonons, ΩL0

and ΩL1, and four groups with the infinite number of
branches (m = 0, 1, . . .) with a weak q-dispersion for the
energies of interface phonons, Ωms(q). In Fig. 2, only the
branch Ωm=0,1s(q) is shown. The Ωms-values calculated
for other m and ρ0 = 5a are exhibited in Fig. 3,a (for
q = 0) and Fig. 3,b (for q = 0.2π/a).

From Fig. 2,a, it is also evident that, at m = 0 and
1, two branches of I-phonons have a positive dispersion,
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Fig. 4. Dependences of the potential Φmqs on ρ at q = 0.2π/a, ρ0 = 5a, h = 7a, and Δ = 4a

and two others have a negative one. The energy of every
upper I-phonon group lies within the interval between
ΩL1 and ΩT1, and that of every lower I-phonon group
lies between ΩL0 and ΩT0.

However, if the cylindrical nanotube has the inter-
nal radius ρ0 6= 0 (Figs. 2,b to d), two more groups of
branches appear in the spectrum of interface phonons:
a group with a positive dispersion in the low-energy
range, Ωm2(q), and a group with a negative disper-
sion in the high-energy one, Ωm5(q). The physical rea-
son for the presence of four (at ρ0 = 0) or six (at
ρ0 6= 0) groups of branches for interface phonons con-

sists in the existence of two or three, respectively, inter-
faces GaAs/Al0.4Ga0.6As between semiconductor media
(Fig. 1).

From Figs. 2,b to d, one can see that, if the tube
width is fixed, the dispersion of interface phonons is sen-
sitive to the ρ0-value only at small q’s. In the range
q ≥ 0.1π/a, the energy of interface phonons practically
does not change irrespective of the ρ0-value.

From Fig. 3, it is evident than the m-dispersion of
interface phonons in all groups is also insignificant and is
similar to the q-dispersion. This fact is absolutely clear,
because it is just the quantum numberm that transforms
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into the quasimomentum directed perpendicularly to the
direction of q in the limit ρ0 → ∞. It is so, because,
in this case, a cylindrical nanotube transforms into a
combined plane nano-heterosystem with the geometrical
parameters Δ and h.

In Fig. 4, the potential dependences Φmqs(ρ) calcu-
lated at q = 0.2π/a, ρ0 = 5a, h = 7a, Δ = 4a, and
various magnetic quantum numbersm = 0, 1, 2 and reck-
oned in units of ΩL0 are depicted for six branches of in-
terface vibrations shown in Fig. 2,c and enumerated by
the index s. The panels demonstrate that, irrespective
of the branch number s, the potential energy of inter-
face phonons nonmonotonously depends on ρ, reaching
its extreme values at the interface between semiconduc-
tor media that compose the combined nanotube.

Among those six panels, we can distinguish pairs, in
which the potential dependence Φmqs(ρ) is qualitatively
identical within the whole interval of ρ variation. In par-
ticular, Fig. 4,a corresponds to an interface phonon with
the energy Ωm1 and the positive q-dispersion, whereas
Fig. 4,b to an interface phonon with the energy Ωm6

and the negative q-dispersion. The maximum poten-
tial value for those vibrations is reached at the interface
ρ = ρ0. Analogous pairs can be distinguished for poten-
tials with a maximum value at the interface ρ = ρ2 and
the corresponding energies Ωm2 (positive dispersion) and
Ωm5 (negative dispersion) – see Figs. 4,c and d – and
for potentials with a maximum value at the interface
ρ = ρ1 and the corresponding energies Ωm3 (negative
dispersion) and Ωm4 (positive dispersion) (see Figs. 4,e
and f). The absolute value of potential in every pair
at an arbitrary ρ is higher for the component, for which
the energy of the corresponding interface phonon Ωms is
larger.

For every s-th branch (s = 1 ÷ 6), the potential of
interface phonons at m = 0 differs from zero even at
ρ = 0. However, for all other m, Φm 6=0qs(ρ = 0) = 0.

At last, we note that the potential of interface phonon
field is maximum at heterointerfaces and quickly falls
down as the distance from the interface between semi-
conductor media increases. Therefore, the renormaliza-
tion of the electron spectrum by those phonons should
be considerable only in superthin nanotubes, in which
the maximum of the squared absolute value of electron
wave function is also localized near the interface.

5. Conclusions

A theory of the electron–phonon interaction in a com-
bined cylindrical semiconductor nanotube has been de-
veloped in the framework of the effective mass model for

electrons and a dielectric continuum one for phonons.
Analytical expressions are derived for the Hamiltonians
of interaction between the electron and confined and
interface phonons in the secondary quantization rep-
resentation for electron and phonon variables. It is
found that, in the combined nanotube, there are two
dispersion-free branches for confined phonons and six
branches for interface ones with weak dispersions with
respect to both the magnetic quantum number m and
the axial quasimomentum q. Provided that the tube
width is fixed, the dispersion of interface phonons is sen-
sitive to variations of the core wire radius ρ0 only at small
q’s. The potential of interface phonons is shown to de-
pend nonmonotonously on ρ, irrespective of the phonon
spectrum branch, and reach its extreme values at the
interfaces between semiconductor media that the com-
bined nanotube is composed of.

The authors are sincerely grateful to Doctor of Phys.-
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of preparation of this paper.
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ФОНОННI СПЕКТРИ ТА ЕЛЕКТРОН-ФОНОННА
ВЗАЄМОДIЯ У СКЛАДНIЙ ЦИЛIНДРИЧНIЙ
НАПIВПРОВIДНИКОВIЙ НАНОТРУБЦI

О.М. Маханець, Н.Р. Цюпак, В.I. Гуцул

Р е з ю м е

У моделi ефективних мас для електрона та дiелектричного
континууму для фононiв розвинуто теорiю електрон-фононної
взаємодiї у складнiй цилiндричнiй напiвпровiдниковiй нано-
трубцi. Одержано аналiтичнi вирази для гамiльтонiанiв вза-
ємодiї електрона з обмеженими та iнтерфейсними фононами у
зображеннi вторинного квантування за електронними i фонон-
ними змiнними. Дослiджено залежностi фононних енергiй та
потенцiалу поля поляризацiї iнтерфейсних фононiв вiд аксi-
ального квазiiмпульсу та геометричних параметрiв складної
нанотрубки на основi напiвпровiдникiв GaAs та Al0,4Ga0,6As.
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