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The currents of higher-spin fermion interactions with zero- and
half-spin particles are derived. They can be used for the N*(J) =
N -transitions (N*(J) is the nucleon resonance with the J spin).
In accordance with the theorem on currents and fields, the spin-
tensors of these currents are traceless, and their products with the
~y-matrices and the higher-spin fermion momentum vanish, simi-
larly to the field spin-tensors. Such currents are derived explicitly

3 5
for J = 5 and —.
the scale dimension of a higher spin fermion propagator equals

1
to —1 for any J > —. The calculations indicate that the off-

It is shown that, in the present approach,

mass-shell N* contributions to the s-channel amplitudes corre-

spond to J = Jrn only (Jrn is the total angular momentum of

the mN-system). As contrast, in the usually exploited approaches,
1

such non-zero amplitudes correspond to 3 < Jxn < J. In par-

ticular, the usually exploited approaches give non-zero off-mass-

shell contributions of the A(1232)-resonance to the amplitudes
1

S31, P31(Jan = 5) and P33, D33(Jan =

to P33 and D33 only. The comparison of these results with the data

—), but our approach —

of the partial wave analysis on the S3i-amplitude in the A(1232)-
region shows the better agreement for the present approach.

1. Introduction

At present, a lot of higher spin particles (the spin J > 1)
is known. In particular, the masses and the widths of
higher spin fermions (HSF) are known quite well, as they
are the resonances in the s-channel of meson-nucleon
scattering. Among the nucleon resonances, A(1232)
(P53(1232)) occupies a peculiar place. This resonance
has the quantum numbers J = 3 (spin) and I = 3
(isospin). It has the simplest theoretical interpretation
in the quark model and is studied experimentally bet-
ter in comparison with another resonances. In quantum
chromodynamics, P33(1232) and the nucleon are the dif-
ferent states of the same three coloured quark system.
They have different quark spin and isospin orientations

only.
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It is known that the higher spin particles, as well as
the nucleons, pions, and nuclei are not elementary par-
ticles. But, in the reactions, the approximation of ele-
mentary particles for them is rather good at low and in-
termediate energies. Therefore, we can assume that the
higher spin particles can be considered approximately
as elementary particles, similarly to the nucleons and
the pions. The non-elementarity of the particles can be
taken into consideration by means of the interaction ver-
tex functions. The Feynman rules, projection operators,
and vertex functions must be known in the course of cal-
culations of the higher spin particle contributions. All
these quontities depend on the formalism used for the de-
scription of higher spin particles. The Rarita—Schwinger,
Kemmer—Duffin, and Bargmann—Wigner formalisms can
be used. As a rule, the Rarita—Schwinger formalism is
exploited in the calculations of amplitudes [1-7]. In this
formalism, the Feynman rules are known, and the ver-
tex functions describing the interaction of higher-spin
particles have fairly simple forms [8-10]. The %—spin
states (fields) are studied theoretically better in com-
parison with the states of J > % (see, e.g., [6, 7, 11, 12]).
The investigations of another formalisms are in progress
[13-15].

We use the Rarita—Schwinger formalism here. The
amplitudes of the transitions like to N* — N can be
written as

V =U®)pr 10 = U®),1(p) (1)

where U(p)y, ..., = U(p)!, is the symmetric field spin-
tensor for HSF of the p momentum and the J =1 + %
spin, 7(p)uy...., = 1(p)L, is the current spin-tensor. In the
Rarita—Schwinger formalism, the field spin-tensor obeys
the auxiliary conditions

Pu; U(p)mu-m =0, (2)
gHinU(p)Nl---Nl =0, (3)
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’YﬂiU(p)Hl---#l = O’ (4)

where i,k =1,2,...,1.
As usual, we assume that the HSF interactions are de-
scribed by the system of inhomogeneous Dirac equations

(i0 — M)U(z)!, = n(x)!,, (5)

where M is the HSF mass. As a rule, the current spin-
tensors n(x)L obey the symmetry condition only. We
name the approaches with such current spin-tensors as
usual (or simple) approaches. Unfortunately, the usual
approaches have some shortcomings discussed in what

follows.

1.1. Inconsistencies of systems of equations

Indeed, due to the symmetry and conditions (2)—(4), the
field spin-tensors U (;v)lw as well as their Fourier trans-
forms U(p)ﬁN have 2J + 1 = 2] + 2 independent compo-
nents. But, in the usual approaches, the current spin-
tensors n(m)lu (and n(p)lu) obey the symmetry conditions
only. Therefore, they have Ny =4-4-5-...-(1+3)/ll =
2(1+1)(14+2)(1+ 3)/3 independent components. We see
that N; > 2l + 2. Let us consider the system of partial
differential equations (5) in the momentum representa-
tion (i.e., for the Fourier components). Then system (5)
becomes a system of N; linear algebraic equations for
2J 4 1 components of the field spin-tensors U(p),, .. ;-
This system of equations is inconsistent. For example,
this can be seen, using the Cramer method for its so-
lution. Indeed, for each independent component of the
field spin-tensor, we have zero denominator (system’s de-
terminant of the order of N; has rank 2]+ 2) whereas the
numerator is non-zero (i.e., the solution of this system
does not exist). This inconsistency can be considered as
the consequence of the Kronecker—Capelli theorem. In-
deed, the rank of the matrix of our system is less than
that of the matrix of the extended system in the usual
approaches (20 + 2 < N;).

1.2. Power divergences

The substitution of the propagators and the vertex func-

tions for higher spin particles into the reaction ampli-
1

tudes instead of those for 0- and —-spin particles leads

to the power divergences for the amplitudes correspond-

ing to the loop diagrams and the energy increasing for

the amplitudes corresponding to the tree diagrams. The

usual approaches have two sources of the power diver-
gences.
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1.2.1 Propagators

As is known (see, e.g., [6, 7, 11]), the propagator of a
3 ~
spin - 3 particle includes the term pp,p, /M?(p* — M?),

where p is the HSF momentum. For J = [+ 1/2, the
propagator includes the term

ﬁpm---puszr"puz/MQl(pQ - MQ)- (6)

Thus, the scale dimension of the HSF propagator equals
2l — 1, i.e., it increases with p and J. The HSF momen-
tum can be the integration momentum for loop-diagram
amplitudes, and this give the power divergences. For
the tree-diagram amplitudes, the HSF momentum is ex-
pressed through the external particle momenta, and this
leads to the energy increasing at high energy.

1.2.2 Currents

1
For the HSF interaction J(p) — 5(1{:1) + O(k3), the cur-

rents in the usual approaches can be written in three
forms

77“1 ey —
gklulkluz-~-k1mﬂ(kl)@*(k2)§ (7)
= gkgulkgﬂz...kgmﬂ(kl)gﬁ*(kg); (8)
g(lﬁ 7'1(;2);1,1 (kl 71‘32)/@ (kl 7k2)uzﬂ(k1)90*(k2)’ (9)

where g is the coupling constant. We see that the current
spin-tensors (7)—(9) include the products of particle mo-

1
menta, whereas the interaction currents of 0- and =-spin

particles have no any momentum as factors. The mo-
menta in Eqgs. (7)—(9) can be expressed in terms of the
integration momenta or the external particle momenta.
This leads to the power divergences or the power energy
increasing. In the simplest case, the vertex functions do
not include any form-factors, which are the scalar func-
tions of the scalar products of particle momenta. In this
case, the powers of the divergences for loop-diagram am-
plitudes are proportional to J. Moreover, the number of
the diverging quantities in field theory increases with .J.
Therefore, as is well known, the theories of higher spin
particle interactions are not renormalizable.

In some models, the vertex functions including the
form-factors have been considered. As a rule, these form-
factors have been chosen to achieve the agreement with
experimental data in some reactions in some energy re-
gions. But the power divergences (or energy increasing)
remain at such form-factors in other reactions.
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1.3. Ambiguities of verter functions

The use of the current spin-tensors (7)-(9) in vertex
functions (1) give different expressions for the ampli-
tudes and even the different powers of the divergences
for the loop-diagram amplitudes, as well as the differ-
ent powers of energy growth for the HSF off-mass-shell
contributions to the pole amplitudes [16].

1.4. Contradictions with experimental data

The use of the vertex functions (7)—(9) without form-
factors leads to the power increasing of the pole reaction
amplitudes with energy and spin J. Therefore, such ver-
sions of the higher-spin particle interactions give contra-
dictions with experimental data on the cross-sections at
high energies. As is known from experiment, the cross-
sections cannot increase by any power law at higher en-
ergies.

The vertex functions including the form-factors (as a
rule, the monopole or dipole form) for the higher-spin
resonance contributions to the s-channel amplitudes of
the tN — 7N, yN — 7N, tN — mN* reactions allow
one to achieve some agreement with experimental data
in the resonance region. But the extrapolation of such a
model to the high-energy region (e.g., to the region of the
application of the Regge pole model) leads to the con-
tradictions with experimental data on the cross-sections.
It is due to that the resonance models give no necessary
energy decrease at high energies.

Therefore, the resonance contributions are usually
thrown away by hands at high energies. However, it
is clear that, in the proper models, the resonance con-
tributions must exist at high energies, but they must be
very little.

Thus, we conclude that the usual approaches to the
description of higher spin particle interactions must be
modified. As the shortcomings of the usual approaches
exist for all higher-spin particles, we may expect that
the general properties for the currents of the of higher
spin particles must exist in addition to the properties
of the currents for the interaction of zero- and half-spin
particles.

In Refs. [17-19], it is shown that, for the currents
of the higher-spin boson and fermion interactions, the
theorem on currents and fields and the theorem on cur-
rent asymptotics must be valid. Perhaps, the shortcom-
ings characteristic of the usual approaches must not ap-
pear in the approaches satisfying these theorems. The
model satisfying these theorems is proposed in Refs. [20,
21] for the vertices of the higher-spin boson interactions

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 11

with two spinless particles. It is shown [21] that these
currents decrease, indeed, with the boson spin J at the
higher spin boson momentum |p,| — oco. In Ref. [22],
this model was used for the calculation of the higher-
spin boson contributions to the self-energy operator of
a spinless particle. These calculations showed that the
self-energy operator is finite in the one-loop approxima-
tion for the higher spin boson of any spin and mass. This
finite value must be compared with the logarithmic di-
vergence for the contribution of two spinless particles to
the self-energy operator. Note also that the usual ap-
proaches for the higher spin boson contributions to the
self-energy operator give different power divergences.

In the present paper, we propose a model for the ver-
tex of a higher-spin fermion with the interaction of 0-
and %-spin particles (e.g., 7N = N*). For higher-spin
fermion interaction currents, such a vertex is the sim-
plest, as they are determined by one partial amplitude.
We will study also the application of this model to the
elastic mN-scattering. We show that the theorem on cur-
rents and fields may be tested by means of the partial
wave analyses for the elastic wN-scattering.

2. Theorem on Currents and Fields

In accordance with the theorem on currents and fields
[19], the system of algebraic linear equations for the
Fourier components is consistent only in the case where
the current spin-tensors have the same properties as the
field spin-tensors. Thus, the conditions similar to (2)—(4)
must be valid for the current spin-tensors:

JP) s P = 0, 0 J(®) g ooy = 0,

j(p)ul"'uzgmuk = 07 j(x)ul"'lug/uuk = 0’ (11)

J®) s Vs = 0, Vuid (@) py oo = 0, (12)
momentum coordinate
representation representation.

Note that conditions (10) and (11) [17, 18, 22] must be
valid for the current tensors of higher-spin boson inter-
actions. The current spin-tensors j(p)u,.. ., = j(p)it and

&)y = j(x)L have 2J + 1 independent components
as a consequence of conditions (10)—(12). We name these
current spin-tensors as the physical currents. We name
the spin-tensors n(p)L and n(x)L as the usual currents.
It is easy to see that relations (10)—(12) are valid. In-
deed, the left-hand sides in the Klein—Gordon and Dirac
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equations are the scalar operators with respect to the
Lorentz transformation. The properties of the field and
the current spin-tensor must be the same since the prod-
uct of a scalar and the representation of some dimension
is the representation of the same dimension.

To construct the physical current spin-tensors, we
use the modification [16, 19] of the projection operator
H(p)ulu.ul,ul...yl = H(p)lual/ [97 10]
Nl 241 l l
i) = (07) D) (D), - (13)
This projection operator has a rather complicated form.
Therefore, we use the contracted projection operator
(14)

vi...UVp bl/1 "‘bl/l)

I(p,a,b) = au, .0, TI(P) py ... pui,

as it has a simple form:

GSRCTOLE

(p, a, b) = W(—

)
X | Pq(2) = ——
vV a2b?

Here, P;(z) are the Legendre polynomials, and
(ap)

(aB) )
Vap TP

P/(2) (15)

Z = —

Ap = Tplp = Vulpu,

Yu = V5 ('7u - puﬁ/pz) s VP = 0, Y5V = —3,

{:Yu:)/y} =2du,dyy = — G erupu/pz' (16)

In the rest-frame of HSF, we have

ap = (073)’ Y =0, Yi = 0iYo- (17)

The projection operator H(p)iw can be derived from the
contracted projection operator (15) by means of the dif-

ferentiations:

H(p)ﬂl-uﬂhmml/l =

19 0 9 d
S Ba, Gy Gby, Ob, DPab)- (18)
1182

This projection operator is dimensionless. As a conse-
quence of Egs. (2)—(4), Egs. (15) and (18) at any HSF

momentum, mass, and J yield

H (p)ltl-ullfhulv--yl pﬂi = H (p)ltl-ultth»--Vl pl’k = 0’ (19)
I (p);,al.“;u,ul...l/l Jpipr = I (p)ul...ul,ylﬁ.ul Guiv, = O’

(20)
’Y,U‘iH (p)ltl-ultlﬂ/l---l’l =1 (p)ulu.;u,l/l...yl Yor = 0. (21)

Now, we consider the propagator for HSF of any spin
similarly to the contracted projection operator

p+M
P (p, a, b):m'ﬂ(% a, b) =
p+ M
=1I(p, a, b)m (22)
. 3 .
In particular, from Eq. (22) for J = AL derive
P+ M 1.
P(p)lu‘y = p2 — M72 |:d#u - 3'YM'VV:| =
1. | p+M
= {duu - 3%%] 22— M2 (23)

We compare our propagator (23) with the usually used
3
propagator for J = B [6, 7, 11]

common ﬁ + M 1
P(p);w = 2 — M2 [_guu + 57;471/""‘

+2pupu/3M2 + (YuPv — Pu W) /3M] =

1
= |~ + 3% + 200 [3M 2

P+ M

T (24)

= (Yubv — puw) /3M }
We can see several distinctions of the HSF propagators
in the present method and in the usual approaches: 1) In
the present method, the propagators obey equalities sim-
ilar to Eqs. (19)-(21) for the projection operators I1(p)L,,,
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at any HSF momentum, mass, and J. In the common
approaches, such equalities are valid only at p = M (i.e.,
on the mass shell); 2) In the present method, the opera-
tors p+M and I1(p)!,, commute. Therefore, the calcula-
tions of virtual HSF contributions to the amplitudes are
simplified. In the usual approaches, the operators p+ M
and H(p)i“, for virtual HSF do not commute, as we can
see, for example, from Eq. (24) for J = 3/2; 3) As a con-
sequence of the current conservation (10) and conditions
(12), the contributions of the HSF momentum p,,, or p,,
and of the ¥,,- or 7,,-matrices vanish in the products
of the interaction currents j (P)L and HSF propagators.
Therefore, the non-zero contributions to such products
are given by the propagator terms including the metric
tensors only [16, 17, 18, 22, 23]. Thus, in our approach,
the power divergences due to the HSF propagators van-
ish as a consequence of the current conservation (10);
4) The scale dimension of our HSF propagators does not
depend on the HSF spin value J and equals — 1 (the

1 . .
same as for the i—spm fermions); whereas, in the usual

approaches, the propagator scale dimensions are equal
to 2J — 2. In such a way, we see that, in our approach,
the HSF propagator must not generate the power diver-

gences in addition to the divergence for E—spin fermions.

In our consideration, we have studied the dependence of
the HSF interaction currents on the HSF momentum p
only. But the interaction currents depend in reality on
the momenta of other particles too. For example, this
can be seen from Egs. (7)—(9). We denote the momenta
of other particles in the HSF interaction currents, if re-
quired.

3. Model for HSF Interactions with 0- and
1/2-Spin Particles

The consistent model for the interaction of a higher
spin boson with two spinless particles has been proposed
in Refs. [20, 21]. As in the J(p) = O(k1) + O(k2)-
transition, the orbital momentum has one value, these
transitions are the simplest among the interactions of
higher spin bosons. The orbital momentum has one
value also in the transitions of a higher-spin fermion
to the 0- and 1/2-spin particles at any set of the par-
ticle parities. Therefore, such interactions are the sim-
plest ones for the higher-spin fermions. These transi-
tions can be studied in the 7w /N-scattering as the excita-
tion and the decay of a higher spin nucleon resonance
N*(J)(nN — N*(J) — Nm) at the intermediate ener-
gies. We consider these transitions in details. Using

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 11

1
(13), the physical current of the J (p) — O (g2) + 3 (p2)

transition can be written down as

L+

30 Do = 9 F1(p, d) (p%) ™ (g2) %

_ 1
xu (pz) { i’y5 }H (p)ﬂlmm,l/l.-.w qll/l"'qll/z’ (25)

where ¢’ = g2 — pa, g is the coupling constant, Fj (p, q’)
is the form-factor providing for the necessary decreasing
of the current at |p,| — oo in accordance with the the-
orem on current asymptotics [19]. The example of such
a form-factor is derived in Refs. [20, 21] for the interac-
tion of a higher spin boson with two spinless particles.
In Eq. (25), we choose the common current (9). As a
consequence of Eq. (19), three common currents (7)-
(9) give the physical currents of the same momentum
dependence, as they are proportional. The differences
between the physical currents derived from three com-
mon currents can be taken into account by means of the
redefinition of the coupling constants. Thus, we have no
ambiguities in the physical currents in the contrast with
the usual approaches. Similarly, the physical current of
the O (q1) + 3 (p1) — J (p)-transition is given by

it (p, Dy = 9 (D, Q)(p2)lﬂ(p)u1---m,u1.--w X

1
X{z’ }u(pl)w(ql)qul,m,qw, q=q — 1. (26)
V5
In particular, we derive,
3
for J ==
or 5
.+ * Tk 1
7P, @), = 91 FY (p,0) | =Qu + 5757uQ | X
«{ 1, Jute@) (27)
s 1)@ (@1
5
d, for J =2
and, for J 5
4 2 2
J (pa Q)m/m = gQZF2 (p, Q) 5Qu1Quz + dm/LzQ -
_ _ ~1 (1
Qs + @)@ { 1, Juoeta). @9
where Q, = —d,p*q, = p*qu —pu(p q), (p Q) =0.
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The identity and ivs matrices in the braces in Egs.
(25)—(28) correspond to the different sets of particle pari-
ties. Let us compare current (27) for the A (1232) — N«
transition and the current in the usual approach. We de-
rive the latter from the Lagrangian [7]

gﬂ () U (z), .07 (z) + hec.,

m

L

ANT = (29)
where G is the coupling constant, and m is the nucleon
mass. Then we have

G _ +
1 (P2,42), = i— a2 U (p2) ¢ (q2)- (30)
Current (30) does not obey conditions (10) and (12) for

the A-resonance off-mass-shell. Currents (27) (with the
identity matrix) and (30) coincide with each other only

on the mass shell of a J = 3 particle.

4. Contributions of HSF Resonances to
7w IN-Scattering Amplitudes in Covariant
Approaches

Let us compare the contributions of A (1232) to the
s-channel wN-scattering amplitudes calculated in the
usual and our approaches. As is known, each resonance
contributes to definite multipole (partial) amplitudes.
We denote the pion orbital momentum in 7N — 7N
as lr. Then the multipole amplitudes f;_+; correspond

1
toJ = lﬁzti. The parity of a state with definite J equals

(=1)"*'. In particular, A (1232) on the mass shell con-
tributes to the fi. = P33 amplitude only [7]. Using
current (30) and propagator (24) (with the change in
the propagator denominator p? — M? — p? — M2 4+iMT,
where T is the total width of HSF), we derive the contri-
butions of A (1232) to the multipole amplitudes in the
usual approach:

1
[ = Pz = 38a(W + Ma) (B - m?),

2 W2 M2

7BA Mi

A A
f =S5 =
0+ 31 3

qo X

X [go (W + Ma) — Ma (E —m)],

2 W+ M
A A 2 A
fii =Py = gﬁAQOTiX

1184

E—-—m
— Ma)?
x (W a) E+m’
W — M,
f3 =Dy =g (E—m)”,
G? E+m
Ba = W = E + qo, (31)

m2 W2 — M2 + iMaAT’

where W, E, and ¢y are the total energy of the wIN-
system, nucleon energy, and pion energy, respectively.
From Eq. (31), we see that the P amplitude is pro-
portional to W 4+ Ma, i.e., the A(1232) contribution ex-
ists at any W. But the amplitudes S5, P§}, D5 are pro-
portional to W — M. In other words, the S:rontribution of
A(1232) to the states with J?\ = % ,% ,g
on the mass shell of A(1232) (Jrn is the total angular
momentum of the wN-system). It is a particular case
of the known phenomenon in the usual approaches that
the HSF with spin J off the mass shell can change parity
and correspond to the states with the angular momenta

vanishes

1
from 3 to J.

The imaginary parts of the amplitudes in Eq. (31) are
proportional to MAL/[(W? — M) + MZI'?]. The real
part of P33 and the imaginary parts of the S3;, Ps1, and
D33 amplitudes are proportional to W — Ma. Therefore,
for the test of the usual approach, we propose to study
the relations

qgo (W + Ma) —MA(E—m)
(W + Ma) (E2 —m?2)

ImS?,A1 _ Tr
RePd —  “Ma T

ImP{ , L ( % >2WMA

RePs " Ma \E+m) W+ Mp’

Im D2, MAI'  E—

D3 g AL C T (32)
RePs3 (W + M) E+m

The contribution of any virtual particle to the am-
plitude is determined by the product of two interaction
currents and the virtual particle propagator. For exam-
ple, such a product for the HSF contributions to the
s-channel amplitudes of the mN-scattering corresponds
to the diagram in Fig. 1.

5
Since the propagators for HSF with J > 5 are quite

complicated, we do not consider the contributions of
HSF with any spin to the mN-scattering amplitudes in
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the usual covariant approaches. We derive the HSF con-
tribution to such a product in our approach. Using the
property of the projection operator H(p)lu,l,l'[(p)f,,p =
( )lHl

up» We have

; D+ M

i d)s—rm PER VP L), =

(p)., it (p

M

= (»*)*'n(p, q’)lpH(p)ﬁj,Mp2 I

(p)!, J(p),, ,n"(p, ), =

= P, OIS (39
From Eq. (33), we see that such a product (i.e., corre-
sponding to Fig. 1) can be calculated by using the com-
mon currents, but the HSF propagator must be taken in
accordance with Eq. (22).

Let us consider the contribution of a higher spin nu-
cleon resonance to the s-channel amplitude of the 7wIV-
scattering. We exploit the usual form for the wIV-

scattering amplitude in c.m.s.:

f(xN — «N) = f1(W, cos0)+

+f2(W, cosf)oqaoqy/ \q|2. (34)

Here, W? = s = (p1 + q1)? = (p2 + ¢2)?, 0 is the scat-
tering angle, and q; and qs are the momenta of the
initial and final pions, respectively. At the given J, the
parity of the excited N*(J) depends on I,. The res-
onances N*(.JJ) on the mass shell, with the spin-parity

JP = 1 §+ 5 z+ ... contribute to the multipole am-
27272 727

plitudes f;_4 (ie., J = I + %) They correspond to

l. =0,1,2 3, ..., respectively. Their excitation is de-

scribed by currents (25) and (26) with the identity ma-
trix. Similarily, the resonances N*(.J) on the mass shell

) 1t 3= 5T 7°
with JP = - = = | — ..

2 2 2 2

pole amplitudes f;__ — (i.e., J = I,
spond to I, = 1,2,3,4.... Their excitation is described
by currents (25) and (26) with the ys-matrix.

Using Egs. (15), (16), (25), (26), and (33), the contri-
bution of N*(J) to the amplitude can be written as

contribute to the multi-

1
- 5) They corre-

T(xN — 7N) = |g|* F} (p.q)Fi(p, ¢') %
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dq) Ag)

J(p)

.

Fig. 1. Feynman diagram for the contributions of higher-spin
fermion resonances N*(J) to the wN-scattering amplitudes

§ ) 1 P+ M
X (qz)q;1~-~qLZU(p2){ s }pz_MzH-MFv

1

H(p)ul,n.ul,ljh 1% { 175 }u<pl>(10<Q1)ql/1'qu =

~laf” B )il o o) { |}

1
(p, ¢, q) { ins } X

xu(pre(qr) = Bie” (q2)xs %
y (1 ) <Wﬁ:M 0 ) "
) 0 -W+M

X (B+1 (cosf) — WB’(COSG)) X
q

S A
P2 — M2 +iMT

gq2

1
X < oq1 )xw(fh),
E+m

! *k l'
4 )7 (p, q)

— A gl?F _
B l911” Fi(p, (21+1)!!><
w4 |qf* (E +m)

W2 — M2 +iMT’

(35)

where x5(x1) is the spinor of the final (initial) nucleon.
From Eq. (35), we see that the contribution of N*(.J) to
the amplitude is expressed immediately in terms of the
contracted propagator of N*(J) (22). We derive from
Eq. (35) for the contributions to the amplitudes f; and

foinEq. 34)(J =1+ %)
fi =06 [(W+ M)P/ (cos)—
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—(WHFM>§_

mP/(cosG)] |

+m
fo= 0 [—(W £ M)P/(cos )+

E —

+(W F M)——2P],  (cos 9)} . (36)

E+m

Then the partial (multipole) amplitudes corresponding
to the contribution of N*(J) with definite JP can be
written as
a) For the currents with the identity matrix in Eqs. (25)
and (26),

p_ 17 3T 57 7Y
S22 72 792"

firy = BI(W + M),

1=l 1, =0, 1, 2, 3)

E—m

= - M .
furs— = B(W )E+m

(37)

b) For the currents with the ys-matrix in Egs. (25) and
(26)

1t 3= 5% 7-
P _— — — — R = — =
(J R 172,3,..)
E—-m

flﬂf = ﬂl(W+M)

)

E+m

fur—1+ = B(W — M).

From Egs. (37) and (38), we can see that, in our ap-

proach, each N*(J) off the mass shell contributes to the

1
partial amplitudes corresponding to J,y =J =1+ = =

(38)

only, but at different parities. Thus, we have the fol-
lowing difference between our and usual approaches: in

1
the usual approach 5 < Jxn < J, whereas our approach

gives J.n = J.
For A (1232), Eq. (37) yields the following amplitudes:

iy = Pi = B1(W + Ma),

E—-—m
E+m

f8 = D3y = Bi(W — Ma)

)

f& =55 =0, f =P =0.
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From Egs. (31) and (39), we see that the usual and
our approaches give different results for the S3; and P3;
amplitudes and the same result for the ImD3}/ReP5
ratio. The difference between the A (1232) contribution
to the S31- and Ps;-amplitudes, derived in the usual and
our approaches can be used to find the proper approach
by means of the comparison with experimental data.

5. Possibility of Experimental Tests

The theorem on currents and fields for J = 3/2 can be
tested by the comparison of the predictions derived in
our and the usual approaches with the results of par-
tial wave analysis in the A (1232)-region. Indeed, we
see from Eq. (31) that, in the usual approach (inter-
action current (30)) corresponding to the A(1232)), the

3t 3
contributions induced by A (1232) (JP = 3 I = 5)
1~ 3
to the amplitudes S3; (JP = 5 I = 5) and Ps;
1+ 3
(JP = 3 1 = 5) must exist for W # Ma. In con-

trast with this (corresponding to the A (1232) interac-
tion current (27) which obeys Egs. (10) and (12)), the
contributions induced by A (1232) to S3; and Ps; do not
appear in the present method.

The amplitudes S31, P31, P33, D33 are known as re-
sults of the partial wave analyses, which are derived from
the experimental data on differential cross-sections, po-
larizations, and asymmetries. Therefore, these partial
amplitudes may be considered as the experimental re-
sults. We consider the results of recent partial wave
analyses [24-28]. These amplitudes are the sums of the
variety of different terms. In particular, the S3; am-
plitude in the A (1232)-region can include the contribu-
tions of the S31 (1620) and S3; (1900)-resonances. Simi-
larily, the P3; - amplitude can include the contribution of
P51 (1910) resonance. As the masses of these resonances
are quite large, their contributions in the A (1232)-region
are relatively small. In the A (1232)-region, the particle
3-momenta are small in comparison with the masses of
N and A(1232). Therefore, the energy dependences of
the S31-, P31-, D31-amplitudes can be approximated as
linear ones. This is a particular case of the known s-
and p-wave expansion of the amplitudes in the A (1232)-
region.

Thus, in the A (1232)-region, we have two predictions
for the S31- and Psi-amplitudes related to our and usual
approaches. In the present method, these amplitudes are
some sums of unknown terms, but without the A(1232)-
contribution (i.e., we expect the linear energy depen-
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dence). In the usual approaches, the A(1232)-resonance
contributions to S3; and P3; must be added to these
sums (i.e., near W = Ma, the S31- and Ps;j-amplitudes
can have nonlinear strong energy dependences). There-
fore, it is of great importance to evaluate the A(1232)
contribution to the S31- and Psi-amplitudes.

For the evaluation of the A(1232)-resonance contribu-
tions to these amplitudes, we calculate firstly the P&-
amplitude in the usual isobar approach. To calculate the
amplitudes P33, S31, P31, and D33, we use Eq. (31) with
Ma = 1232 MeV and the total width, which depends on
energy:

IATRY
rw) ‘FR<|qR|>

Here, T'p = 112 MeV, |q| is the modulus of the
pion 3-momentum, |qg| is this modulus calculated at
W = Ma, r = 1.11 fm [24]. Using Eq. (31) and the
value of ImPs3 = 0.984 at T, = 200 MeV [25] (T}ap is
the pion kinetic energy in the laboratory frame), we cal-
culate R6P33, IIHP33, RGS31, Im531, RePgl, ImP31,
ReDs3, ImD33 in the energy region Ma —T'p < W <
Ma + I'r. Note that ImP33 at W = Ma has the
maximal value among all amplitudes for any energy.
The calculations of the Psz-amplitude in the usual
isobar model by means of Egs. (31) and (40) are
compared with the results of the partial wave analyses
[24, 25| given in Fig. 2.

We see that the A(1232) contribution calculated in
the usual isobar model gives a good description at T' <
240 MeV, where T is the pion kinetic energy in the lab-
oratory frame. The calculations of the A(1232) contri-
butions to the amplitudes S31, P31, D33 by means of
Egs. (31) and (40) in the A(1232)-region show that the
S31 amplitude has the largest sensitivity to the A(1232)
contribution, and the Dss-amplitude has the smallest
one. This is a consequence of Eq. (31), since ReS5} ~
(W — Ma)?, ImS5 ~ (W — Ma), ImP5 ~ (W — Ma)?,
ReP§ ~ (W — Ma)?, and D33 has the small factor
(E —m)?. The results of these calculations for S5 are
compared with those of the partial wave analysis [24, 25]
given in Figs. 3,a, 3,b.

From Fig. 3, we see that the A(1232)-contributions to
ReS3; and ImSsy, derived in the usual isobar approach
with the use of Egs. (31) and (40), have strong en-
ergy dependences for S3; Ma —T'r < W < Ma + .
As in the usual approach, the S3i-amplitude is a sum
of some linear function and the A(1232) contribution,
ImSs1 (W) must have the minimum at 7" ~ 145 MeV
and ReSs; (W) must have the maximum at W = Ma

(40)

1+ (qm)g}
1+ (lalr)* |°
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1
0.5
0
Re P
33 L
05 N
LY
T, MeV
Fig. 2. Comparison of the A(1232)-contribution to the Ps3-

amplitude derived in the usual isobar model with the results of
the partial wave analysis. The full lines correspond to Ref. [24],
the dots — to Ref. [25], and the dashed lines — to the calculations
based on Eqgs. (31)

(T ~ 190 MeV). It is clear that the total Ss5; amplitude
in the A(1232)-region is the sum of a linear function of
the energy and S% ((31) or (39)). Thus, we have two
predictions: 1) In the usual approach, S3; must have a
rather strong energy dependence; in particular, the total
ReS31 must have a maximum at T ~ 190 MeV, and the
total ImS3; must have a minimum at T ~ 145 MeV; 2)
In the present method, the total ReS3; and ImSs; must
be approximately some linear functions of the energy,
which follows from Egs. (39).

According to the partial wave analysis (see, e.g., [24—
28]) in the A(1232)-region, all amplitudes (with the ex-
ception of P33 and Ps1) are approximately linear func-
tions of the energy. Thus, we may conclude that the Ss;
amplitude has no A(1232)-contribution in reality (i.e.,
S5 = 0 in agreement with Eq. (39)). Therefore, we
may conclude that the theorem on currents and fields
for the A(1232) = N~ transitions is valid.

Now, we consider the form-factors Fi(p, ¢) and
Fi(p, ¢') in the interaction currents (25) and (26). For
the interaction of higher-spin bosons with two spinless
particles (J(p) =2 O(k1) + O(k2)), the form-factor

Fp, @) = (6% [(pg)*™ +a'™] '
% [(Q(pq)Q _p2q2)2nz n (b2q2)2n2:| -1 ,

p="ki+ky gq=k — ks
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T, MeV
a
Re S
°> a1
0
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T, MeV
b

Fig. 3. Comparison of the A(1232) contribution to the ImS3; (a)
and ReS31 (b) derived by means of the Egs. (31) (the dashed
lines) with the results of the partial wave analysis: Ref. [24] — the
full lines, Ref. [25] — the dots

has been derived in Refs. [20, 21]. Here, a and b
are positive constants, ny and ns are positive inte-
gers. The theorem on the current asymptotics for the
J (p) 2 O (k1) + O (k2) transitions can be satisfied for
ng > 2J 4+ 3, ng > 2+ J/2. We can try to ap-
ply function (41) in currents (25) and (26) and con-
sider the contributions of N* (J) with these currents to
the s-channel amplitudes of the elastic m/N-scattering.
In the wN-scattering, ¢ = q1 — p1, ¢ = q2 — po,
Z = (¢) = 2 (m?+ p?) — s (p is the pion mass),
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s =p? = W2, (pq) = (p¢') = u? — m?. Therefore,
we have, for the mN-scattering,

2n
fp, @) ~ [2(m® +p?) — 5] (42)
Thus, function (41) vanishes at s = W@ =
2(m2+p2), Wy = 1341 MeV, T = 339 MeV. We

see that the contributions of all resonances N* (.J) for
currents (25) and (26) with function (41) to the s-
channel amplitudes of the 7w N-scattering vanish at W =
Wpy. This contradicts the experimental data; e.g., for
A (1232), this can be seen from Fig. 2. Thus, function
(41) cannot be used for the form-factors F(p, ¢) and
F(p, ¢') in currents (25) and (26). Therefore, it is of
great importance to find the form-factor for the currents
of the N*(J) = N transitions.

6. Conclusion

The considerations of the HSF interactions in Ref. [19]
and the present paper have been carried out to achieve a
mathematical consistency. We can see that this mathe-
matical consistency leads to the elimination of the prob-
lems for HSF interactions additional to the problems of
the 0- and 1/2-spin particle interactions. Indeed, from
the consistency of the system of equations for the HSF
field spin-tensors in the momentum representation, we
infer that the HSF interaction currents must obey the
same conditions as the HSF fields. It is the content of
the theorem on currents and fields.

The HSF propagators coincide in our and usual ap-
proaches only on the HSF mass shell. In our approach,
the HSF propagator for any spin has the scale dimension
— 1, the same as for the 1/2-spin particle. This allows us
to eliminate the power divergences appearing from the
HSF propagators of the usual approaches.

The convolutions of our HSF propagator (which can
be derived from the contracted projection operator by
means of (18)) with the HSF momentum p and -
matrices vanish at any p; whereas, in the common ap-
proaches, these convolutions vanish on the HSF mass
shell only. As a consequence of the vanishing of these
convolutions, the physical currents have the same mo-
mentum dependence for any common currents. This al-
lows us to eliminate the ambiguities of the current in
the usual approaches. In addition, as a consequence of
Egs. (10)—(12), the partial solution of the inhomoge-
neous equations may be written as

non—hom 1 .
U(‘r);n.u#l; = /d4y (_Dx)l S("E - y)j(y)ﬂflmﬂfh
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where S(xz — y) is the Green function of the 1/2-spin
particle.

In our approach, the virtual HSF (e.g., N* (J) in the
wN -scattering) can change the parity, but they do not
contribute to states with spin less than J; whereas, in
the usual approaches, such contributions exist. We have
tested the predictions of our and usual approaches for
the virtual A (1232) in the elastic wN-scattering. The
calculations performed in the usual isobar model show
sharp energy dependences of the contributions to the
S31-and Psp-amplitudes at W ~ Ma. It turns out that
the S3; amplitude is the most sensitive (the A (1232)
contributions to the Ds3 amplitude are very small in
our and usual approaches). According to the partial
wave analysis, the energy dependences of the real and
imaginary parts of the amplitudes are approximately lin-
ear, i.e., they differ from the predictions of the usual
isobar model. This means that the predictions of our
approach are valid. Thus, we have examined the valid-
ity of conditions (10) and (12). To examine the valid-
ity of conditions (10)—(12), we must consider HSF with
spin J > 5/2. For example, it is of interest to study

+
the contributions of Fj5 (1680) (]p = g > [29] to the

5+

Sll; P117 P137 D13—amplitudes; F35 (1905) (Jp = 5

7+
to the 531, P31, P337 D33; F37 (1950) (J;D = 5 ) to the

531, P31, .P337 Dg,g7 D35, F35—amplitudes.

For the physical currents of the 7N = A (1232) tran-
sitions (25) and (26), we need the form-factor F (p,q).
Since the form-factor derived in Refs. [20, 21| for the
higher spin boson interactions cannot be used in the
A (1232) = wN-transitions, it is of great importance to
modify the form-factor [20, 21] or to derive a new form-
factor.
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3ATAJIBHI BJIACTUBOCTI CTPYMIB B3AEMO/IIT
BUCOKOCIIIHOBUX ®EPMIOHIB I iX IIEPEBIPKA
B 7#N-PO3CIFOBAHHI

10.B. Kynaiw, O.B. Pubawyx
PezmowMme

OTpuMaHO CTPyMH B3a€MOJili BUCOKOCHIHOBUX (DepMiOHIB 3 4a-
cruakamu i3 crinom 0 1 1/2, siki MOXKyTh GyTH BUKOPHCTaHI JJIst
nepexonis N* (J) 2 Nn (N* (J)-HyKJIOHHUI pe30HAHC i3 criiHOM
J). 3rigHo 3 TeopeMoro HpO MmoJist i CTPyMH CIIH-TEH30PH IUX
crpyMiB € Ge3ciioBumu, a ixHi HOOYTKM Ha 7y MaTpPHUIi Ta iM-
IIyJIbC BUCOKOCIIHOBOro (bepMioHa JOPIBHIOIOTH HYJIIO, MOMIOHO 10

oJIbOBUX chiH-Ten3opis. s cnina J = 3 Ta 3
orpuMaHi sisHo. [lokazaHo, 1110 B HaImoMy miaxoai MacimrabHa BU-

Taki CTpyMu

1190

MipHICTB mporaraTopa BHCOKOCIIHOBOro ¢epmioHa JI0piBHIOE —1
st Oynp-sikoro J > > O6uucsenns Bueckis N* (J) mosa ma-
COBOIO ITOBEPXHEIO B S -KaHaJIbHI aMILTITy 1 7 /N-pO3CitoBaHHS JJIst
Oynp-sikoro J B HAIOMY MiAXOAl MOKa3ye, IO HEHYILOBI BHECKH
Bignosinaors Tinbku J = Jrn (Jrn — HOBHHH KyToBHil MO-
MeHT wN-cucreMu). B mporuiiekHICTh 11bOMY B 3BUYAfHO BHUKO-
PHUCTOBYBaHUX HiIXOJaX TaKi HEHYJIbOBI aMILIiTy U BiAIIOBiZaiOTH

— < Jrxn < J. 3okpema, 3a3BuYail, y BUKOPUCTOBYBaHUX i~

xomax A (1232) mosa MacoBOI IOBEPXHEIO NA€ HEHYJIbOBI BHe-

1 3
ckn y ammitymm Ssi, P31 <J7rN = 5) 1 P33, Da3 <J7rN = 5>7

a Ham nigxig — Jmne y P33 i Dsgz. [lopiBHsiHHS 1mx pesysbra-
TiB 3 JaHUMU MapIiajJbHO-XBUJIBOBUX aHAJIZIB I aMIUIiTyan S31
B obmacti A (1232) mokasye Kpale y3rojzKeHHsI 3 HAIIAM MiJIXO-
JIOM.
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