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We draw a comparison of time-dependent cosmological parameters
calculated in the standard ΛCDM model with those of the model
of a homogeneous and isotropic Universe with non-zero cosmo-
logical constant filled with a perfect gas of low-velocity cosmic
strings (ΛCS model). It is shown that pressure-free matter can
obtain the properties of a gas of low-velocity cosmic strings in the
epoch, when the global geometry and the total amount of mat-
ter in the Universe as a whole obey an additional constraint. This
constraint follows from the quantum geometrodynamical approach
in the semiclassical approximation. In terms of general relativity,
its effective contribution to the field equations can be linked to the
time evolution of the equation of state of matter caused by the pro-
cesses of redistribution of the energy between matter components.
In the present article, the exact solutions of the Einstein equa-
tions for the ΛCS model are found. It is demonstrated that this
model is equivalent to the open de Sitter model. After the scale
transformation of the time variable of the ΛCS model, the stan-
dard ΛCDM and ΛCS models provide the equivalent descriptions
of cosmological parameters as functions of time at equal values of
the cosmological constant. The exception is the behavior of the
deceleration parameter in the early Universe.

1. Introduction

The standard ΛCDM model (see, e.g., reviews [1, 2])
gives the satisfactory description of the most of the
present cosmological data under the assumption of the
existence of an antigravitating medium named dark en-
ergy as the largest constituent of mass-energy in the Uni-
verse. At the same time, it is believed that a high level of
fine-tuning is required in this model. Even if the small-
ness of the cosmological constant and the “coincidence
problem” (the almost equal contributions of matter and
dark energy to the total energy budget of the Universe
at the present era) are not problems in themselves [3],

nevertheless it should not be ignored that there were
some indications that specific cosmological observations
differed from the predictions of the ΛCDM model at a
statistically significant level [4].

The ΛCDM model based on general relativity allows
extensions by incorporating new elements in its scheme.
For example, one of such possibilities is the introduc-
tion of the quintessence field, which changes over time
and is described by some dynamic equation, instead of
the cosmological constant. Another opportunity may be
the model, in which, alternatively, the gravitating mat-
ter component undergoes a modification, regardless of
the vacuum component of the energy density being con-
stant or varying with time. Such a modification may
be made, by relying on the fundamental physical laws,
which concern the properties of matter.

In the FRW cosmology, the time evolution of the en-
ergy density ρ(t) is determined by the equation

ρ̇+ 3
Ṙ

R
(ρ+ p) = 0, (1)

where R(t) is the cosmological scale factor, p is the
isotropic pressure, and the dot designates the derivative
with respect to the proper time t. For the equation of
state in the form p = wρ, the solution of this equation
vanishing at infinity can be written as ρ = µR−3(1+w),
where w and µ are constants. Introducing the effective
mass Meff contained in the volume ∼ R3 by the relation
Meff ∼ ρR3, we haveMeff ∼ µR−3w. For the special case
w = 0, it gives Meff ∼ µ = const, which corresponds to
pressure-free matter (dust). For w = − 1

3 , the effective
mass is proportional to the scale factor, Meff ∼ µR. In
this case, the energy density ρ ∼ R−2, and it describes
the so-called K-matter [5]. The matter with such energy
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density and equation of state can be interpreted as a
perfect gas of low-velocity cosmic strings [6].

In this paper, we study the model of a homogeneous
and isotropic Universe with non-zero cosmological con-
stant filled with a perfect gas of low-velocity cosmic
strings. Throughout the paper, we will refer to this
model as the ΛCS model. It is shown that pressure-free
matter can obtain the properties of a gas of low-velocity
cosmic strings, if, in addition to the field equations, there
exists a complementary constraint between the global
geometry and the total amount of matter in the Uni-
verse as a whole. We show that this constraint between
the cosmological parameters, which takes the form of the
geometry-mass relation, can be obtained in the quantum
geometrodynamical approach. In terms of general rela-
tivity, its effective contribution to the field equations can
be linked to the time evolution of the equation of state
of matter caused by the processes of redistribution of
the energy between matter components. This is demon-
strated in the model, in which a two-component perfect
fluid serves as a surrogate for matter in the Universe.

We found the exact solutions of the Einstein equa-
tions for the ΛCS model. It is demonstrated that this
model is equivalent to the open de Sitter model. In the
limit of zero cosmological constant, the corresponding
Universe evolves as a Milne Universe characterized by
the linear dependence of the scale factor on time. But,
in contrast to it, such a Universe contains matter with
nonzero energy density in the form of a perfect gas of
low-velocity cosmic strings. The Whitrow–Randall equa-
tion [7], which establishes the invariance of the dimen-
sionless product Gρt2, is re-derived. We make a compar-
ison of the standard ΛCDM and ΛCS models. It turns
out that, after the scale transformation t → 3

2 t of the
time variable of the ΛCS model, these models provide
the equivalent descriptions of cosmological parameters
as functions of time at equal values of the cosmological
constant. The exception is the behavior of the decel-
eration parameter in the early Universe. But, for the
present day and in the future, it would be more difficult
to recognize whether one is dealing with the ΛCDM- or
ΛCS-Universe.

2. Quantum Roots of the Geometry-Mass
Relation

It is well known that quantum theory adequately de-
scribes properties of various physical systems. Its uni-
versal validity demands that the Universe as a whole
must obey quantum laws as well, so that quantum effects
are important at least in the early era. Since quantum

effects are not a priori restricted to certain scales, one
should not conclude in advance that they cannot have
any impact on the processes on scales larger than the
Planckian one (more detailed arguments can be found,
e.g., in Refs. [8]).

Quantum theory for a homogeneous and isotropic Uni-
verse can be constructed on the basis of a Hamiltonian
formalism with the use of a material reference system as
a dynamical system [9, 10]. Defining the time param-
eter or the “clock” variable, it is possible to pass from
the Wheeler—DeWitt equation to the Schrödinger-type
equation. The similar equations containing a time vari-
able defined by means of the coordinate condition were
considered by a number of authors under the quantiza-
tion of the FRW Universe (see, e.g., Refs. [11]). Us-
ing the Schrödinger-type equation, one can obtain the
equations of motion for the expectation values of a scale
factor and its conjugate momenta. These equations pass
into the equations of general relativity, when the dis-
persion around the expectation values for a scale factor,
matter fields, and their conjugate momenta can be ne-
glected.

Such a quantum theory predicts that the following re-
lation must hold for the expectation value of the scale
factor R in the state |M〉, which describes the Universe
with a definite total amount of mass M much larger than
the Planck mass, M �MP:

〈M |R|M〉
〈M |M〉

= GM (2)

(in units c = 1; for details, see Refs. [10]), where G is
the Newtonian gravitational constant.

Equation (2) determines the mass M through the ex-
pectation value of the scale factor R at every instant of
time. The state vector of the isotropic Universe is a su-
perposition of all possible |M〉 characterizing the states
which are not orthogonal between themselves, so that
the inner product 〈M1|M2〉 6= 0, and the Universe can
transit spontaneously from the state with mass M1 and
radiusR1 = 〈M1|R|M1〉/〈M1|M1〉 to the state with mass
M2 6= M1 and radius R2 = 〈M2|R|M2〉/〈M2|M2〉 with
the nonzero probability P (1→ 2) = |〈M1|M2〉|2. For ex-
ample, the probability of the transition of the Universe
from the ground state (with respect to the gravitational
field) to any other state obeys the Poisson distribution
with the mean number of occurrences n = 1

2 (M2−M1)2

(for more details, see Refs. [10]). Thus, R1 → R2, when
M1 →M2.

In the classical limit, it appears to be possible to pass
from the expectation value of R to the classical value of
the scale factor R(t), which evolves in time in accordance
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with the Einstein equations for the FRW Universe:

Ṙ2 =
8πG

3
ρR2 +

Λ
3
R2 − k,

R̈ = −4πG
3

(ρ+ 3p)R+
Λ
3
R. (3)

Here,

ρ =
M

(4π/3)R3
(4)

is the energy density of matter with the total mass M
in the equivalent flat-space volume (4π/3)R3, which in-
cludes both the mass of substance and the mass equiva-
lent of radiation energy, Λ is the cosmological constant,

p = −ρ− R

3
dρ

dR
(5)

is the isotropic pressure, and k = +1, 0,−1 for the spa-
tially closed, flat, or open models. In the semiclassical
limit, relation (2) takes the form

R = GM. (6)

It gives an additional constraint between the global ge-
ometry and the total amount of matter in the Universe
as a whole. The geometry-mass relation (6) connects the
values of M and R taken at the same instant of time. It
is valid for the present-day Universe. Really, the radius
of its observed part is estimated as R0 ∼ 1028 cm, the
mass-energy is M0 ∼ 1056 g, and the mean energy den-
sity equals ρ0 ∼ 10−29g cm−3. This means that, nowa-
days, ρ0 ∼ 3(4πGR2

0)
−1. Then, from the definition of

energy density ρ0 = 3M0(4πR3
0)
−1, it follows that the

relation R0 ∼ GM0 must hold. It is notable that, for
the values R = LP , M = MP , where LP is the Planck
length, Eq. (6) reduces to the identity.

The physical meaning of relation (6) will be discussed
in Section 5. Here, we remark only that since it is valid at
least at late times t ∼ t0, where t0 is the age of the Uni-
verse, the theory which includes the geometry-mass rela-
tion (6) can be used for the description of the evolution
of the Universe on the interval t = t0 ∓Δt, Δt/t0 � 1.

3. ΛCS Model

If one supposes that the values of R andM in Eq. (6) are
constant, then the FRW Universe described by Eqs. (3)
transforms into the static Einstein Universe [12]. Let us
consider the more general case, by assuming that relation

(6) is valid for some time interval and can be regarded
as a constraint added to the classical field equations (3).
Then the energy density of matter (4) takes the form of
the energy density of a gas of low-velocity cosmic strings
or K-matter [5, 6] with the corresponding equation of
state,

ρ =
3
G

1
4πR2

, p = −1
3
ρ. (7)

However, in this approach, this does not mean that the
Universe is string-dominated in the usual sense. The
energy density and the pressure in the form (7) arise as
the effect of an additional constraint between the global
geometry and the total amount of matter in the Universe
as a whole.

Let us consider the model of the Universe with cos-
mological constant Λs and the matter density and the
pressure as those in Eq. (7). The field equations are
reduced to the form

Ṙ2 =
Λs
3
R2 + (2− k), R̈ =

Λs
3
R. (8)

Their solution is

Rs(t) =

√
6
Λs

(
1− 1

2
k

)
sinh

(√
Λs
3
t

)
, Rs(0) = 0. (9)

Here and below, the subscript s refers to the ΛCS model.
Expansion of this solution for small |Λs

3 t
2| yields

Rs(t) =
√

2− kt

[
1 +

1
6

(
Λs
3
t

)2

+ . . .

]
. (10)

The Hubble expansion rate does not depend on the type
of a spatial curvature (the value of k) and is described
by the expression

Hs(t) =
Ṙs
Rs

=

√
Λs
3

coth

(√
Λs
3
t

)
. (11)

The expansion of Hs(t) in the same limit as above has a
form

Hst = 1 +
1
3

(
Λs
3

)
t2 − 1

45

(
Λs
3

)2

t4 + . . . . (12)

In the general case, the Hubble expansion rate H is a
function of time, and the corresponding critical energy
density is ρcr(t) = 3H2(t)

8πG . Then the time variation of the
vacuum energy density parameter ΩΛ(t) ≡ ρΛ

ρcr(t)
, where

ρΛ = Λ
8πG , is given by

ΩΛs(t) = tanh2

(√
Λs
3
t

)
(13)
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for the ΛCS model. The matter energy density parame-
ter ΩM (t) = ρ

ρcr(t)
for a spatially flat Universe filled with

a gas of low-velocity cosmic strings is equal to

ΩMs(t) = cosh−2

(√
Λs
3
t

)
. (14)

Setting Λs = 3ΩΛ1H
2
s (t1), where t1 is some fixed in-

stant of time, and ΩΛ1 is the vacuum energy density
parameter ΩΛs at t = t1, we find

Hs(t1) t1 =
1√
ΩΛ1

arctanh
√

ΩΛ1. (15)

The deceleration parameter q(t) = − R̈
RH2(t) is equal

to

qs(t) = −ΩΛs(t). (16)

At an instant of time t = t1, we obtain qs(t1) = −ΩΛ1.
If Λs 6= 0, the expressions for the scale factor (9) and

the Hubble expansion rate (11) are equivalent to the
respective expressions in the de Sitter model of the Uni-
verse with k = −1.

In the limiting case Λs = 0, it appears that

Rs(t) =
√

2− kt, Hst = 1. (17)

In the model, where the scale factor depends on time lin-
early, the age of the Universe and the Hubble expansion
rate depend on the redshift z according to the simple
laws

t(z) =
1

(1 + z)Hs(0)
, Hs(z) = Hs(0)(1 + z). (18)

Taking the present expansion rate measured by observa-
tions with a Hubble Space Telescope, H(0) = 73.8± 2.4
km s−1 Mpc−1 [13], as Hs(0), we find that the age of the
Universe appears to be equal t(0) = 13.26 ± 0.43 Gyr.
This value does not differ drastically from the value pre-
dicted by the WMAP 7-year data [14] for the ΛCDM
model, and it lies within the expected limit of 12 to
14 Gyr.

Solution (17) formally coincides with the solution of
the Milne model of an open Universe (k = −1), R(t) ∼ t.
But, in contrast to the Milne model, where the energy
density of matter vanishes, ρ = 0, the energy density of
matter is nonzero,

ρ =
3H2

4πG(2− k)
, (19)

in the case under consideration. For a spatially flat Uni-
verse with zero cosmological constant, this density equals
to the critical density, ρ = ρcr. For a spatially closed Uni-
verse filled with a gas of low-velocity cosmic strings, the
density is ρ = 2ρcr, and we have ρ = 2

3ρcr for a spatially
open Universe.

It should be noted that the Milne model cannot be cor-
rect near the point of the initial cosmological singularity,
t = 0, since the energy density of matter tends to infinity
in this limit, and gravity cannot be neglected. There was
an attempt to preserve the linear dependence of a scale
factor on time and to get rid of this shortcoming of the
Milne model by consideration of the model (called the
“Dirac–Milne” Universe by analogy with the sea of pos-
itive and negative energy states proposed by Dirac), in
which the Universe contains the equal amounts of matter
with positive and negative gravitational masses [15].

Equation (19) can be rewritten in the Whitrow–
Randall form [7],

Gρt2 =
3
4π

1
n
, (20)

which shows that Gρt2 is an invariant determined by the
parameter n = 2− k characterizing the geometry of the
Universe.

Introducing a dimensionless parameter K like the
model of K-matter,

K ≡ 8πG
3

ρR2, (21)

and using (7), one finds that K = 2. This value agrees
with the observational constraints on the parameter K
obtained by Kolb [5] and Gott and Rees [16].

4. Comparison with the Standard Cosmological
Model

The relations obtained in Section 3 for the cosmologi-
cal parameters of the ΛCS model of the Universe can
be compared with the corresponding expressions for the
standard cosmological model. First of all, it is helpful to
rewrite the equation for Ṙ in Eq. (3) in the form

Ṙ2 =
Λ
3
R2 + (2− k) + ζ(R), (22)

where the function ζ(R) is defined as

ζ(R) =
2
R

(GM −R). (23)

Comparing Eqs. (8) and (22), we find that the function
ζ(R) describes the difference between the model which
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takes the geometry-mass relation (6) into account and
the model without regard for it.

For a spatially flat Universe (k = 0) filled with
pressure-free matter (p = 0, M = const), the solution
of Eq. (22) reads (cf. Ref. [17])

R(t) =
(

6
Λ
GM

)1/3

sinh2/3

(
3
2

√
Λ
3
t

)
, R(0) = 0. (24)

From Eqs. (9) and (24), it follows that the scale fac-
tors of both models can be connected by the relation

R(t) =
(

GM

1− 1
2k

)1/3

R2/3
s

(
3
2
t

)
at Λ = Λs. (25)

This expression establishes the rule of recalculation of
the scale factor from the ΛCS model with arbitrary spa-
tial curvature to the spatially flat standard model. This
connection between two models becomes more clear if
one considers relation (6) in its weaker form in solu-
tion (24), namely, by assuming that it is valid at some
fixed instant of time t0 only. As we have already men-
tioned above, this relation is realized in the present-day
Universe. Setting R(t0) = GM(t0), where M(t0) is the
mass of matter in the Universe with the “radius” R(t0),
we have

R(t0) =

√
6
Λ

sinh

(
3
2

√
Λ
3
t0

)
. (26)

Then relation (25) at a fixed instant of time takes the
form

R(t0) =
(

1− 1
2
k

)−1/2

Rs

(
3
2
t0

)
at Λ = Λs. (27)

The Hubble expansion rate in the standard model is

H(t) =
Ṙ

R
=

√
Λ
3

coth

(
3
2

√
Λ
3
t

)
. (28)

Comparing Eq. (28) with Eq. (11), we find that the
Hubble expansion rates calculated for both models are
related between themselves by the simple relation

H(t) = Hs

(
3
2
t

)
at Λ = Λs. (29)

The expansion of H(t) for small |Λ3 t
2| can be obtained

from Eq. (12) by the substitution of 3
2 t for t and Λ

for Λs. This expansion of H(t) reproduces the familiar
expression H = 2

3t for Λ = 0 in contrast to Hs = 1
t for

the ΛCS model with Λs = 0.

The Hubble expansion rates as functions of the dimen-
sionless time parameter t/t0, where t0 is the age of the
Universe in the ΛCDM model, are plotted in Fig. 1. It
is supposed that the cosmological constant in both mod-
els is the same. The WMAP 7-year data [14] for the
present-day cosmological parameters are used. As we
can see, the value of H(t) at t = t0 coincides with the
value of Hs(t) at t = 3

2 t0.
Taking Eqs. (29), (13), and (14) into account, we find

the relations

ΩΛ(t) = ΩΛs

(
3
2
t

)
,

ΩM (t) = ΩMs

(
3
2
t

)
at Λ = Λs, (30)

where ΩΛ(t) and ΩM (t) are the vacuum and matter en-
ergy density parameters of the standard model.

The energy density parameters of the vacuum and
matter as functions of time are depicted in Fig. 2. It
is assumed that the Universe is spatially flat. As for
the Hubble parameter, the ΛCS model reproduces the
results of the standard model after the time transforma-
tion t→ 3

2 t.
Introducing the vacuum energy density parameter ΩΛ0

at a fixed instant of time t = t0 by the relation Λ =
3 ΩΛ0H

2(t0), we get

H(t0) t0 =
2
3

1√
ΩΛ0

arctanh
√

ΩΛ0. (31)

From the comparison of Eq. (31) with Eq. (15), it fol-
lows that, at equal Hubble expansion rates according to
Eq. (29) and equal contributions of the vacuum energy
densities into the matter-energy budget of the Universe,
ΩΛ0 = ΩΛ1, the parameter t1 = 3

2 t0. This means that
if one defines t0 and t1 as the ages of the Universe in
both models under consideration, then the age t1 for the
ΛCS model will be 1.5 times greater than that for the
standard model.

The last equation establishes the correspondence be-
tween the parameters H(t0), t0, and ΩΛ0. Substituting
the WMAP 7-year data [14] for the age of the Universe
t0 = 13.75 ± 0.13 Gyr, the Hubble parameter H(t0) =
71.0 ± 2.5 km s−1 Mpc−1, and the dark energy density
parameter ΩΛ0 = 0.734 ± 0.029, which corresponds to
the cosmological constant Λ = (1.302 ± 0.143) × 10−56

cm−2, into Eq. (31), one finds a consistent result for our
Universe: H(t0)t0 = 0.998± 0.045.

The deceleration parameter

q(t) =
1
2

[
1− 3 tanh2

(
3
2

√
Λ
3
t

)]
. (32)
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Fig. 1. Hubble expansion rates (11) and (28) as functions of time. The value of parameter
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t0 = 0.855 following from the WMAP
7-year data [14] is used. It is assumed that Λ = Λs
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Fig. 2. Energy density parameters of the vacuum and matter (13), (14), and (30) as functions of time in units of t0. The WMAP 7-year
data are used (see the caption of Fig. 1)

At an instant of time t = t0, we have

q(t0) =
1
2

[1− 3ΩΛ0] . (33)

Comparing Eqs. (16) and (32), we find that both expres-
sions for the deceleration parameter have the same limit
as t → ∞, q(t) → −1, and qs(t) → −1, but they have
different values at t = 0, q(0) = 1

2 , and qs(0) = 0. From
condition (29) valid at Λ = Λs, we have ΩΛ0 = ΩΛ1, and

expression (33) can be rewritten as

q(t0) =
1
2

[
1 + 3qs

(
3
2
t0

)]
. (34)

In Fig. 3, we show the time dependence of the deceler-
ation parameters q(t) and qs(t) for the standard and ΛCS
models. The function qs

(
3
2 t
)

with the argument multi-
plied by 3

2 is plotted for comparison. For t
t0

& 2.5, the
curves q(t) and qs

(
3
2 t
)

practically coincide. The both
models predict the accelerating expansion of the Uni-
verse at t = t0 and give the close values of the decelera-
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tion parameter, q(t0) = −0.601 and qs
(

3
2 t0
)

= −0.734.
They lead to the same limit as t → ∞, q(t) → −1, and
qs(t) → −1. But, in the region t

t0
< 1, the behaviors

of the functions differ drastically. The standard model
predicts that, for t

t0
< 0.5, the Universe decelerates. On

the contrary, the ΛCS model describes the Universe with
non-zero cosmological constant, which always accelerates
and contains matter in the form of a perfect gas of low-
velocity cosmic strings.

The fact that the predictions concerning the decelera-
tion parameter in both models differ for the time interval
0 < t < 1

2 t0 is not surprising. The ΛCS model in the
form under consideration does not claim to provide a sat-
isfactory description of the Universe at all times. This
model is inapplicable to describe the expansion of the
Universe at the times, when the geometry-mass relation
(6) has no impact on the properties of matter.

At the same time, we can conclude that, for the
present-day and future Universe, it would be more dif-
ficult to distinguish between the ΛCDM and ΛCS mod-
els. It looks like the Universe at some instant of time
becomes dominated by matter in the form of a perfect
gas of low-velocity cosmic strings. The reason for such
a transformation of matter is different from that, which
leads to the formation of macroscopic topological defects
in the form of strings in the early Universe, where they
are caused by phase transitions (see Ref. [18] and ref-
erences therein). In the later Universe the energy den-
sity and the pressure in the form as for a perfect gas of
low-velocity cosmic strings may arise as the effect of an
additional constraint between the global geometry and
the total amount of matter in the Universe as a whole.

Thus, the ΛCDM and ΛCS models lead to similar pre-
dictions on cosmological parameters, if the time variable
of the ΛCS model is subjected to the scale transforma-
tion t → 3

2 t. After this transformation, the Hubble ex-
pansion rate and the energy density parameters of mat-
ter and vacuum components of the Universe, which are
calculated for all instants of time, take equal values in
both models.

5. Discussion

Let us consider the possible physical interpretation of
the geometry-mass relation (6). First of all, we point
out that the similar equality between the mass and the
“radius” of the Universe was obtained by Whitrow and
Randall [7] (see Eq. (20) for k = 0). Such a relation
is also valid for the Einstein Universe filled with the
pressure-free matter (see, e.g., Ref. [12]) and for the
steady-state cosmology [19].

Further on, it should be noted that relation (6) has a
form of Sciama’s inertial force law M ∼ G−1R, where
M and R are the appropriate values of mass and radius
of the observed part of the Universe [20, 21]. Despite its
simplified character, Sciama’s linearized theory gives a
specific mathematical relation between the parameters
which characterize the energy density and the geometry
of the Universe and corresponds to one of the realizations
of Mach’s principle [22–24].

If one assumes that Mach’s principle is a fundamental
law of the Nature, it must be implemented into the clas-
sical field equations. One viewpoint is that Einstein’s
field equations need not to be modified, while Mach’s
principle should be considered as an additional condi-
tion. Such an approach was chosen by Wheeler who
proposed to understand Mach’s principle as a selection
rule (boundary condition) of the solutions of the field
equations [25]. The Brans–Dicke theory uses another
way, in which the field equations are generalized to be-
come Machian [26, 27].

Since the scale factor R obeys Eqs. (3), the mass M ,
generally speaking, must evolve in time. This means that
if the gravitational constant G and velocity of light c are
both constant, the mass of matter in the Universe must
change proportionally to the scale factor, M ∼ R(t), at
the time interval, where relation (6) holds.

In some cosmological models, the natural constant G
or c is supposed to change with time. For example, ac-
cording to Dirac’s large number hypothesis, the New-
tonian constant G and the scale factor R must depend
on time as G ∼ t−1 and R ∼ t1/3 [28] or G ∼ t−1 and
R ∼ t [29]. Another example with varying G is the
Brans-Dicke theory, where this quantity is related to the
average value of some dynamical scalar field φ coupled
to the mass density ρ of the Universe, 〈φ〉 ≈ G−1, where
〈φ〉 ∼ ρR2 [26, 30]. The models with varying speed of
light were also considered and applied to solve the hori-
zon, flatness, cosmological constant, and other cosmolog-
ical problems (see, e.g., Refs. [31]). On the other hand,
there exist the observational and experimental bounds
on the time variation of the fundamental constants (e.g.,
Ref. [32]).

The possible dependence of the mass M on time can
be considered within a fundamentally different approach,
which deals with the matter creation processes in the
context of the cosmological models [33]. But, currently,
the models with the irreversible creation of matter do
not rely on the sufficient observational evidence.

We shall use another approach which does not involve
the theoretical schemes mentioned above in this section.
Relation (6) follows from quantum theory in the semi-
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Fig. 3. Deceleration parameters (16) and (32) as functions of time in units of t0. The WMAP 7-year data are used (see the caption of
Fig. 1)

classical approximation. In terms of general relativity,
its effective contribution to the field equations can be
linked to the time evolution of the equation of state of
matter caused by the processes of redistribution of the
energy between its components.

Let us consider the model, in which the equation of
state parameter for matter,

w(t) =
p(t)
ρ(t)

, (35)

depends on time1.
In the context of the hot Big-Bang cosmology, the

radiation-dominated Universe with the energy density
ρ ∼ R−4 transforms in the course of the expansion
into the non-relativistic matter-dominated Universe with
the energy density ρ ∼ R−3, and the latter transits to
a Universe which looks like that dominated by a per-
fect gas of low-velocity cosmic strings with ρ ∼ R−2

at later time. In the radiation-dominated Universe, the
number density of photons is nγ ∼ R−3, and the en-
ergy of every photon decreases during the expansion
of the Universe as mγ ∼ R−1 due to the cosmologi-
cal redshift. As a result, the effective mass of the Uni-
verse attributed to relativistic matter reduces as well,
Meff ∼ mγnγR

3 ∼ R−1. Arguing in the same way, one
finds that, in the matter-dominated Universe, the ef-
fective mass is constant, Meff = const, expressing the
constancy of the sum of the masses of bodies in the vol-
ume ∼ R3. In the Universe, which looks like that dom-
inated by a perfect gas of low-velocity cosmic strings,

1 Throughout this Section, we assume that Λ = 0 for simplicity.

the effective mass of matter increases with the expan-
sion of the Universe, Meff ∼ R, due to the redistri-
bution of the energy between the matter components.
Thus, we have the following picture of changes of the
dominating matter content of the Universe during its
evolution in time: the mass of the dominating mat-
ter component in the expanding Universe decreases in-
versely proportional to the “radius” R of the Universe
in the radiation-dominated era, then the mass remains
constant in the matter-dominated era, and, finally, it in-
creases linearly with R, when a gas of point particles
(dust) transforms effectively into a perfect gas of low-
velocity cosmic strings. At the same time, the equation
of state of the dominating matter changes from the equa-
tion p = 1

3ρ to p = − 1
3ρ, by passing through the state

p = 0.
According to the scenario described here, we specify

the parameter w(t) in the form of an antikink,

w(t) = −1
3

tanh[λ(t− t0)], (36)

where t0 is the instant of time, in the neighborhood of
which matter behaves as a pressure-free dust (t0 may be
taken close to the age of the Universe), and λ is some
parameter averaged in time which determines the rate
of change of the equation of state.

Parameter (36) can be justified in the model, in which
matter in the Universe is described as a two-component
perfect fluid with the energy density ρ = ρ1 +ρ2 and the
pressure p = p1 + p2. We represent the energy conserva-
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tion equation (1) for every component in the form

ρ̇1 + 3H(ρ1 + p1) = Q, ρ̇2 + 3H(ρ2 + p2) = −Q, (37)

where Q describes the interaction between the compo-
nents.

We assume that the equation of state for the compo-
nent with the density ρ1 changes in time from the stiff
Zel’dovich-type equation p1 = ρ1 to the vacuum-type
one p1 = −ρ1. The second component is a pressure-free
matter which has the density ρ2 = 2ρ1. Then Q = 2Hp1,
and w = p1/(3ρ1), while the system of equations (37) re-
duces to one equation

ρ̇1 + 3H
(
ρ1 +

1
3
p1

)
= 0. (38)

We look for the energy density ρ1 in the form

ρ1 =
α(t)
t2

, (39)

where α(t) is a slowly varying function on the interval
0 < t < ∞. Then, from the Einstein equation for Ṙ
and Eq. (38) in the approximation α̇ � λα, we find
the dependence of the total energy density ρ and the
pressure p on time,

ρ(t) =
3

2πGt2
1

[3− tanh(λ(t− t0))]2
,

p(t) = − 1
2πGt2

tanh(λ(t− t0))
[3− tanh(λ(t− t0))]2

. (40)

The Hubble expansion rate is described by the expres-
sion

H(t) =
2
t

1
3− tanh(λ(t− t0))

. (41)

Equations (40) and (41) reproduce the known expres-
sions for the corresponding quantities in the limiting
cases. For t→ 0 and λt0 > 2, we have

ρ =
3

32πGt2
, w =

1
3
, p =

1
3
ρ, H =

1
2t
, R ∼ t1/2. (42)

For t ≈ t0, the expressions are as follows:

ρ =
1

6πGt2
, w = 0, p = 0, H =

2
3t
, R ∼ t2/3. (43)

While, in the region t� t0, we have

ρ =
3

8πGt2
, w = −1

3
, p = −1

3
ρ, H =

1
t
, R ∼ t (44)

(cf. Ref. [34]) and Eq. (20)).

Thus, we have a continuous transition from the era,
when radiation dominates over matter, through the era
of the dust domination, to the epoch, when matter in
the form of low-velocity cosmic strings dominates.

The transition from the radiation-dominated Universe
to the Universe dominated by a perfect gas of low-
velocity cosmic strings can be described in terms of
a simple string-gas model with the equation of state
ps = wρs, where w = 2

3v
2
s − 1

3 , and vs is the average
velocity of cosmic strings [6]. At vs = 1, the string gas
behaves itself as relativistic matter; at vs = 1√

2
, it acts

as pressure-free matter; and, at vs = 0, we have a perfect
gas of low-velocity cosmic strings. In such a description,
if a gas of low-velocity cosmic strings quickly comes to
the domination over relativistic and pressure-free mat-
ter, it would drastically alter the cosmological evolution
of the Universe. In the model of two-component per-
fect fluid, this problem is removed, since the era with
ρ ∼ R−2 does not start until the values of the radius
and the mass of the observed part of the Universe will
become large enough (at least as in the present-day Uni-
verse).
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ПОРIВНЯЛЬНИЙ АНАЛIЗ СТАНДАРТНОЇ ΛCDM ТА ΛCS
МОДЕЛЕЙ

В.Є. Кузьмичов, В.В. Кузьмичов

Р е з ю м е

Проведено порiвняльний аналiз космологiчних параметрiв, що
залежать вiд часу та обчисленi в рамках стандартної ΛCDM
моделi, з вiдповiдними параметрами моделi однорiдного та iзо-
тропного всесвiту з ненульовою космологiчною сталою, який
заповнений iдеальним газом космiчних струн малої швидкостi
(ΛCS модель). Показано, що матерiя з нульовим тиском може
отримати властивостi газу космiчних струн з малою швидко-
стю в епоху, коли загальна геометрiя та повна кiлькiсть матерiї
у всесвiтi як цiлому задовольняють додаткове рiвняння в’язi.
Ця в’язь випливає з квантово-геометродинамiчного пiдходу у
квазiкласичному наближеннi. В рамках загальної теорiї вiд-
носностi її ефективний внесок у польовi рiвняння може бути
пов’язаний з еволюцiєю у часi рiвняння стану матерiї, спри-
чиненого процесами перерозподiлу енергiї мiж матерiальними
компонентами. У данiй роботi знайденi точнi розв’язки рiвнянь
Ейнштейна для ΛCS моделi. Показано, що ця модель є еквiва-
лентною вiдкритiй моделi де Сiттера. Пiсля масштабного пе-
ретворення часової змiнної ΛCS моделi, стандартна ΛCDM та
ΛCS моделi забезпечують еквiвалентний опис космологiчних
параметрiв як функцiй часу при рiвних значеннях космологi-
чної сталої. Винятком є поведiнка параметра уповiльнення у
ранньому всесвiтi.
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