
ASTROPHYSICS AND COSMOLOGY

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 12 1257

SCALAR COSMOLOGICAL PERTURBATIONS
ON THE BRANE

A.V. VIZNYUK, YU.V. SHTANOV

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrologichna Str., Kiev 03680, Ukraine; e-mail:
viznyuk@ bitp. kiev. ua,shtanov@ bitp. kiev. ua )

PACS 98.80.Cq; 98.70.Vc;

98.80.Es

c©2012

We derive a full system of differential equations describing the
evolution of scalar cosmological perturbations on the brane in the
general case where the action of the model contains the induced
curvature, as well as the cosmological constants in the bulk and
on the brane. This system of equations is greatly simplified in the
case of ideal pressureless matter. From the brane observer view-
point, the dynamics of perturbations of the matter on the brane is
affected by an additional invisible component – perturbation of the
projected Weyl tensor, or dark radiation, having purely geometric
nature. The system of equations on the brane serves as boundary
conditions for the perturbed bulk equations, which can be treated
with the use of the Mukohyama master variable. We consider the
case of a spatially closed brane universe and impose the regularity
condition for perturbations in the bulk. We demonstrate that the
resulting complete system of integro-differential equations is well
defined.

1. Introduction

The idea that our observable Universe can be a four-
dimensional manifold (the “brane”), which is embedded
in a higher dimensional spacetime (the “bulk”) with Stan-
dard Model particles and fields trapped on the brane,
was thoroughly investigated during the last two decades.
The activity in the field was triggered especially by the
Randall–Sundrum (RS) braneworld model [1], in which
Einstein’s theory of general relativity is modified due
to extra dimensional effects at relatively high energies.
Apart from interesting cosmological applications, it was
shown that a modified theory of gravity based on the
RS braneworld model can potentially explain the obser-
vations of the galactic rotation curves and X-ray pro-
files of galactic clusters without invoking the notion of
dark matter [2]. This theory was unable, however, to

address the cosmological implications of dark matter.
On the other hand, an alternative braneworld model of
Dvali, Gabadadze, and Porrati (DGP), in which gravity
is modified at low energies, gave rise to a cosmology with
late-time acceleration without cosmological constants on
the brane or in the bulk [3, 4] (although later this model
was shown to contain a ghost on the self-accelerating
branch [5]).

The main feature of the DGP braneworld model is the
induced gravity term in the action for the brane. But
the cosmological constants are absent in this theory, in
contrast to the RS braneworld model. A more general
braneworld model contains the induced gravity term, as
well as cosmological constants, in the bulk and on the
brane [6–8]. Models of such generic form can describe the
late-time cosmological acceleration. In doing so, they ex-
hibit some interesting specific features, for example, the
possibility of superacceleration (supernegative effective
equation of state of the dark energy weff ≤ −1) [8], the
possibility of cosmological loitering even in a spatially
flat universe [9], and the property of cosmic mimicry,
where a low-density braneworld has the expansion his-
tory of the LCDM model [10]. At the same time, this
kind of the braneworld model can be used to address as-
trophysical observations of dark matter in galaxies [11].

Developing the theory of cosmological perturbations is
a long-standing problem of the braneworld model. Struc-
ture formation, temperature anisotropy of the cosmic mi-
crowave background (CMB), and other issues that form
the basis of experimental tests of any cosmological model
require the knowledge of the evolution of cosmological
perturbations. The main problem in the theory under
investigation is the necessity of the account for the bulk
gravitational effects leading to the non-locality of the
resulting equations on the brane. Regardless of its com-
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putational complexity, a considerable progress has been
made in this direction during the last years. A complete
system of cosmological equations allowing for numeri-
cal computation was obtained in the framework of the
RS [12] and DGP [13] braneworld models. Important
analytical results are presented in [14, 15]. However, the
problem of cosmological perturbations in the braneworld
model still remains to be solved in full generality. For a
modern review of this problem, see [16].

The existence of the extra dimension requires a spec-
ification of the boundary conditions in the bulk space.
In the usual case of a spatially flat brane, the extra di-
mension is noncompact, and one has to deal with the
spatial infinity of the extra dimension. This is a dif-
ficult situation with no obvious and unique choice for
the boundary conditions. In the present paper, we con-
sider the case of a spatially closed brane, an expanding
three-sphere, which is bounding a four-ball in the bulk
space. In this case, the boundary condition can be spec-
ified uniquely just as a regularity condition of the metric
inside the ball. We obtain a complete system of equa-
tions for scalar cosmological perturbations on the brane
in the braneworld theory with induced gravity, as well
as cosmological constants in the bulk and on the brane,
and analyze its behavior in the bulk.

2. The Theory

The braneworld action, to the lowest order in the bulk
and brane curvature, can be written in the form:

S = M3

[∫
bulk

(R− 2Λ)− 2
∫

brane

K

]
+

+
∫

brane

(
m2R− 2λ

)
+
∫

brane

L (gµν , φ) , (1)

where R is the scalar curvature of the five-dimensional
bulk metric gAB, and R is the scalar curvature of the
induced metric gµν on the brane.1 The quantity K de-
notes the trace of the symmetric tensor of extrinsic cur-
vature of the brane, and the symbol L(gµν , φ) denotes
the Lagrangian density of the four-dimensional matter
fields φ, whose dynamics is restricted to the brane so
that they interact only with the induced metric gµν . All
integrations over the bulk and brane are taken with the
corresponding natural volume elements. The symbols M

1 Here and below, we use upper-case Latin indices A,B, . . . for
the five-dimensional bulk coordinates and Greek indices µ, ν, . . .
for the four-dimensional coordinates on the brane.

and m denote the five-dimensional and four-dimensional
Planck masses, respectively, Λ is the bulk cosmological
constant, and λ is referred to as the brane tension.

The action of the Randall–Sundrum braneworld model
[1] is obtained after setting m = 0 in (1), while the spe-
cial case where both the cosmological constant in the
bulk and the brane tension vanish (Λ = 0 and λ = 0)
describes the original model of Dvali, Gabadadze, and
Porrati [3]. Finally, general relativity with the quantity
1/m2 playing the role of the gravitational constant is
formally obtained from (1) after setting M = 0.

Action (1) leads to the Einstein equation with cosmo-
logical constant in the bulk,

GAB + ΛgAB = 0 , (2)

with the following equation on the brane [10, 17]:

Gµν +
ΛRS

b+ 1
gµν =

(
b

b+ 1

)
1
m2

Tµν+

*
+

1
b+ 1

(
1
M6

Qµν − Cµν
)
, (3)

where

b = k` , k =
λ

3M3
, ` =

2m2

M3
(4)

are convenient parameters of the braneworld model,

ΛRS =
Λ
2

+
λ2

3M6
(5)

is the value of the effective cosmological constant in the
Randall–Sundrum model,

Qµν =
1
3
EEµν−EµλEλν+

1
2

(
EρλE

ρλ − 1
3
E2

)
gµν (6)

is a quadratic expression with respect to the “bare” Ein-
stein equation Eµν ≡ m2Gµν − Tµν on the brane, and
E = gρλEρλ. The symmetric traceless tensor Cµν ≡
PA

µ P
C
ν n

B nD CABCD is the projection of the bulk Weyl
tensor CABCD, which carries information about the grav-
itational field outside the brane. The vector field nA is
the inner unit normal to the brane, and PA

µ is the or-
thogonal projector to the brane. The tensor Cµν is not
freely specifiable on the brane, but it is related to the
tensor Qµν through the conservation equation

∇µ
(
Qµν −M6Cµν

)
= 0, (7)

which is a consequence of the Bianchi identity applied
to (3).
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The background cosmological evolution on the brane
can be presented in the following form (see [6, 8, 18]):

H2 +
κ

a2
=
ρ+ λ

3m2
+

+
2
`2

[
1±

√
1 + `2

(
ρ+ λ

3m2
− Λ

6
− C

a4

)]
. (8)

Here, ρ = ρ(t) is the matter energy density on the brane
and C is a constant resulting from the symmetric trace-
less tensor Cµν in the field equations (3). The Hub-
ble parameter H ≡ ȧ/a describes the evolution of the
Friedmann–Robertson–Walker (FRW) metric

ds2 = −dt2 + a2(t)γijdxidxj . (9)

A purely spatial metric γij can be presented in the
isotropic coordinates in the form

γij = δij

[
1 +

κ

4

∑
i

(
xi
)2]−2

, (10)

so that the constant κ has the dimension of inverse co-
moving length squared. If the spatial coordinates xi are
dimensionless (so that the dimension is placed on the
scale factor), then one can choose κ = 0,±1.

The ± signs in Eq. (8) correspond to two branches
which, in turn, correspond to two different ways of
bounding the bulk by the brane [18]. They are usu-
ally called the normal branch (lower sign) and the self-
accelerating branch (upper sign), and we will refer to
them here in this way.

3. Scalar Cosmological Perturbations on the
Brane

From a brane observer viewpoint, the effects of bulk
gravity in the evolution of cosmological perturbations
are encoded in the local (Qµν) and nonlocal (Cµν) correc-
tions to the Einstein equations (3). Although the tensor
Cµν cannot be completely determined, in general, by the
data on the brane, the dynamics of some of its degrees
of freedom can be fixed via the conservation equation
(7). Note that a closed local system of equations on the
brane can be obtained by specifying some restrictions on
the projected Weyl tensor Cµν , which can be regarded
as boundary conditions (see [19]). The simplest choice
consists in setting its appropriately defined anisotropic
stress to zero [see Eq. (13) below]. This condition is fully

compatible with all equations of the theory, but may lead
to unwanted singularities in the bulk.

In what follows, we derive a full system of differential
equations describing the scalar cosmological perturba-
tions on the brane in a general case without any simpli-
fying assumptions.

3.1. Derivation of the main equations

Scalar cosmological perturbations of the induced metric
on the brane are most conveniently described by the rel-
ativistic potentials Φ and Ψ in the so-called longitudinal
gauge. The perturbed metric in the conformal coordi-
nates reads

ds2 = a2
[
−(1 + 2Φ)dη2 + (1− 2Ψ)γijdxidxj

]
. (11)

We introduce the components of the linearly per-
turbed stress–energy tensor of matter in these coordi-
nates:2

δTαβ =

 −δρ , −∇iv
a

∇iv
a

, δp δij +
ζij
a2

 , (12)

where δρ, δp, v, and ζij =
(
∇i∇j − 1

3γij∇
2
)
ζ are scalar

perturbations. Similarly, we introduce the scalar pertur-
bations δρC , vC , and δπC of the tensor Cαβ :

m2δCαβ =

 −δρC , −∇ivC
a

∇ivC
a

,
δρC
3
δij +

δπij
a2

 , (13)

where δπij =
(
∇i∇j − 1

3γij∇
2
)
δπC .

We call v and vC the momentum potentials for matter
and dark radiation, respectively, δρ and δρC are their en-
ergy density perturbations, and ζ and δπC are the scalar
potentials for their anisotropic stresses.

The perturbed version of (3) now reads (see Ap-
pendix B for a detailed derivation)

δρ+ δρC
m2

= −β
[
δρ

2m2
+

3H
a2

(Ψ′ +HΦ)
]

+

+
β

a2

(
∇2 + 3κ

)
Ψ , (14)

2 The spatial indices i, j, . . . in purely spatially defined quantities
(such as vi and δπij) are always raised and lowered with the use
of the spatial metric γij ; in particular, γij = δij . The symbol
∇i denotes the covariant derivative with respect to the spatial
metric γij , and the spatial Laplacian is ∇2 = ∇i∇i.
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v + vC
m2

= −β
[
v

2m2
− 1
a

(Ψ′ +HΦ)
]
, (15)

3δp+ δρC
3m2

= − βδp
2m2

− β(3γ − 1)
3a2

(
∇2 + 3κ

)
Ψ+

+
β(3γ − 1)

6

[
δρ

m2
+

6H
a2

(Ψ′ +HΦ)
]

+

+
β

a2

[(
2H′ +H2

)
Φ +H (Φ′ + 2Ψ′)

]
+

+
β

a2

[
Ψ′′ − κΨ +

1
3
∇2D

]
, (16)

ζ + δπC
m2

= − β(3γ + 1)
4

(
D +

ζ

m2

)
, (17)

where H ≡ a′/a and D ≡ Φ − Ψ. The time-dependent
dimensionless functions β and γ are given by3

β ≡ `2
(
H2 + κ

a2
− ρ+ λ

3m2

)
− 2 =

= ± 2

√
1 + `2

(
ρ+ λ

3m2
− Λ

6
− C

a4

)
, (18)

γ ≡ 1
3

(
1 +

β′

Hβ

)
≡ 1

3

(
1 +

β̇

Hβ

)
=

=
1
3

1−

ρ+ p

m2
− 4C
a4

2
(
ρ+ λ

3m2
+

1
`2
− Λ

6
− C

a4

)
 . (19)

These equations can be used to obtain the evolution
equations for the matter and for the Weyl fluid. To de-
rive them, we use the fact that the stress–energy of the
ordinary matter on the brane is conserved, ∇µTµν = 0.
Calculating the perturbed version of this equation, we
have

δρ′ + 3H(δρ+ δp)− 1
a
∇2v = 3(ρ+ p)Ψ′ , (20)

3 Everywhere, the prime denotes the derivative with respect to
the conformal time η. The overdot is reserved to denote the
derivative with respect to the physical time t defined as dt =

a(η)dη, so we will have, for example, H ≡ a′/a = ȧ ≡ aH.

v′ + 3Hv
a

= δp+ (ρ+ p)Φ +
2

3a2

(
∇2 + 3κ

)
ζ . (21)

To derive the evolution equations for the dark radiation,
we take the covariant derivative of the perturbation of
(A2) to get

∇µδCµν = ∇µ
[

1
M6

δQµν −
1 + b

m2
δEµν −

1
m2

δTµν

]
,

(22)

where the covariant derivative ∇ν is taken with respect
to the unperturbed induced metric on the brane. The
right-hand side of this equation can be read-off from
(14)–(17), and, after some calculation with the use of
(20) and (21), we get

δρ′C + 4HδρC −
1
a
∇2vC = − 12m2C

a4
Ψ′ , (23)

v′C + 3HvC
a

=
δρC
3
− 4m2C

a4
Φ +

+
β(1− 3γ)

6

(
δρ+

3Hv
a

)
− 2 + β

3a2

(
∇2 + 3κ

)
ζ −

−m
2β

3a2

(
∇2 + 3κ

)
[Φ− 3γΨ] . (24)

3.2. Combined system of equations on the brane

Here, we collect the equations that describe the evolution
of perturbations on the brane and present them in a
convenient form in terms of the physical time t.

It is convenient to use the notation

Δm = δρ+ 3Hv , ΔC = δρC + 3HvC . (25)

The system of field equations then reads

1
a2

(
∇2 + 3κ

)
Ψ =

(
1 +

2
β

)
Δm

2m2
+

ΔC
m2β

, (26)

m2β
(
Ψ̇ +HΦ

)
=
(

1 +
β

2

)
v + vC , (27)

Ψ̈ + 3(1 + γ)HΨ̇ +HΦ̇ +
[
2Ḣ + 3H2(1 + γ)

]
Φ−

− γ

a2
∇2Ψ− κ(1 + 3γ)

a2
Ψ +

1
3a2
∇2(Φ−Ψ) =
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= −
(
γ +

2
3β

)
δρ

2m2
+
(

1 +
2
β

)
δp

2m2
, (28)

δπC
m2

= −β(3γ + 1)
4

(
Φ−Ψ +

ζ

m2

)
− ζ

m2
. (29)

The system of conservation equations is

δρ̇+ 3H(δρ+ δp) =
1
a2
∇2v + 3(ρ+ p)Ψ̇ , (30)

v̇ + 3Hv = δp+ (ρ+ p)Φ +
2

3a2

(
∇2 + 3κ

)
ζ , (31)

δρ̇C + 4HδρC =
1
a2
∇2vC −

12m2C

a4
Ψ̇ , (32)

v̇C + 3HvC =
1
3
δρC −

4m2C

a4
Φ +

1
6
β(1− 3γ)Δm−

−2 + β

3a2

(
∇2 + 3κ

)
ζ − m2β

3a2

(
∇2 + 3κ

)
[Φ− 3γΨ] . (33)

3.3. The special case of ideal pressureless
matter

Using Eqs. (26)–(29) and (30)–(33), one can derive the
following useful system for perturbations in pressureless
matter (p = 0, ζ = 0) and for dark radiation in the
important case C = 0 :

Δ̈ + 2HΔ̇ =
(

1 +
6γ
β

)
ρΔ
2m2

+ (1 + 3γ)
δρC
m2β

, (34)

δρ̇C + 4HδρC =
1
a2
∇2vC , (35)

v̇C + 4HvC = γΔC +
(
γ − 1

3

)
Δm +

+
4

3(1 + 3γ)a2

(
∇2 + 3κ

)
δπC , (36)

where Δ ≡ Δm/ρ is a conventional dimensionless vari-
able describing the matter perturbations.

Equation (34) can be compared to its counterpart in
general relativity:

Δ̈ + 2HΔ̇ =
ρΔ
2m2

. (37)

One can see that the braneworld model leads to three
effects as regards the evolution of matter perturbations:
(i) it modifies the Hubble expansion law H(t) via (8);
(ii) it produces a time-dependent renormalization of the
effective gravitational coupling by the factor Θ = 1 +
6γ/β; and (iii) it introduces the gravity of the Weyl fluid
on the right-hand side of (34).

The system of equations (34)–(36) is not closed be-
cause the evolution equation for the anisotropic stress
δπC is missing. As we have noted at the beginning of
this section, one can avoid this problem by setting some
restrictions on this part of the Weyl tensor directly on
the brane. The simplest choice would be to set δπC = 0.
In this case, system (34)–(36) becomes a closed system
of differential equations describing the evolution of cos-
mological perturbations on the brane [19]. However,
this type of boundary conditions, although simple, is
not well motivated from the bulk viewpoint. Physically,
the evolution of the Weyl tensor should be derived from
the perturbed bulk equation (2) after setting some nat-
ural boundary conditions in the bulk [12–16, 20]. In
this paper, we adopt the following simple approach to
the boundary conditions. We consider a spatially closed
braneworld model which bounds the interior bulk space
with the spatial topology of a ball (resulting in the physi-
cally plausible normal branch) and demand that the bulk
metric be regular in the brane interior.

In the next section, we describe the perturbed bulk
equations in terms of the Mukohyama master variable
and study the special case of the flat background bulk
metric in more details.

4. Perturbations of the Bulk

4.1. Mukohyama master variable

In the natural static coordinates, the background bulk
metric can be written in the form

ds2bulk = −f(r)dτ2 +
dr2

f(r)
+ r2γijdx

idxj , (38)

where γij is the metric of a maximally symmetric space
with coordinates xi (10), and the function f(r) is given
by4

f(r) = κ− Λ
6
r2 . (39)

4 The possible term C/r2 in f(r) is absent because of our regu-
larity condition in the bulk bounded by the brane. This implies
that the background bulk has zero Weyl tensor, CABCD = 0.
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In these coordinates, the FRW brane moves radially
along the trajectory r = a(τ), and the relevant part of
the bulk is given by r ≤ a(τ). In what follows, we are
interested in the case κ = 1 and Λ ≤ 0.

It is convenient to present the first part of metric (38)
in the form σabdx

adxb, where xa, a = 1, 2, are arbi-
trary coordinates equivalent to (τ, r). Thus, for the back-
ground metric, we have

ds2bulk = σabdx
adxb + r2γijdx

idxj , (40)

where r = r(xa).
The scalar (with respect to the isometries of γij) per-

turbations of this metric can be described as in [21]:

δgABdx
AdxB =

∑
k

habY dx
adxb +

∑
k

2haVidxadxi +

+
∑
k

[
hLT

(L)
ij + hY T

(Y )
ij

]
dxidxj , (41)

where Y , Vi ≡ ∇iY , T (L)
ij ≡ 2∇i∇jY − 2

3γij∇
2Y , and

T
(Y )
ij ≡ γijY are the harmonics depending on the coordi-

nates xi and all expressible through the scalar harmonics
Y defined on a unit three-sphere, and hab, ha, hL, and
hY are the perturbation coefficients depending on xa.
Here, as before, ∇i is the covariant derivative with re-
spect to the metric γij . The number k characterizes the
Laplacian eigenvalue of the scalar harmonics Y .

Infinitesimal coordinate transformations of the scalar
type are described by the vector field ξA that has the
form

ξAdx
A =

∑
k

(
ξaY dx

a + ξVidx
i
)
. (42)

Under diffeomorphisms, the perturbations are trans-
formed as follows:

hab → hab −∇aξb −∇bξa , (43)

ha → ha − ξa − r2∇a
(
r−2ξ

)
, (44)

hL → hL − ξ , (45)

hY → hY − ξa∇ar2 +
2
3
k2ξ . (46)

Here, ∇a is the covariant derivative in the two-
dimensional space spanned by (τ, r) and compatible with

the metric σab. From these quantities, one can construct
the gauge-invariant variables

Fab = hab −∇aXb −∇bXa , (47)

F = hY −Xa∇ar2 +
2
3
k2hL , (48)

where Xa = ha − r2∇a
(
r−2hL

)
is a gauge-dependent

combination that is transformed as Xa → Xa − ξa.
Note that linear perturbations of the tensors with

zero background values are gauge-invariant: if T ······ is
any such tensor, then, under the infinitesimal coordi-
nate transformations, its components are transformed
as δT ······ = LξT ······ = 0. In particular, perturbations of the
Weyl tensor CA

BCD (and all its contractions and deriva-
tives), as well as perturbations of the Eistein–De Sitter
tensor EAB = GAB + ΛgAB, are gauge-invariant because
these tensors are identically equal to zero for the back-
ground solution (38).

Using the gauge transformations (44), (45), one can
fix the gauge in such a way that the coefficients hL and
ha become zero (at least, this is possible to do locally).
In this gauge, the coefficients hab and hY coincide with
the gauge invariants Fab and F , respectively, and then
the metric perturbation simplifies to

δgABdx
AdxB =

∑
k

Y
(
Fabdx

adxb + Fγijdx
idxj

)
. (49)

Expression in this gauge can be used whenever one is to
calculate gauge-invariant perturbations such as pertur-
bations of the Weyl tensor CA

BCD.
Another set of simplifications can be made with regard

for the equations of motion in the bulk (2), which can be
presented as RAB = 2Λ

3 gAB . Using these relations, one
can express the Weyl tensor in the bulk as follows:

CABCD = RABCD −
Λ
3
gA[CgD]B . (50)

However, when calculating the curvature tensor RABCD

to get the perturbed equations of motion in the bulk,
one needs to deal with the complete metric perturbation
(49).

Using (50) and (C1), (C3), (B3), one can easily com-
pute the components of the perturbed bulk Weyl tensor
CABCD in the gauge hL = 0, ha = 0. Then the coefficients
hab and hY can be replaced by the gauge invariant vari-
ables Fab and F , respectively. Thus, the perturbed bulk
Weyl tensor can be expressed as

δCabcd =
Λ
6

∑
k

(
σd[aFb]c − σc[aFb]d

)
Y +
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+
∑
k

(
∇d∇[aFb]c −∇c∇[aFb]d

)
Y , (51)

δCiabc =
∑
k

(
∇[cFb]a −

1
r
Fa[b∇c]r

)
∇iY , (52)

δCabij = 0 , (53)

δCaibj = −1
2

∑
k

Fab(∇i∇jY ) +

+
1
2
γij
∑
k

r∇er (∇aF eb +∇bF ea −∇eFab)Y −

−1
2
γij
∑
k

[
Λr2

3
Fab +

Λ
6
σabF + r∇a∇b

(
F

r

)]
Y ,

(54)

δCaijk =
∑
k

[
r2∇a

(
F

r2

)
− r∇brFab

]
γi[j∇k]Y , (55)

δCijkl =
∑
k

F
(
γi[l∇k]∇jY − γj[l∇k]∇i=Y

)
+

+2γi[kγl]j
∑
k

[
r2∇ar∇brF ab +

(
κ− Λr2

3

)
F

]
Y −

−2γi[kγl]j
∑
k

r∇ar∇aF Y . (56)

Expressed in this way, the perturbed bulk Weyl tensor
is not obviously traceless. In fact, as follows from (50),
δC = δR, and δC = 0 only if the perturbed equations of
motion in the bulk are taken into account.

It was shown by Mukohyama [21] that the gauge in-
variants Fab and F , satisfying the perturbed bulk equa-
tions of motion, can be expressed through a scalar mas-
ter variable Ω:

rFab = ∇a∇b Ω− 2
3
∇2 Ωσab −

Λ
18

Ωσab , (57)

F =
r

3

(
∇2 Ω +

Λ
3

Ω
)
. (58)

The variable Ω satisfies the master equation

∇2 Ω− 3
r
∇ar∇aΩ−

(
k2 − 3κ
r2

+
Λ
6

)
Ω +

U

r2
= 0 (59)

with some function U , which is, in general case, a solu-
tion of the equation

∇a∇b U +
Λ
6
σab U = 0 . (60)

One can verify that the trace δC of the perturbed bulk
Weyl tensor δCABCD, defined by (51)–(56), can be ex-
pressed through the Mukohyama master variable Ω as

δC = − 1
3r3

∑
k

[
∇2
(
r2Σ

)
+

Λr2

3
Σ
]
Y , (61)

where

Σ ≡ ∇2 Ω− 3
r
∇ar∇aΩ−

(
k2 − 3κ
r2

+
Λ
6

)
Ω . (62)

Obviously, the Mukohyama master equation (59) implies
the condition δC = 0.

4.2. Perturbations on the flat background bulk
geometry

The general problem of solving the Mukohyama master
equation and the further projection of the bulk Weyl ten-
sor to the brane is greatly simplified if the background
bulk geometry is simply a Minkowski spacetime. Consid-
ering a spatially closed brane (κ = 1) in the theory with
Λ = 0, we have σab = ηab. In this case, the Mukohyama
master equation (59) takes the form

−∂2
τΩ + ∂2

rΩ−
3
r
∂rΩ−

(n2 + 2n− 3)
r2

Ω = 0 , (63)

where we have used the discrete Laplacian eigenvalues
on the three-sphere: k2

n = n(n + 2), n = 0, 1, 2 . . . We
have also restricted ourselves to the case n ≥ 2, for which
the function U from (59) can be set to zero [21].

Equation (63) is a partial differential equation of the
hyperbolic type. Its simple form allows one to separate
variables: Ω(τ, r) = ξ(τ)χ(r) with the functions ξ(τ)
and χ(r) satisfying the ordinary differential equations

d2ξ(τ)
dτ2

+Wξ(τ) = 0 , (64)

d2χ(r)
dr2

− 3
r

dχ(r)
dr

+
[
W − (n2 + 2n− 3)

r2

]
χ(r) = 0 , (65)
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where W is some constant, which can be chosen arbi-
trary until some boundary or regulatory conditions are
specified.

Using expressions (64) and (65) and definitions
(57) and (58), one can easily compute the compo-
nents of the perturbed bulk Weyl tensor (51)–(56).
Once this operation is done, the projection δCµν =
PA

µ P
C
ν n

B nD δCABCD of the bulk Weyl tensor to the
brane can be easily calculated.5 Setting the brane tra-
jectory to be r = a(τ), we get the components of δCµν
[see Definition (13)] as

δρC
m2

= − n(n+ 2)(n2 + 2n− 3)
3a5

Ωb , (66)

vC
m2

=
(n2 + 2n− 3)

3a3

[
aH (∂rΩ)b −HΩb +

+
√

1 + a2H2 (∂τΩ)b
]
, (67)

δπC
m2

= −
(
1 + 2a2H2

)
2a

(
∂2
τΩ
)
b
−
(
1 + 3a2H2

)
2a2

(∂rΩ)b−

−H
√

1 + a2H2
(
∂2
τrΩ

)
b
−

−
(n2 + 2n− 3)

(
1 + 3a2H2

)
6a3

Ωb . (68)

Here, a = a(t) is a scale factor of the background
Friedmann–Robertson–Walker metric on the brane [the
same as in (9)], H = ȧ/a is the Hubble parameter on
the brane, and the function τ = τ(t) is defined by the
differential equation dτ/dt =

√
1 + a2H2. The subscript

{}b means that the value of the corresponding quantity is
taken at the brane. For example, Ωb(t) ≡ Ω(τ(t), a(t)).

Using the rule of differentiation

Ω̇b =
√

1 + a2H2 (∂τΩ)b + aH (∂rΩ)b , (69)

one can rewrite (67) and (68) in the following form:

vC
m2

=
(n2 + 2n− 3)

3a3

[
Ω̇b −HΩb

]
, (70)

δπC
m2

= − 1
2a

[
Ω̈b −

a2H(Ḣ +H2)
(1 + a2H2)

Ω̇b +

5 The perturbations δnA of the unit vector nA normal to the brane
do not contribute to δCµν because the Weyl tensor CABCD van-
ishes for the background solution.

+
(1− a2Ḣ)
a(1 + a2H2)

(∂rΩ)b +
(n2 + 2n− 3)

3a2
Ωb

]
. (71)

We observe that the function vC(t) can be related to the
function δρC(t) defined in (66) as

vC = − a2

n(n+ 2)
(δρ̇C + 4HδρC) , (72)

which is in accordance with Eq. (32) obtained as one of
the conservation equations on the brane. The relation
between the functions δπC(t) and δρC(t) is not so triv-
ial due to the presence of the third term in the square
brackets on the right-hand side of (71). To establish
the relation between δπC(t) and δρC(t), one should find
the general solution of the master equation (63). This
can be easily done. As one can see from (64), the mas-
ter variable Ω demonstrates an oscillatory or exponential
behavior depending on the sign of the constant W . In
what follows, we consider these two cases separately.

4.3. Oscillatory behavior

Setting W ≡ ω2 > 0, we get a solution of (65) for a
given ω in the form

χ(r) = r2 [AωJn+1(ωr) +BωYn+1(ωr)] , (73)

where Aω and Bω are some constants that can be cho-
sen arbitrary until the boundary conditions are specified,
and Jn+1(ωr) and Yn+1(ωr) are the Bessel and Neumann
functions, respectively.

The asymptotic behavior of the function χ(r) in the
neighborhood of the point r = 0 is determined in the
leading order by the asymptotics of Neumann functions:

χ(r)→ −2n+1n!Bω
πωn+1

1
rn−1

, r → 0 . (74)

The requirement of regularity of the solution at r = 0
leads to the condition Bω = 0 for all modes with n ≥ 2.

The general solution of the master equation (63) can
be written in the form of an integral over all possible
values of the parameter ω:

Ω(τ, r) = r2
∞∫
−∞

dωΩ(ω) Jn+1(ωr) eiωτ , (75)

where Ω(ω) is some complex function which is expected
to be specified from the boundary equations on the
brane. We would like to note that the same result can
be obtained by applying the method of Fourier transfor-
mation to Eq. (63).
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4.4. Exponential growth

In this case, we set W ≡ −ω2 < 0 and obtain a solution
of (65) for a given ω in the form

χ(r) = r2 [AωIn+1(ωr) +BωKn+1(ωr)] , (76)

where Aω and Bω are again some constants, and
In+1(ωr) and Kn+1(ωr) are the modified Bessel func-
tions of the first and second kinds, respectively.

The absence of singularities at the point r = 0 yields
Bω = 0 for all modes with n ≥ 2. The general solution
of the master equation (63) can be written in this case
as:

Ω(τ, r) = r2
∞∫
0

dω In+1(ωr)
[
α(ω)eωτ + β(ω)e−ωτ

]
.

(77)

4.5. Spatially flat brane geometry

Our solution of the Mukohyama master equation in the
bulk, derived for the case κ = 1 under the assumption
of the regularity at r = 0, tends to a solution for the
spatially flat universe (κ = 0) in the limit of large values
of the scale factor or, more specifically, H2, |Ḣ| � 1/a2.
In this approximation, our general expressions (66) and
(71) read

δρC
m2

= − n(n+ 2)(n2 + 2n− 3)
3a5

Ωb , (78)

δπC
m2
≈ − 1

2a

[
Ω̈b −

(
H +

Ḣ

H

)
Ω̇b −

− Ḣ

aH2
(∂rΩ)b +

(n2 + 2n− 3)
3a2

Ωb

]
, (79)

while we can still use expression (75) or (77) for the
master variable.

5. Closed System of Equations on the Brane

Solutions of the perturbation equations in the bulk
should be used jointly with the system of equations de-
scribing the cosmological perturbations on the brane. In
this section, we use the general solution for the master
variable obtained in Sec. 4 to derive a closed system of
equations on the brane in various particular cases. For

definiteness, to demonstrate how this closed system of
equations can be constructed and solved, we use expres-
sion (75) for the master variable, which corresponds to
the oscillatory behavior of this quantity in the fifth di-
mension.

5.1. The special case of ideal pressureless
matter

Perturbations in a pressureless matter without
anisotropic stress (p = 0, ζ = 0) are described by
the system of equations (34)–(36). Eliminating the
variable vC from this system, we obtain

Δ̈ + 2HΔ̇ =
(

1 +
6γ
β

)
ρΔ
2m2

+ (1 + 3γ)
δρC
m2β

, (80)

δρ̈C + (10− 3γ)Hδρ̇C +

+
[
4Ḣ + 24H2 − 12H2γ +

n(n+ 2)γ
a2

]
δρC −

−4n(n+ 2)(n2 + 2n− 3)
3(1 + 3γ)a4

δπC =

= − n(n+ 2)
a2

(
γ − 1

3

)
ρΔ . (81)

Using Eqs. (66), (68), and (75), we can rewrite (81) in
the form

1
m2

Δ(t) =

∞∫
−∞

dωΩ(ω)D(ω, t) , (82)

whereD(ω, t) is a somewhat complicated function, which
is well defined if the background cosmological evolution
is known:

D(ω, t) ≡
(
n2 + 2n− 3

)
(3γ − 1) ρa

d(ω, t) eiωτ(t) , (83)

d(ω, t) ≡ ωaJn(ωa)

[
Ḣ+ (4− 3γ)H2−

2
(
1 + 3a2H2

)
(1 + 3γ) a2

+

+ 2i ωH
(

3γ − 1
3γ + 1

)√
1 + a2H2

]
+

ISSN 2071-0194. Ukr. J. Phys. 2012. Vol. 57, No. 12 1265



A.V. VIZNYUK, YU.V. SHTANOV

+Jn+1(ωa)
[
−nḢ + n (n− 2 + 3γ)H2 +

n (n+ 2) γ
a2

−

−
2n (n− 1)

(
1 + 3a2H2

)
3 (1 + 3γ) a2

−ω2

(
3γ − 1
3γ + 1

)(
1 + 2a2H2

)
−

−i ωH
√

1 + a2H2

[
3γ + 2 (n− 1)

(
3γ − 1
3γ + 1

)]
+

+
i ωa2H(Ḣ +H2)√

1 + a2H2

]
. (84)

Equations (80) and (82) together with (66) and (75) form
a system of integro-differential equations, which reflects
the nonlocality property of the evolution of cosmological
perturbations in a braneworld scenario [21].6

To analyze the properties of the obtained system of
equations, it may be useful to apply the method of
Fourier transformation. We decompose the functions
Δ(t) and D(ω, t) as

Δ(t) =
1
2π

∞∫
−∞

d$ei$tΔ($) , (85)

D(ω, t) =
1
2π

∞∫
−∞

d$ei$tD(ω,$) , (86)

where Δ($) and D(ω,$) are the Fourier transforms
of the corresponding functions with respect to the time
variable. Then Eq. (82) reads

1
m2

Δ($) =

∞∫
−∞

dωΩ(ω)D(ω,$) . (87)

We assume the existence of the inverse kernel D−1($,ω)
such that

∞∫
−∞

d$D(ω,$)D−1($,ω′) = δ(ω − ω′) . (88)

6 The nature of the brane–bulk interaction in a cosmological con-
text was thoroughly investigated in [22] on the examples of
some simple toy models. The nonlocal bulk effects in realistic
braneworld models were under investigation in [20, 23].

In this case, Eq. (87) can be inverted to give

Ω(ω) =
1
m2

∞∫
−∞

d$Δ($)D−1($,ω) . (89)

Having this result in mind, one can now return to Eq.
(80). After the Fourier transformation, it can be formu-
lated as an integral equation for the Fourier transform
Δ($) of the function Δ(t):

∞∫
−∞

d$ei$t
[
− 2π$2Δ($) +

+

∞∫
−∞

d$′Δ($′)K($,$′)

 = 0 , (90)

where the kernel function K($,$′) is specified by

K($,$′) ≡ 2i$′H($ −$′)− 1
2m2

R($ −$′) +

+
2πn(n+ 2)(n2 + 2n− 3)

3m2

∞∫
−∞

dωD−1($′, ω)E(ω,$) .

(91)

Here, H($) is the Fourier transform of the Hubble func-
tion H(t), R($) is the Fourier transform of the function

R(t) ≡
(

1 +
6γ
β

)
ρ , (92)

and E(ω,$) is the Fourier transform of

E(ω, t) ≡
(

1 + 3γ
β a3

)
eiωτJn+1(ωa) . (93)

The last term on the right-hand side of (91) incorpo-
rates the nonlocal bulk effects in the Weyl fluid. We
would like to emphasize that, regardless of the apparent
complexity of expressions (83), (92), and (93), all the
constituents of (90) are well-defined functions, as long
as the background cosmological evolution is known.

To understand how Eq. (90) could be solved, we an-
alyze its general-relativistic counterpart [obtained from
(37)] in the case of constant energy density ρ = ρ0 and,
correspondingly, H = H0. In this case, kernel (91) takes
the simple form

K($,$′) = 2π
(
2i$′H0 −

ρ0

2m2

)
δ($ −$′) , (94)
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and Eq. (90) can be written as

∞∫
−∞

d$ei$tΔ($) ($ − i$+) ($ − i$−) = 0 , (95)

where

$± ≡ H0 ±
√
H2

0 +
ρ0

2m2
. (96)

To satisfy (95), one should choose (formally)

Δ($) = A+δ($ − i$+) +A−δ($ − i$−) , (97)

with A± being some arbitrary constants. Finally, we
obtain

Δ(t) =
A+

2π
e−$+t +

A−
2π

e−$−t , (98)

which can be easily verified to be the general solution of
(37).

Although the general expression (91) seems to be
much more complicated than (94), we expect Eq. (90) to
be solved in the same manner. In any case, Eq. (90) can
be regarded as a well-defined closed equation describing
the cosmological evolution of pressureless matter pertur-
bations on the brane, thus confirming the general con-
sideration of [24] about the wellposedness of scalar cos-
mological perturbations on the brane.

5.2. Quasistatic approximation

The quasistatic approximation was proposed by Koyama
and Maartens in [14] as some reasonable simplification
of the general equations describing the structure forma-
tion problem in the braneworld molel. The main as-
sumption of this approximation is that the terms with
time derivatives can be neglected relative to those with
spatial gradients. Specifically, this assumption implies
HΩ̇b , Ω̈b � (n2/a2) Ωb, where the values of n should
be taken sufficiently large (n � 1). In this case, our
general expressions (66), (71) turn into the approximate
ones:

1
m2

δρ
(qs)
C ≈ − n4

3a5
Ωb , (99)

1
m2

δπ
(qs)
C ≈ − 1

6a

[
n2

a2
Ωb +

3(1− a2Ḣ)
a(1 + a2H2)

(∂rΩ)b

]
.

(100)

This result exactly coincides with that presented in [14]
in the limit H2, Ḣ � 1/a2 corresponding to the spatially
flat brane geometry. The regulatory conditions imposed
in [14] for the master variable in the bulk allowed the
authors of that work to neglect the term proportional to
(∂rΩ)b on the right-hand side of (100), thus deriving the
relation between the functions δρC(t) and δπC(t) in the
form

δρ
(qs)
C ≈ 2n2

a2
δπ

(qs)
C , (101)

which completely closes equations on the brane in the
quasistatic approximation.

6. Summary and Open Issues

In this article, first of all, we have derived the full set of
differential equations (26)–(33) describing the dynamics
of scalar cosmological perturbations on the brane in a
general case where the induced gravity as well as cos-
mological constants in the bulk and on the brane are
included in the action of the model. This set of equa-
tions is greatly simplified if we are interested only in the
evolution of perturbations of the ideal pressureless mat-
ter without anisotropic stress on the background which
does not include the contribution from dark radiation
(34)–(36). From a brane observer viewpoint, the evolu-
tion of the metric and matter perturbations is affected
by an additional invisible component – the perturbation
of the projected Weyl tensor, or dark radiation – with
its own nontrivial dynamics.

The system of equations on the brane is not closed
because the evolution equation for the anisotropic stress
of the Weyl fluid is missing. To remedy this situation, in
our previous paper on this topic [19], in which we consid-
ered only the spatially flat case, a certain constraint on
the projected Weyl tensor was imposed directly on the
brane. This approach was motivated by an approximate
relation of the form (101) on the brane, first derived in
[14] in the quasistatic approximation in the case of flat
spatial geometry. In the present paper, we took into
consideration the full system of perturbed equations in
the bulk. This was done for a spatially closed brane
bounding a flat Minkowski bulk, using the Mukohyama
master variable and the corresponding master equation
for this variable. The only condition imposed on the
Mukohyama master variable is the regularity condition
in the bulk. The components of the projected Weyl ten-
sor – the energy density and anisotropic stress of dark
radiation – are expressed via the Mukohyama master
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variable in (66) and (71). At the same time, the Muko-
hyama master variable itself can be expressed through
the Fourier (75) or Laplace (77) integrals with the ker-
nels playing the role of unknown variables, which can be
determined, for example, from Eqs. (34)–(36). From the
bulk viewpoint, the equations on the brane are boundary
conditions restricting the solutions of the master vari-
able. In Sec. 5 5.1, we have shown that a problem for-
mulated in this way is well defined and can be (at least
for the case of pressureless matter) reduced to the single
integral equation (90).

Using a closed system of equations describing the evo-
lution of scalar cosmological perturbations on the brane
and in the bulk, one can act in two possible ways. One
can develop a numerical method for computation sim-
ilar to those employed in the analysis of perturbations
in the RS [12] and DGP [13] braneworld models. One
can also develop analytic approximate methods similar
to the quasistatic approximation [14, 15]. Both are the
subject of the further investigation.

This paper was supported in part by the Cosmomicro-
physics section of the Programme of the Space Research
of the National Academy of Sciences of Ukraine and
by the Joint Ukrainian-Russian SFFR-RFBR project
F40.2/108.

APPENDICES
A. Scalar Perturbation of the Induced Brane Equations

The background and perturbed components of the Einstein tensor
for metric (11) read

G0
0 = −

3

a2

(
H2 + κ

)
, G0

i = 0 ,

Gij = −
1

a2

(
2H′ +H2 + κ

)
,

δG0
0 =

2

a2

[
3H
(
Ψ′ +HΦ

)
−
(
∇2 + 3κ

)
Ψ
]
,

δG0
i = −

2

a2
∇i
(
Ψ′ +HΦ

)
,

δGij =
2

a2

[(
2H′ +H2

)
Φ +H

(
Φ′ + 2Ψ′) +

+ Ψ′′ − κΨ
]
δij −

1

a2

[
∇i∇j − δij∇2

]
(Φ−Ψ) , (A1)

where H ≡ a′/a, and the prime denotes the derivative with respect
to the conformal time η.

For convenience, we rewrite Eq. (3) as follows:

1

m2
Tµν + Cµν =

1

M6
Qµν −

1 + b

m2
Eµν − ΛRSh

µ
ν . (A2)

First, we calculate the components of Eµν/m2:

E0
0

m2
=

ρ

m2
−

3

a2

(
H2 + κ

)
+

+
δρ

m2
+

6H
a2

(
Ψ′ +HΦ

)
−

2

a2

(
∇2 + 3κ

)
Ψ

E0
i

m2
= ∇i

[
v

am2
−

2

a2

(
Ψ′ +HΦ

)]
,

Ei0 = −γijE0
j ,

Eij

m2
= −

[
p

m2
+

1

a2

(
2H′ +H2 + κ

)]
δij −

δp

m2
δij +

+
2

a2

[(
2H′ +H2

)
Φ +H

(
Φ′ + 2Ψ′)+ Ψ′′ − κΨ

]
δij −

−
1

a2

[
∇i∇j −

1

3
δij∇2

](
ζ

m2
+D

)
+

2

3a2
δij∇2D ≡

≡
1

3m2
Ẽδij −

1

a2

[
∇i∇j −

1

3
δij∇2

](
ζ

m2
+D

)
, (A3)

where the trace of Eij is denoted by Ẽ, and D ≡ Φ−Ψ.

It remains to calculate the component of tensor (6). Having
in mind that E = E0

0 + Ẽ and neglecting terms quadratic in
perturbations, we get

Q0
0 = −

1

3

(
E0

0

)2
,

Q0
i = −

2

3
E0

0E
0
i , Qi0 = −

2

3
E0

0E
i
0 ,

Qij =
1

3
E0

0

(
E0

0 −
2

3
Ẽ

)
δij +

+
m2
(
Ẽ − E0

0

)
3a2

[
∇i∇j −

1

3
δij∇2

](
ζ

m2
+D

)
. (A4)

Collecting all terms in the perturbation of (A2), we finally ob-
tain the required system of equations in the linear approximation
(14)–(17).

B. Background Cosmological Solution in the Bulk

For the background bulk metric (38), the following relations are
satisfied:

Rabcd = Rabcd , Raibj = −γij r∇a∇b r ,

Rijkl = r2
[
κ− (∇ar)2

] (
γikγjl − γilγjk

)
, (B1)

where the curvature tensor Rabcd and covariant derivative ∇a cor-
respond to the two-dimensional metric tensor σab defined by

ds2(2) = σabdx
adxb = −f(r)dτ2 +

dr2

f(r)
. (B2)

For the case under consideration, f(r) = κ− Λr2/6, we have

∇a∇b r = −
Λr

6
σab , (∇ar)2 = κ−

Λ

6
r2 ,

Rabcd =
Λ

6
(σacσbd − σadσbc) . (B3)

C. Scalar Perturbation of the Bulk Metric

In the gauge hL = 0 and ha = 0, the general expression for the
perturbed bulk metric (40), (41) can be written in the form

ds2bulk =

[
σab +

∑
k

habY

]
dxadxb +

[
r2 +

∑
k

hY Y

]
γijdx

idxj ,

(C1)

where r, hab, and hY depend on xa, while Y depends on xi.
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Using (C1), one can find the following expressions for the
Christoffel symbols ϒABC of the five-dimensional geometry:

ϒabc = Γabc +
1

2

∑
k

(∇bhac +∇chab −∇ahbc)Y ,

ϒabi =
1

2

∑
k

hab∇iY ,

ϒaij = −
1

2
γij∇ar2 +

1

2
γij

[(
∇br2

)∑
k

habY −
∑
k

∇ahY Y

]
,

ϒiab = −
1

2r2

∑
k

hab∇iY ,

ϒiaj = δij∇a ln r+
1

2r2
δij

[
−2(∇a ln r)

∑
k

hY Y +
∑
k

∇ahY Y

]
,

ϒijk = γijk +
1

2r2

∑
k

hY

(
δij∇kY + δik∇jY − γjk∇iY

)
, (C2)

where we use the background metrics σab and γij for raising and
lowering the corresponding indices.

The perturbation of the five-dimensional Riemann curvature
tensor RABCD in this case is found to be

δRabcd =
∑
k

(
he[bRa]ecd +∇c∇[bha]d −∇d∇[bha]c

)
Y ,

δRiabc =
∑
k

(
∇[chb]a −

1

r
ha[b∇c]r

)
∇iY ,

δRabij = 0 ,

δRaibj = −
1

2

∑
k

hab∇i∇jY +

+
1

2
γij
∑
k

[
r(∇er) (∇aheb∇bhea −∇ehab) −

−
∇a∇br

r
hY − r∇a∇b

(
hY

r

)]
Y ,

δRaijk =
∑
k

[
r2∇a

(
hY

r2

)
− r(∇br)hab

]
γi[j∇k]Y ,

δRijkl =
∑
k

hY

(
γi[l∇k]∇jY − γj[l∇k]∇i=Y

)
+

+2γi[kγl]j
∑
k

[
r2(∇ar)(∇br)hab +

+ κhY − r(∇ar)(∇ahY )]Y , (C3)

where Rabcd is the background curvature tensor, defined in (B3).
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ЗБУРЕННЯ СКАЛЯРНОГО
ТИПУ В ТЕОРIЇ ГРАВIТАЦIЇ НА БРАНI

О.В. Вiзнюк, Ю.В. Штанов

Р е з ю м е

Отримано повну систему диференцiальних рiвнянь, що опису-
ють еволюцiю космологiчних збурень скалярного типу в теорiї

гравiтацiї на бранi в загальному випадку, коли дiя теорiї мi-

стить як iндуковану кривину, так i космологiчнi сталi в об’ємi

i на бранi. Рiвняння значно спрощуються, якщо розглядати

лише збурення матерiї без тиску. З точки зору спостерiгача

на бранi на динамiку збурень полiв матерiї впливає додатко-

ва невидима компонента – збурення проекцiї тензора Вейля,

або темного випромiнювання, яке має суто геометричну при-

роду. Система рiвнянь на бранi вiдiграє роль граничних умов

для рiвнянь, що описують динамiку збурень у п’ятивимiрному

об’ємi. Цi рiвняння можуть бути сформульованi в термiнах

змiнної Мукохiями. Нами розглянуто випадок просторово за-

мкнутого Всесвiту i запропоновано умову регулярностi для

збурень у п’ятивимiрному об’ємi. Показано, що отримана повна

система iнтегро-диференцiальних рiвнянь є добре визначеною.
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