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ON THE LORENTZ-INVARIANCE OF THE DYSON
SERIES IN THEORIES WITH DERIVATIVE COUPLINGS

We study the Dyson series for the 𝑆-matrix, when the interaction depends on derivatives of the
fields. We concentrate on two particular examples: the scalar electrodynamics and the renor-
malized 𝜑4 theory. By using Wick’s theorem, we eventually give evidence that the Lorentz
invariance is satisfied, and the usual Feynman rules can be applied to the interaction La-
grangian.
K e yw o r d s: quantum field theory, canonical quantization, Dyson series, Wick’s theorem.

1. Introduction
Feynman diagrams and rules are by far the most effi-
cient and convenient way to build theoretical predic-
tions within field theories amenable of a perturbative
treatment. They manifestly keep the Lorentz invari-
ance and come naturally if field theories are quantized
by means of a functional generator based on the La-
grangian of the theory, which is a Lorentz scalar. The
same holds in the canonical approach, which is based
on the Dyson series for the 𝑆-matrix in the inter-
action scheme, for theories not featuring derivative
couplings. In this case, indeed, the interaction Hamil-
tonian entering the Dyson series coincides, up to a
sign, with the (scalar) interaction Lagrangian, and
the Lorentz invariance of the 𝑆-matrix and of the en-
suing Feynman rules again manifests itself.

The equivalence between the Feynman approach
and the Dyson series is not evident if the interaction
Lagrangian contains derivatives of the fields. This oc-
curs since the interaction Hamiltonian contains non-
invariant terms, which seem to jeopardize the Lorentz
invariance of the 𝑆-matrix and the derivation of the
usual Feynman rules. This problem was known since
the late 1940s, when the achievement of a fully covari-
ant formulation of QED free of divergences at any
order in perturbation theory stimulated the pertur-
bative investigation and the proof of renormalizabil-
ity also in other theories. Among them, the scalar
QED received a special attention, being physically
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interesting on its own and posing additional tech-
nical problems due to its dependence on derivative
couplings. Already in 1950, Rohrlich [1] tackled the
problem and showed that, at any perturbative order,
non-invariant terms of the interaction Hamiltonian
are exactly compensated in the Dyson series by non-
covariant terms arising from the time-ordered prod-
uct of the derivatives of two fields. The argument by
Rohrlich is presented at the lowest perturbative or-
der in the textbook [2], whereas, in the textbook
[3], a nice general proof is presented for the cancella-
tion of non-invariant terms in the Green functions of
the theory.

The problems raised by derivative couplings in
other theories were discussed in Refs. [4, 5]. A gen-
eral solution of these problems in the case of quan-
tum mechanics was then proposed by Nambu [6]. He
proved the equivalence of the Dyson series for the
Lagrangian, with a modified 𝑇 -product, in which the
time derivatives are performed after the time order-
ing, with the Dyson series with standard 𝑇 -products
for operators that he eventually proves to be the
Hamiltonian. The extension of this proof to QFT was
done by Nishijima [7]: in this case, the modified 𝑇 -
product is manifestly covariant, and this property
eventually allows one to prove the Lorentz invari-
ance of the Dyson series. We observe that these re-
sults, though conclusive, were obtained without using
Wick’s theorem.

Other mentionable works on the same subject are
Refs. [8, 9], where, however, the main focus is on the
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very definition of interaction Hamiltonian in the in-
teraction scheme, the issue of non-invariant terms in
the 𝑆-matrix being touched laterally. A more direct
attack to the problem of derivative couplings by us-
ing Wick’s theorem can be found in Ref. [10]: in brief,
supposing the equivalence of the standard Dyson form
for the 𝑆-matrix (involving the standard time-ordered
product of interaction Hamiltonians) with the ’Wick’s
form for the 𝑆-matrix (involving a modified time-
ordered product of interaction Lagrangians) they find
a form for the interaction Hamiltonian.

In this scenario, our aim is to give an alternative
proof of the equivalence between the Dyson series for
the Hamiltonian with standard T-product and the
Dyson series for the Lagrangian with a modified co-
variant T-product. Differently from [7], we will de-
rive, from first principles, the interaction Hamilto-
nian and start from the usual Dyson series for the
Hamiltonian; then, we use Wick’s theorem to trade
standard 𝑇 -products with normal ordered products
and propagators and to eventually express everything
in terms of modified covariant 𝑇 -products; after dis-
carding the vacuum diagrams, we recognize a Dyson
series involving the Lagrangian, with a modified co-
variant 𝑇 -product. We believe that the use of Wick’s
theorem makes plain and pedagogical the proof of
the Lorentz invariance of the Dyson series and its
coincidence with the perturbative series coming from
Feynman diagrams. This is the main advantage of our
approach. In addition, with our method, we can em-
phasize the fact that such coincidence is true, if one
discards vacuum diagrams in the original Dyson se-
ries for the Hamiltonian. This fact was not explicitly
remarked in the previous literature [6, 7].

The plan of the paper is the following. First, we
revisit the case of scalar electrodynamics (Section 2)
and extend to all orders the analysis given in [2], with
the aim of stating the problem in the simplest possible
way and to illustrate its solution. Then we move to
the case of the renormalized 𝜑4 theory (Section 3),
which is taken as a representative of all theories,
where the derivative couplings, not originally present
in the bare Lagrangian, appear due to the renormal-
ization procedure, as unavoidable counterterms of the
kinetic term. In this theory, now at the lowest or-
ders in perturbation theory, we address the problem
of cancellation of non-invariant terms and present, as
a by-product, a consistent way to define the interac-
tion Hamiltonian in the interaction scheme.

2. Dyson Series of the 𝑆-Matrix
and Feynman Rules: the Usual Procedure

Let us briefly review how usual perturbative com-
putations based on Feynman diagrams stem from
the Dyson series and Wick theorem. Here, the word
“usual” refers to the fact that the Lagrangian of the
theory ℒ, which depends on the fields 𝜑𝑟 and on their
derivatives 𝜕𝜇𝜑𝑟, is decomposed as

ℒ(𝜑𝑟, 𝜕𝜇𝜑𝑟) = ℒ0(𝜑𝑟, 𝜕𝜇𝜑𝑟) + ℒ′(𝜑𝑟), (2.1)

where ℒ0, the free Lagrangian, depends on the fields
and their derivatives, while ℒ′, the interaction part,
depends only on the fields (not on their deriva-
tives). The free Lagrangian is quadratic in the fields,
whilst the interaction Lagrangian contains terms at
least cubic in the fields and is proportional to a set
of real numbers, the coupling constants. All fields 𝜑𝑟

in (2.1), and, in general, all the fields throughout the
paper without any additional index or subscript, are
intended to be in Heisenberg representation.

The definition of the momenta,

𝜋𝑟 =
𝜕ℒ

𝜕(𝜕0𝜑𝑟)
=

𝜕ℒ0

𝜕(𝜕0𝜑𝑟)
, (2.2)

allows us to introduce the Hamiltonian density

ℋ(𝜑𝑟, 𝜋𝑟) = 𝜋𝑟𝜑𝑟 − ℒ = 𝜋𝑟𝜑𝑟 − ℒ0 − ℒ′ = ℋ0 +ℋ′,

(2.3)with

ℋ0(𝜑𝑟, 𝜋𝑟) = 𝜋𝑟𝜑𝑟 − ℒ0, ℋ′(𝜑𝑟) = −ℒ′(𝜑𝑟). (2.4)

The next ingredient is the Dyson series for the 𝑆-
matrix,

𝑆 =

+∞∑︁
𝑛=0

(−𝑖)𝑛

𝑛!

∫︁
𝑑4𝑥1 ... 𝑑

4𝑥𝑛𝑇 [ℋ′
𝐼(𝑥1) ...ℋ′

𝐼(𝑥𝑛)],

(2.5)

which is written in terms of the interaction Hamilto-
nian in the so-called interaction representation,

ℋ′
𝐼(𝑡) = 𝑈ℋ′(𝑡)𝑈−1, 𝑈 = 𝑒𝑖𝐻

(𝑠)
0 𝑡𝑒−𝑖𝐻(𝑠)𝑡, (2.6)

with 𝐻
(𝑠)
0 =

∫︀
𝑑3𝑥ℋ(𝑠)

0 the free Hamiltonian and
𝐻(𝑠) =

∫︀
𝑑3𝑥ℋ(𝑠) the complete Hamiltonian, both

in the Schrödinger representation. Since ℋ′(𝜑𝑟) =
= −ℒ′(𝜑𝑟), we get

ℋ′
𝐼 = ℋ′(𝜑𝑟𝐼) = −ℒ′(𝜑𝑟𝐼), (2.7)
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so that the Dyson series is written as

𝑆 =

+∞∑︁
𝑛=0

𝑖𝑛

𝑛!

∫︁
𝑑4𝑥1 ... 𝑑

4𝑥𝑛𝑇 ×

× [ℒ′(𝜑𝑟𝐼(𝑥1)) ...ℒ′(𝜑𝑟𝐼(𝑥𝑛))], (2.8)

in terms of the interaction Lagrangian in the Heisen-
berg scheme, in which all the fields are in the interac-
tion representation. Through the use of the Wick the-
orem, we eventually find that the perturbative com-
putations can be organized by means of the usual
Feynman rules applied to ℒ′.

Clearly, it seems that this picture collapses when ℒ′

contains also derivatives of the fields 𝜑𝑟. What is cer-
tainly true in general is that the Dyson series is given
by (2.5). What is no more true is the second of (2.4),
and (2.7). In addition, the application of the Wick
theorem to the 𝑆-matrix expansion (2.5), in which
the objects inside the 𝑇 -ordered product depend on
derivatives of the fields, is not equivalent to applying
Feynman rules, since

⟨0|𝑇 [𝜕𝜇𝜑(𝑥)𝜕𝜈𝜑(𝑦)]|0⟩ ≠ 𝜕𝜇𝜕𝜈⟨0|𝑇 [𝜑(𝑥)𝜑(𝑦)]|0⟩. (2.9)

The l.h.s. of this expression is what comes from the
Wick theorem, the r.h.s. is what comes from the
Feynman rules, since in this approach derivatives are
attached to vertices, whilst internal lines are associ-
ated to propagators ⟨0|𝑇 [𝜑(𝑥)𝜑(𝑦)|0⟩.

However, we will show in two examples that all
these problems ’cancel’ each other: then, using the
Wick theorem in the Dyson series (2.5) is equivalent
to applying the Feynman rules to (2.8), which con-
tains ℒ′(𝜑𝑟𝐼), i.e. the interaction Lagrangian with
all the fields in the interaction representation.

The two examples we study are related to the scalar
electrodynamics and renormalized 𝜑4 theory in four
dimensions1.

3. Scalar Electrodynamics

As well known, the Lagrangian of the scalar electro-
dynamics is

ℒ =
[︀
𝐷𝜇𝜑

]︀†
𝐷𝜇𝜑−𝑚2𝜑†𝜑− 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 , (3.1)

with

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑒𝐴𝜇. (3.2)

1 The arguments presented below are in fact independent of
the space-time dimension.

Then, we have ℒ = ℒ0 + ℒ′, with

ℒ′ = 𝑖𝑒𝐴𝜇𝜑
†𝜕𝜇𝜑− 𝑖𝑒𝐴𝜇

(︀
𝜕𝜇𝜑

†)︀𝜑+ 𝑒2𝐴𝜇𝐴
𝜇𝜑†𝜑. (3.3)

Defining the conjugate fields

𝜋 =
𝜕ℒ
𝜕�̇�

= �̇�† + 𝑖𝑒𝐴0𝜑
†, 𝜋† =

𝜕ℒ
𝜕�̇�†

= �̇�− 𝑖𝑒𝐴0𝜑,

(3.4)
we introduce the Hamiltonian density

ℋ = 𝜋�̇�+ �̇�†𝜋† − ℒ, (3.5)

which we write ℋ = ℋ0 +ℋ′, where

ℋ0 = 𝜋†𝜋 +∇𝜑†∇𝜑+𝑚2𝜑†𝜑+
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 (3.6)

and

ℋ′ = −𝑖𝑒𝐴0𝜑
†(𝜋† + 𝑖𝑒𝐴0𝜑)− 𝑖𝑒A𝜑†∇𝜑+ 𝑖𝑒𝐴0(𝜋−

− 𝑖𝑒𝐴0𝜑
†)𝜑+ 𝑖𝑒A(∇𝜑†)𝜑− 𝑒2𝐴𝜇𝐴

𝜇𝜑†𝜑− 𝑒2𝐴2
0𝜑

†𝜑.

(3.7)

So far, all the expressions above are in the Heisenberg
representation. The operators with no subscript are
in the Heisenberg representation as well. Moreover,
it is understood that all terms in the Lagrangian and
Hamiltonian densities are subject to the normal or-
dering, 𝑁 . In order to write the Dyson series, we have
to pass to the interaction representation. We find the
following property to be useful:

𝑈𝜋†(𝑥)𝑈−1 = 𝜕0𝜑𝐼(𝑥),

𝑈𝜋(𝑥)𝑈−1 = 𝜕0𝜑†
𝐼(𝑥),

(3.8)

where the operator

𝑈 = 𝑒𝑖𝐻
(𝑠)
0 𝑡𝑒−𝑖𝐻(𝑠)𝑡, (3.9)

with the free Hamiltonian 𝐻
(𝑠)
0 =

∫︀
𝑑3𝑥ℋ(𝑠)

0 and the
complete Hamiltonian 𝐻(𝑠) =

∫︀
𝑑3𝑥ℋ(𝑠), both in the

Schrödinger representation, allows us to pass from the
Heisenberg representation to the interaction one. We
give a proof of (3.8) in Appendix. Using (3.8), we
obtain the following expression for the interaction
Hamiltonian in the interaction representation:

𝑈ℋ′𝑈−1 = ℋ′
𝐼 = −𝑖𝑒𝐴𝜇𝐼𝜑

†
𝐼𝜕

𝜇𝜑𝐼 + 𝑖𝑒𝐴𝜇
𝐼

(︀
𝜕𝜇𝜑

†
𝐼

)︀
𝜑𝐼 −

− 𝑒2𝐴𝜇𝐼𝐴
𝜇
𝐼 𝜑

†
𝐼𝜑𝐼 + 𝑒2𝐴0

2
𝐼𝜑

†
𝐼𝜑𝐼 . (3.10)
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To simplify notations, we remove the subscript 𝐼 in
the following in all the fields, because, from now
on, all the fields are in the interaction representa-
tion. However, we keep the subscript 𝐼 in the Hamil-
tonian to stress that it is in the interaction repre-
sentation. Comparing (3.10) with the interaction La-
grangian (3.3), in which all the fields are promoted to
be in the interaction representation 2, we find that

ℋ′
𝐼 = −ℒ′ + 𝑒2𝐴2

0𝜑
†𝜑 ≡ −ℒ′ +ℛ. (3.11)

We did not put the index 𝐼 in the Lagrangian
in (3.11), because it still has the form of the inter-
action Lagrangian in the Heisenberg representation:
the only caveat, as written before, is that the fields
appearing in its expression (3.3) are in the interaction
representation.

Now we prove the following equality. The Dyson
series

𝑆 =

+∞∑︁
𝑛=0

(−𝑖)𝑛

𝑛!

∫︁
𝑑4𝑥1 ... 𝑑

4𝑥𝑛𝑇 [ℋ′
𝐼(𝑥1) ...ℋ′

𝐼(𝑥𝑛)]

(3.12)

can be written as

𝑆 =

+∞∑︁
𝑛=0

𝑖𝑛

𝑛!

∫︁
𝑑4𝑥1 ... 𝑑

4𝑥𝑛𝑇 [ℒ′(𝑥1) ...ℒ′(𝑥𝑛)], (3.13)

provided that we use a modified definition of the 𝑇 -
product in (3.13). Given

⟨0|𝑇
(︀
𝜑1𝜑

†
2

)︀
|0⟩ ≡ 𝑖Δ𝐹 (𝑥1 − 𝑥2), (3.14)

the operation 𝑇 satisfies the Wick theorem, but its
’action’ on elementary fields is the following 3:

⟨0|𝑇
(︀
𝜑1𝜑

†
2

)︀
|0⟩ = ⟨0|𝑇

(︀
𝜑1𝜑

†
2

)︀
|0⟩ ≡ 𝑖Δ𝐹 (𝑥1 − 𝑥2),

(3.15)
⟨0|𝑇

(︀
(𝜕𝜇𝜑1)𝜑

†
2

)︀
|0⟩ ≡ 𝑖𝜕𝜇

1Δ𝐹 (𝑥1 − 𝑥2), (3.16)
⟨0|𝑇

(︀
(𝜕𝜇𝜑1)(𝜕

𝜈𝜑†
2)
)︀
|0⟩ ≡ 𝑖𝜕𝜇

1 𝜕
𝜈
2Δ𝐹 (𝑥1 − 𝑥2). (3.17)

For the sake of brevity, we have introduced here the
notation 𝜑𝑖 ≡ 𝜑(𝑥𝑖) and 𝜑†

𝑖 ≡ 𝜑†(𝑥𝑖), as well as

2 Actually, this procedure is, in our opinion, the correct one
to define (interaction) Lagrangians in the interaction repre-
sentation in a general case.

3 The 𝑇 -product is known in the literature as “Wick 𝑇 -
product”, whereas the standard 𝑇 -product is called also
’Dyson 𝑇 -product’.

𝜕𝜇
𝑖 ≡ 𝜕/𝜕𝑥𝑖,𝜇; below, we will use similarly 𝐴𝜇,𝑖 for

𝐴𝜇(𝑥𝑖) and will extend this notation also to functions
of fields, as the Lagrangian density. We remark that
the use of the Wick theorem in expansion (3.13) with
the operation 𝑇 produces a Dyson series whose terms
are all manifestly Lorentz invariant. The Lorentz in-
variance is not evident, if we use expansion (3.12),
which is, however, the a priori correct one.

We now give a perturbative proof of this state-
ment. Let us write the first two terms of the Dyson
series:

𝑆(1) = −𝑖

∫︁
𝑑4𝑥1

[︁
ℋ′(𝑥1)

]︁
= −𝑖

∫︁
𝑑4𝑥1(−ℒ′ +ℛ)1,

(3.18)

𝑆(2) = −1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
ℋ′(𝑥1)ℋ′(𝑥2)

]︁
=

= −1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
(−ℒ′ +ℛ)1(−ℒ′ +ℛ)2

]︁
=

= −1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
(−ℒ′)1(−ℒ′)2 +

+ℛ1(−ℒ′)2 + (−ℒ′)1ℛ2 +ℛ1ℛ2

]︁
. (3.19)

We remark that, in 𝑆(1), there is an extra term with
respect to −ℒ′: 𝑒2

(︀
𝐴2

0,1

)︀
𝜑†
1𝜑1, which is not Lorentz

invariant. However, this is not the end of the story,
since another source of the Lorentz non-invariance
comes from the operation of 𝑇 arising in various terms
of 𝑆(2) after the application of the Wick theorem. To
be precise, we have that, remembering (3.15)–(3.17),

⟨0|𝑇
(︀
(𝜕𝜇𝜑1)𝜑

†
2

)︀
|0⟩ = 𝑖𝜕𝜇

1Δ𝐹 (𝑥1 − 𝑥2) =

= ⟨0|𝑇
(︀
(𝜕𝜇𝜑1)𝜑

†
2

)︀
|0⟩, (3.20)

⟨0|𝑇
(︀
(𝜕𝜇𝜑1)(𝜕

𝜈𝜑†
2)
)︀
|0⟩ = 𝑖𝜕𝜇

1 𝜕
𝜈
2Δ𝐹 (𝑥1 − 𝑥2)−

− 𝑖𝛿𝜇0 𝛿
𝜈
0 𝛿

(4)(𝑥1 − 𝑥2) = ⟨0|𝑇
(︀
(𝜕𝜇𝜑1)(𝜕

𝜈𝜑†
2)
)︀
|0⟩−

− 𝑖𝛿𝜇0 𝛿
𝜈
0 𝛿

(4)(𝑥1 − 𝑥2). (3.21)

We see that a non-covariant term appears in the “con-
traction” between 𝜕𝜇𝜑1 and 𝜕𝜈𝜑†

2. The use of (3.20)
and (3.21) in the term 𝑇 [(−ℒ′)1 (−ℒ′)2] in 𝑆(2) even-
tually gives

−1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
=

= −1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
+ 𝑖

∫︁
𝑑4𝑥1ℛ1.

(3.22)
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Indeed,

𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
= 𝑇

[︁
(𝑖𝑒𝐴𝜇𝜑

†𝜕𝜇𝜑−𝑖𝑒𝐴𝜇(𝜕𝜇𝜑
†)𝜑)1 ×

× (𝑖𝑒𝐴𝜈𝜑
†𝜕𝜈𝜑− 𝑖𝑒𝐴𝜈(𝜕𝜈𝜑

†)𝜑)2

]︁
+𝑂(𝑒3) =

= 𝑇
[︁
(𝑖𝑒𝐴𝜇𝜑

†𝜕𝜇𝜑)1(𝑖𝑒𝐴𝜈𝜑
†𝜕𝜈𝜑)2

]︁
+

+𝑇
[︁
(𝑖𝑒𝐴𝜇𝜑

†𝜕𝜇𝜑)1(−𝑖𝑒𝐴𝜈(𝜕𝜈𝜑
†)𝜑)2

]︁
+

+𝑇
[︁
(−𝑖𝑒𝐴𝜇(𝜕𝜇𝜑

†)𝜑)1(𝑖𝑒𝐴𝜈𝜑
†𝜕𝜈𝜑)2

]︁
+

+𝑇
[︁
(−𝑖𝑒𝐴𝜇(𝜕𝜇𝜑

†)𝜑)1(−𝑖𝑒𝐴𝜈(𝜕𝜈𝜑
†)𝜑)2

]︁
+𝑂(𝑒3).

(3.23)

Now, we use the Wick theorem and write the resulting
expression in terms of the modified 𝑇 -product, 𝑇 , by
means of (3.20), (3.21). We get

𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
= 𝑇

[︁
(𝑖𝑒𝐴𝜇𝜑

†𝜕𝜇𝜑)1(𝑖𝑒𝐴𝜈𝜑
†𝜕𝜈𝜑)2

]︁
+

+𝑇
[︁
(𝑖𝑒𝐴𝜇𝜑

†𝜕𝜇𝜑)1(−𝑖𝑒𝐴𝜈(𝜕𝜈𝜑
†)𝜑)2

]︁
−

− 𝑖𝑒2𝑁
[︀
(𝐴2

0,1)𝜑
†
1𝜑1

]︀
𝛿(4)(𝑥1 − 𝑥2)+

+𝑇
[︁
(−𝑖𝑒𝐴𝜇(𝜕𝜇𝜑

†)𝜑)1(𝑖𝑒𝐴𝜈𝜑
†𝜕𝜈𝜑)2

]︁
−

− 𝑖𝑒2𝑁
[︀
(𝐴2

0,1)𝜑
†
1𝜑1

]︀
𝛿(4)(𝑥1 − 𝑥2)+

+𝑇
[︁
(−𝑖𝑒𝐴𝜇(𝜕𝜇𝜑

†)𝜑)1(−𝑖𝑒𝐴𝜈(𝜕𝜈𝜑
†)𝜑)2

]︁
+𝑂(𝑒3) =

= 𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
−2𝑖𝑒2𝑁

[︀
(𝐴2

0,1)𝜑
†
1𝜑1

]︀
𝛿(4)(𝑥1−𝑥2) =

= 𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
− 2𝑖ℛ1𝛿

(4)(𝑥1 − 𝑥2). (3.24)

In view of (3.24), we conclude that

𝑆(1) + 𝑆(2) = −𝑖

∫︁
𝑑4𝑥1(−ℒ′)1 −

− 1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
(−ℒ′)1(−ℒ′)2 +

+ℛ1(−ℒ′)2 + (−ℒ′)1ℛ2 +ℛ1ℛ2

]︁
, (3.25)

where we have used that

𝑇 (ℛ1(−ℒ′)2) = 𝑇 (ℛ1(−ℒ′)2),

𝑇 ((−ℒ′)1ℛ2) = 𝑇 ((−ℒ′)1ℛ2),

𝑇 (ℛ1ℛ2) = 𝑇 (ℛ1ℛ2),

since ℛ does not contain terms with time deriva-
tives. In other words, as follows from (3.20) and
(3.21), the 𝑇 -product differs from the 𝑇 -product, only
when it applies to two interaction Lagrangians. This
implies that, when applying the Wick theorem to
higher order terms of the Dyson 𝑆-matrix expansion,
the only source of Lorentz non-invariant terms will be
the contraction of two interaction Lagrangians.

We observe that, in (3.25), the non-invariant term
ℛ1, originally present in 𝑆(1), has been canceled by a
non-invariant term generated in 𝑆(2) by the contrac-
tion of the two interaction Lagrangians – see (3.22).

In the sum 𝑆(1) + 𝑆(2), there are, however, two
terms left which are non-invariant:

−1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
ℛ1(−ℒ′)2 + (−ℒ′)1ℛ2

]︁
=

= −
∫︁

𝑑4𝑥1𝑑
4𝑥2𝑇

[︁
ℛ1(−ℒ′)2

]︁
(3.26)

and

−1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
ℛ1ℛ2

]︁
. (3.27)

The first of these terms is canceled by the non-inva-
riant contributions which arise in

𝑆(3) =
(−𝑖)3

3!

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑑
4𝑥3𝑇

[︁
(−ℒ′ +ℛ)1 ×

× (−ℒ′ +ℛ)2(−ℒ′ +ℛ)3

]︁
from terms with three ℒ′s, two of them being cont-
racted. There are three equivalent such terms, which,
recalling (3.24), are easily shown to sum up to

(−𝑖)3

3!

∫︁
𝑑4𝑥1𝑑

4𝑥2 3 𝑇
[︁
−2𝑖ℛ1(−ℒ′)2

]︁
and, therefore, exactly cancel (3.26) in 𝑆(1) + 𝑆(2) +
+𝑆(3). The other non-invariant term of 𝑆(1) + 𝑆(2),
given in (3.27), is canceled in 𝑆(1)+𝑆(2)+𝑆(3)+𝑆(4)

by the three equivalent terms in 𝑆(3) with one ℛ and
two contracted ℒ′s and by the three equivalent terms
in 𝑆(4) with four ℒ′s pairwise contracted.

This pattern of cancellations can be general-
ized. Non-invariant terms containing 𝑛 factors of the
type ℛ and 𝑚 factors of the type ℒ′, which can always
be put in the form

𝑇
[︁
ℛ1 ...ℛ𝑛(−ℒ′)𝑛+1 ... (−ℒ′)𝑛+𝑚

]︁
, (3.28)
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appear first in 𝑆(𝑛+𝑚) and arise also in 𝑆(𝑛+𝑚+1) (in
terms with 𝑛 − 1 factors of the type ℛ and one pair
of contracted ℒ′s), then in 𝑆(𝑛+𝑚+2) (in terms with
𝑛 − 2 factors of the type ℛ and two pairs of con-
tracted ℒ′s), etc. The last appearance is in 𝑆(2𝑛+𝑚),
in terms with no factors of the type ℛ and 𝑛 pairs
of contracted ℒ′s. To summarize, (3.28) appears in
𝑆(𝑛+𝑚+𝑗), 𝑗 = 0, 1, ..., 𝑛, in terms with 𝑛 − 𝑗 fac-
tors ℛ and 𝑗 contractions of interaction Lagrangian
pairs. Each contraction brings along a Dirac delta
which cancels one of the integrations over the space-
time, so that all terms end up to be integrated as in
𝑆(𝑛+𝑚), i.e. over 𝑑4𝑥1 ... 𝑑

4𝑥𝑛+𝑚. The combinatorial
weight in which term (3.28) appears in 𝑆(𝑛+𝑚+𝑗) is
given by

𝑤𝑛𝑚
𝑗 ≡ (−𝑖)𝑛+𝑚+𝑗

(𝑛+𝑚+ 𝑗)!

(︂
𝑛+𝑚+ 𝑗

𝑚+ 2𝑗

)︂
×

×
(︂
𝑚+ 2𝑗

2𝑗

)︂
(2𝑗 − 1)!! (−2𝑖)𝑗 ,

where the first factor comes from the definition of
the Dyson series, the second counts the number of
(equivalent) terms in 𝑆(𝑛+𝑚+𝑗) with 𝑛 − 𝑗 factors
of type ℛ and 𝑚 + 2𝑗 factors of type ℒ′, the third
counts the number of ways to select 2𝑗 Lagrangians
to be contracted out of the 𝑚 + 2𝑗 available ones,
the fourth is the number of ways 2𝑗 Lagrangians can
be pairwise contracted, the last factor comes from
the fact that each of the 𝑗 contractions of two La-
grangians gives −2𝑖ℛ. The total weight of the non-
invariant term (3.28) is, therefore,

𝑛∑︁
𝑗=0

𝑤𝑛𝑚
𝑗 =

(−𝑖)𝑛+𝑚

𝑚!

𝑛∑︁
𝑗=0

(−2)𝑗
(2𝑗 − 1)!!

(2𝑗)!(𝑛− 𝑗)!
= 0,

since, observing that (2𝑗)! = 2𝑗𝑗!(2𝑗 − 1)!!, we have

𝑛∑︁
𝑗=0

(−2)𝑗
(2𝑗 − 1)!!

(2𝑗)!(𝑛− 𝑗)!
=

=
1

𝑛!

𝑛∑︁
𝑗=0

(−1)𝑗
(︂
𝑛

𝑗

)︂
=

1

𝑛!
(1− 1)𝑛 = 0.

We have then proved that the Dyson series (3.12)
can be traded for the manifestly Lorentz invariant se-
ries (3.13). The perturbative expansion for (3.13) can
then be organized according to the usual Feynman
rules for the scalar electrodynamics.

4. Renormalized 𝜑4 Theory

We consider here the theory of a massless real scalar
field, undergoing a quartic self-interaction, as a sim-
ple representative of all field theories which acquire
an interaction term depending on derivatives of the
fields through the procedure of perturbative renor-
malization 4.

We will show that a mechanism of cancellation of
non-covariant terms takes place on similar grounds
as for the scalar electrodynamics, modulo a couple
of caveats which make the present case interesting
per sé.

The Lagrangian of the theory is

ℒ =
1

2
𝜕𝜇𝜑𝜕

𝜇𝜑− 𝜆

4!
𝜑4. (4.1)

The starting step of the perturbative renormalization
is to redefine the field and the coupling as

𝜑 = 𝑍1/2𝜑R,

𝜆 = 𝑍𝜆𝜆R,

leading to the following expression for the Lag-
rangian:

ℒ =
𝑍

2
𝜕𝜇𝜑R𝜕

𝜇𝜑R − 𝑍2𝑍𝜆𝜆R

4!
𝜑4
R, (4.2)

which can be recast in the form

ℒ =
1

2
𝜕𝜇𝜑R𝜕

𝜇𝜑R − 𝜆R

4!
𝜑4
R +

+
𝑍 − 1

2
𝜕𝜇𝜑R𝜕

𝜇𝜑R − (𝑍2𝑍𝜆 − 1)𝜆R

4!
𝜑4
R. (4.3)

The first two terms in ℒ have the same form as in
the original Lagrangian, but they are written through
the renormalized field and coupling; the remaining
two terms are the so-called “counterterms”. For the
purposes of perturbative calculations and the related
renormalization procedure, all terms but the first one
in (4.3) must be considered as interaction terms, so
that we can write ℒ = ℒ0 + ℒ′, with

ℒ0 =
1

2
𝜕𝜇𝜑𝜕

𝜇𝜑 (4.4)

and
ℒ′ = − 𝜆

4!
𝜑4+

𝑍 − 1

2
𝜕𝜇𝜑𝜕

𝜇𝜑− (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4, (4.5)

4 The actual perturbative renormalizability of the 𝜑4 theory
and the triviality issue are inessential in this context.
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where we have omitted, for brevity, the subscript 𝑅,
understanding that, from now on, the field and cou-
pling are always the renormalized ones. We can see
that ℒ′ contains an interaction term depending on the
field derivatives in spite of the fact that the original
’bare’ theory had a derivative-free interaction. Moreo-
ver, ℒ′ depends on the renormalized coupling 𝜆 both
explicitly and through the renormalization constants
𝑍 and 𝑍𝜆, which in perturbation theory must take the
form of a power series in 𝜆, the constant term being
equal to one. In the following, it will prove convenient
to consider (𝑍 − 1) and (𝑍2𝑍𝜆 − 1) as additional, in-
dependent couplings, their relation to 𝜆, i.e. the fact
that they are both 𝑂(𝜆), being used only to justify
their smallness and, therefore, their suitability as ex-
pansion parameters.

To introduce the Hamiltonian, we have to define
the conjugate field:

𝜋 =
𝜕ℒ
𝜕�̇�

= 𝑍�̇�. (4.6)

We stress that 𝜑 is the renormalized field, therefore 𝜋,
after the quantization, will implicitly enter the canon-
ical commutation relations together with 𝜑. It can be
easily shown that the equations of motion for 𝜑 and 𝜋,
as derived from their commutators with the Hamil-
tonian (to be written below), are equivalent to the
equation of motion for the bare field, i.e. the Euler–
Lagrange equation for the bare field 𝜑 as derived from
the original Lagrangian (4.1). This is in marked con-
trast with Ref. [11], where, instead, the canonical
commutation relations were imposed at the level of
the bare fields, and an ad hoc modification of the
Hamiltonian had to be performed to obtain the equa-
tion of motion of the bare field from the Hamiltonian
dynamics.

The Hamiltonian density is defined in the usual
way:

ℋ = 𝜋�̇�− ℒ =
𝜋2

2
+

1

2
(∇𝜑)2 +

𝜆

4!
𝜑4 − 𝜋2(𝑍 − 1)

2𝑍
+

+
(𝑍 − 1)

2
(∇𝜑)2 +

(𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4, (4.7)

which we can split as ℋ = ℋ0 +ℋ′, with

ℋ0 =
𝜋2

2
+

1

2
(∇𝜑)2 (4.8)

and
ℋ′ =

𝜆

4!
𝜑4 − 𝜋2(𝑍 − 1)

2𝑍
+

(𝑍 − 1)

2
(∇𝜑)2 +

+
(𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4. (4.9)

So far, all the fields are in the Heisenberg represen-
tation and, again, all terms in the Lagrangian and
Hamiltonian densities are implicitly assumed to be
subjected to the normal ordering, 𝑁 . In order to write
the Dyson series, we pass to the interaction represen-
tation and use the property

𝑈𝜋(𝑥)𝑈−1 = 𝜕0𝜑𝐼(𝑥), (4.10)

which is analogous to (3.8) for a real scalar
field. Using (4.10), we obtain the following expression
for the interaction Hamiltonian in the interaction rep-
resentation:

𝑈ℋ′𝑈−1 = ℋ′
𝐼 =

𝜆

4!
𝜑4 − �̇�2(𝑍 − 1)

2𝑍
+

+
(𝑍 − 1)

2
(∇𝜑)2 +

(𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4, (4.11)

where all the fields are to be intended in the in-
teraction representation. In the following, we remove
the subscript 𝐼 in all the fields, because, from now
on, all the fields are in the interaction representa-
tion. However, we keep the subscript 𝐼 in the Hamil-
tonian, to stress that it is in the interaction repre-
sentation. Comparing (4.11) with the interaction La-
grangian (4.5), in which all the fields are promoted to
be in the interaction representation, we find that

ℋ′
𝐼 = −ℒ′ +

(𝑍 − 1)2

2𝑍
�̇�2. (4.12)

We did not put the subscript 𝐼 in the Lagrangian
in (4.12), because it still has the form of the interac-
tion Lagrangian in the Heisenberg representation: the
only caveat, as written before, is that the fields ap-
pearing in its expression (4.5) are in the interaction
representation. We observe that ℋ′

𝐼 is not Lorentz-
invariant, due to the presence of the term depending
on �̇�. This expression for ℋ′

𝐼 agrees, mutatis mutan-
dis, with the one found in Ref. [11].

The stage now is set to prove that, also in the
present case, the Dyson series (3.12) can be written
as in (3.13), provided that a modified definition of the
𝑇 -product, 𝑇 , is used: as before, 𝑇 satisfies the Wick
theorem and

⟨0|𝑇
(︀
𝜑1𝜑2

)︀
|0⟩ = ⟨0|𝑇

(︀
𝜑1𝜑2

)︀
|0⟩ ≡

≡ 𝑖Δ𝐹 (𝑥1 − 𝑥2), (4.13)
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⟨0|𝑇
(︀
(𝜕𝜇𝜑1)𝜑2

)︀
|0⟩ ≡ 𝑖𝜕𝜇

1Δ𝐹 (𝑥1 − 𝑥2), (4.14)

⟨0|𝑇
(︀
(𝜕𝜇𝜑1)(𝜕

𝜈𝜑2)
)︀
|0⟩ ≡ 𝑖𝜕𝜇

1 𝜕
𝜈
2Δ𝐹 (𝑥1 − 𝑥2). (4.15)

We present a sketch of the perturbative proof of the
validity of expansion (3.13). The two main ingredi-
ents are, as in the case studied in the previous section,
the Wick theorem and the following relations between
the standard 𝑇 -product and the modified one, 𝑇 :

⟨0|𝑇
(︀
(𝜕𝜇𝜑1)𝜑2

)︀
|0⟩ = 𝑖𝜕𝜇

1Δ𝐹 (𝑥1 − 𝑥2) =

= ⟨0|𝑇
(︀
(𝜕𝜇𝜑1)𝜑2

)︀
|0⟩, (4.16)

⟨0|𝑇
(︀
(𝜕𝜇𝜑1)(𝜕

𝜈𝜑2)
)︀
|0⟩ = 𝑖𝜕𝜇

1 𝜕
𝜈
2Δ𝐹 (𝑥1 − 𝑥2)−

− 𝑖𝛿𝜇0 𝛿
𝜈
0 𝛿

(4)(𝑥1 − 𝑥2) = ⟨0|𝑇
(︀
(𝜕𝜇𝜑1)(𝜕

𝜈𝜑2)
)︀
|0⟩−

− 𝑖𝛿𝜇0 𝛿
𝜈
0 𝛿

(4)(𝑥1 − 𝑥2). (4.17)

We now write the first term of the Dyson series:

𝑆(1) = −𝑖

∫︁
𝑑4𝑥1

[︁
ℋ′(𝑥1)

]︁
=

= −𝑖

∫︁
𝑑4𝑥1

(︂
−ℒ′ +

(𝑍 − 1)2

2𝑍
�̇�2

)︂
1

. (4.18)

Consider that

(𝑍 − 1)2

2𝑍
=

(𝑍 − 1)2

2

1

1 + (𝑍 − 1)
=

=
(𝑍 − 1)2

2

[︁
1− (𝑍 − 1) + (𝑍 − 1)2 − (𝑍 − 1)3 + ...

]︁
,

where each term is proportional to an integer power
of the ’coupling’ (𝑍−1), starting from (𝑍−1)2. This
means that, to cancel all non-invariant terms in 𝑆(1),
one needs to consider the non-invariant terms arising
from the operation of 𝑇 through the Wick theorem
in all other pieces 𝑆(𝑛) of the Dyson expansion. Let
us work this out explicitly for the lowest-order con-
tribution, proportional to (𝑍 − 1)2, which requires
considering, in addition to 𝑆(1), just 𝑆(2):

𝑆(2) = −1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
ℋ′(𝑥1)ℋ′(𝑥2)

]︁
=

= −1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇

[︂(︂
−ℒ′ +

(𝑍 − 1)2

2𝑍
�̇�2

)︂
1

×

×
(︂
−ℒ′ +

(𝑍 − 1)2

2𝑍
�̇�2

)︂
2

]︂
. (4.19)

Restricting to contributions at most of order (𝑍−1)2,
we notice that

𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
=

= 𝑇

[︂(︂
− 𝜆

4!
𝜑4+

(𝑍 − 1)

2
𝜕𝜇𝜑𝜕

𝜇𝜑− (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4

)︂
1

×

×
(︂
− 𝜆

4!
𝜑4 +

(𝑍 − 1)

2
𝜕𝜈𝜑𝜕

𝜈𝜑− (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4

)︂
2

]︂
=

= 𝑇

[︂(︂
− 𝜆

4!
𝜑4 − (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4

)︂
1

×

×
(︂
− 𝜆

4!
𝜑4 − (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4

)︂
2

]︂
+

+𝑇

[︂(︂
− 𝜆

4!
𝜑4− (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4

)︂
1

(︂
(𝑍 − 1)

2
𝜕𝜈𝜑𝜕

𝜈𝜑

)︂
2

]︂
+

+𝑇

[︂(︂
(𝑍 − 1)

2
𝜕𝜇𝜑𝜕

𝜇𝜑

)︂
1

(︂
− 𝜆

4!
𝜑4− (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4

)︂
2

]︂
+

+𝑇

[︂(︂
(𝑍 − 1)

2
𝜕𝜇𝜑𝜕

𝜇𝜑

)︂
1

(︂
(𝑍 − 1)

2
𝜕𝜈𝜑𝜕

𝜈𝜑

)︂
2

]︂
. (4.20)

We rewrite such expression by applying the Wick
theorem and then expressing the resulting terms by
means of the modified 𝑇 -product using (4.16), (4.17).
If we neglect terms with two contractions contribut-
ing to vacuum diagrams, we get

𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
= 𝑇

[︂(︂
− 𝜆

4!
𝜑4− (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4

)︂
1

×

×
(︂
− 𝜆

4!
𝜑4 − (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4

)︂
2

]︂
+

+𝑇

[︂(︂
− 𝜆

4!
𝜑4− (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4

)︂
1

(︂
(𝑍 − 1)

2
𝜕𝜈𝜑𝜕

𝜈𝜑

)︂
2

]︂
+

+𝑇

[︂(︂
(𝑍 − 1)

2
𝜕𝜇𝜑𝜕

𝜇𝜑

)︂
1

(︂
− 𝜆

4!
𝜑4− (𝑍2𝑍𝜆 − 1)𝜆

4!
𝜑4

)︂
2

]︂
+

+𝑇

[︂(︂
(𝑍 − 1)

2
𝜕𝜇𝜑𝜕

𝜇𝜑

)︂
1

(︂
(𝑍 − 1)

2
𝜕𝜈𝜑𝜕

𝜈𝜑

)︂
2

]︂
+

+𝑁

[︂
(𝑍 − 1)2

4
(−𝑖) 4 (�̇�1)

2𝛿(4)(𝑥1 − 𝑥2)

]︂
=

= 𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
+

+𝑁
[︁
(𝑍 − 1)2(−𝑖)(�̇�1)

2𝛿(4)(𝑥1 − 𝑥2)
]︁
, (4.21)

where the last, non-Lorentz-invariant term cancels ex-
actly the non-invariant term in 𝑆(1) of order (𝑍−1)2,
so that

𝑆(1) + 𝑆(2) = −𝑖

∫︁
𝑑4𝑥1(−ℒ′)1 −

952 ISSN 2071-0194. Ukr. J. Phys. 2021. Vol. 66, No. 11



On the Lorentz-Invariance of the Dyson Series

− 1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
+𝑂((𝑍 − 1)3).

(4.22)
The procedure can be repeated also for terms propor-
tional to (𝑍 − 1)3 ∼ 𝜆3, which requires considering
𝑆(1), 𝑆(2) and 𝑆(3), the latter being given by

𝑆(3) =
𝑖

6

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑑
4𝑥3𝑇

[︁
ℋ′(𝑥1)ℋ′(𝑥2)ℋ′(𝑥3)

]︁
=

=
𝑖

6

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑑
4𝑥3𝑇

[︂(︂
−ℒ′ +

(𝑍 − 1)2

2𝑍
�̇�2

)︂
1

×

×
(︂
−ℒ′ +

(𝑍 − 1)2

2𝑍
�̇�2

)︂
2

(︂
−ℒ′ +

(𝑍 − 1)2

2𝑍
�̇�2

)︂
3

]︂
. (4.23)

A straightforward, but tedious calculation, based on
the application of the Wick theorem and then of
Eqs. (4.16) and (4.17) leads to

𝑆(2) = −1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇

[︂(︂
−ℒ′ +

(𝑍 − 1)2

2𝑍
�̇�2

)︂
1

×

×
(︂
−ℒ′+

(𝑍 − 1)2

2𝑍
�̇�2

)︂
2

]︂
+ 𝑖

(𝑍 − 1)2

2𝑍2

∫︁
𝑑4𝑥1�̇�

2
1 (4.24)

and also to
𝑖

6

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑑
4𝑥3𝑇

[︁
(−ℒ′)1(−ℒ′)2(−ℒ′)3

]︁
=

=
𝑖

6

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑑
4𝑥3𝑇

[︁
(−ℒ′)1(−ℒ′)2(−ℒ′)3

]︁
+

+
(𝑍 − 1)2

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
(−ℒ′)1�̇�

2
2

]︁
+

+ 𝑖
(𝑍 − 1)3

2

∫︁
𝑑4𝑥1�̇�

2
1. (4.25)

In getting this last expression, we neglected double
contractions insisting on the same couple of variables,
which contribute to disconnected graphs, containing
a vacuum diagram, and a triple contraction, which
produces a vacuum diagram.

Then, using the fact that both 𝑍 − 1 and ℒ′ are
𝑂(𝜆), we get

𝑆(1) + 𝑆(2) + 𝑆(3) = −𝑖

∫︁
𝑑4𝑥1(−ℒ′)1 −

− 1

2

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑇
[︁
(−ℒ′)1(−ℒ′)2

]︁
+

+
𝑖

6

∫︁
𝑑4𝑥1𝑑

4𝑥2𝑑
4𝑥3𝑇

[︁
(−ℒ′)1(−ℒ′)2(−ℒ′)3

]︁
+𝑂(𝜆4).

(4.26)
We stress that the equivalence (4.26) holds, if one ne-
glects diagrams containing a vacuum to vacuum pro-
cess. This subtlety, even if not relevant for practical
applications, was apparently overlooked by [6, 7].

5. Conclusions

In this short note, we have given the evidence that
the perturbative Dyson series for the 𝑆-matrix enjoys
the relativistic invariance even in the case where the
interaction depends on derivatives of the fields. This
problem is usually overlooked, since people almost
always resort to the Feynman diagrams and rules
which manifestly keep the Lorentz invariance and
which come naturally, if field theories are quantized
by means of a functional generator. However, the
equivalence between the Feynman approach and the
more traditional Dyson series is not a priori evident,
if the interaction Lagrangian contains derivatives of
the fields. We have tackled this problem in the case
of scalar electrodynamics and renormalized 𝜑4 the-
ory, giving simple perturbative arguments based on
the Wick theorem that the Dyson series for a Hamil-
tonian is Lorentz-invariant and – after discarding vac-
uum diagrams – coincides with the perturbative se-
ries coming from applying the Feynman rules to the
Lagrangian. More in general, we are confident that,
by similar techniques, the same coincidence can be
proven for all other renormalized quantum field the-
ories, in particular, for QED.

APPENDIX.
Proof of (3.8) and (4.10)

We give a proof of relations (3.8) and (4.10). We start from the
definition of a field in the interaction representation:

𝜑𝐼 = 𝑈𝜑𝑈−1, 𝑈 = 𝑒𝑖𝐻
(𝑠)
0 𝑡𝑒−𝑖𝐻(𝑠)𝑡, (A1)

with 𝜑 in the Heisenberg representation. Then, we have

𝜕0𝑈 = −𝑖𝑒𝑖𝐻
(𝑠)
0 𝑡𝐻′(𝑠)𝑒−𝑖𝐻(𝑠)𝑡 = −𝑖𝑈𝐻′, (A2)

with

𝐻′ = 𝑒𝑖𝐻
(𝑠)𝑡𝐻′(𝑠)𝑒−𝑖𝐻(𝑠)𝑡 (A3)

the interaction Hamiltonian in the Heisenberg representa-
tion. As an immediate consequence, we have

𝜕0𝑈
−1 = 𝑖𝐻′𝑈−1, (A4)

In addition, one has

𝜕0𝜑 = −𝑖[𝜑,𝐻], (A5)

for fields in the Heisenberg representation.
Putting everything together, we have

𝜕0𝜑𝐼 = −𝑖𝑈 [𝜑,𝐻0]𝑈
−1, (A6)

with the ’free’ Hamiltonian 𝐻0 in the Heisenberg representa-
tion. For the scalar electrodynamics, it equals

𝐻0 =

∫︁
𝑑3𝑥ℋ0,
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ℋ0 = 𝜋†𝜋 +∇𝜑†∇𝜑+𝑚2𝜑†𝜑+
1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 . (A7)

For the renormalized 𝜑4 theory, it is

ℋ0 =
𝜋2

2
+

1

2
(∇𝜑)2. (A8)

Since, in both cases, we have the fundamental equal time com-
mutation relation (in the case of renormalized fields, the canon-
ical commutation relations have to be imposed on renormalized
fields and momenta)

[𝜑(𝑥), 𝜋(𝑦)] = 𝑖𝛿3(x− y), (A9)

we have

𝜕0𝜑𝐼 = −𝑖𝑈 [𝜑,𝐻0]𝑈
−1 = 𝑈𝜋†𝑈−1, (A10)

which gives immediately relations (3.8) and (4.10), since, for
the renormalized 𝜑4 theory, 𝜋† = 𝜋.
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ПРО ЛОРЕНЦ-IНВАРIАНТНIСТЬ РЯДУ
ДАЙСОНА В ТЕОРIЯХ IЗ ВЗАЄМОДIЄЮ,
ЩО ЗАЛЕЖИТЬ ВIД ПОХIДНИХ

Ми вивчаємо ряд Дайсона для 𝑆-матрицi, коли взаємодiя
мiстить похiднi вiд полiв. Ми зосередилися на двох кон-
кретних прикладах: скалярнiй електродинамiцi та перенор-
мованiй теорiї 𝜑4. Використовуючи теорему Вiка, ми дово-
димо, що лоренц-iнварiантнiсть виконується, i що звичай-
нi правила Фейнмана можна застосовувати до лагранжiана
взаємодiї.

Ключ о в i с л о в а: квантова теорiя поля, канонiчне кван-
тування, ряд Дайсона, теорема Вiка.
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