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DIATOMIC MOLECULES WITH THE IMPROVED
DEFORMED GENERALIZED DENG–FAN POTENTIAL
PLUS DEFORMED ECKART POTENTIAL MODEL
THROUGH THE SOLUTIONS OF THE MODIFIED
KLEIN–GORDON AND SCHRÖDINGER
EQUATIONS WITHIN NCQM SYMMETRIES

In this study, the deformed Klein–Gordon equation and Schrödinger equations were solved
with the improved deformed generalized Deng–Fan potential plus the deformed Eckart potential
(IDGDFDE-P, in short) model using Bopp’s shift and standard perturbation theory methods
in the symmetries of extended quantum mechanics. By employing the improved approximation
to the centrifugal term, the relativistic and nonrelativistic bound-state energies are obtained
for some selected diatomic molecules such as N2, I2, HCl, CH, LiH, and CO. The relativis-
tic energy shift Δ𝐸𝑡𝑜𝑡

𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) and the perturbative nonrelativistic
corrections Δ𝐸𝑛𝑟

𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) appeared as functions of the parame-
ters (𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2) and the parameters of noncommutativity (Θ, 𝜎, 𝜒), in addition to the
atomic quantum numbers (𝑛, 𝑗, 𝑙, 𝑠,𝑚). In both relativistic and nonrelativistic problems, we
show that the corrections to the energy spectrum are smaller than for the main energy in the
ordinary cases of RQM and NRQM. A straightforward limit of our results to ordinary quantum
mechanics shows that the present results under the IDGDFDE-P model is are consistent with
what is obtained in the literature. In the new symmetries of noncommutative quantum mechan-
ics (NCQM), it is not possible to get the exact analytical solutions for 𝑙 = 0 and 𝑙 ̸= 0. Only
the approximate ones can be obtained. We have clearly shown that the Schrödinger and Klein–
Gordon equations in the new symmetries can physically describe two Dirac equations and the
Duffin–Kemmer equation within the IDGDFDE-P model in the extended symmetries.
K e yw o r d s: Klein–Gordon equation, Schrödinger equation, deformed generalized Deng–Fan
potential, deformed Eckart potential, diatomic molecules, noncommutative geometry, Bopp’s
shift method, star products.

1. Introduction

The fundamental equations have been a powerful
tool for researchers. This enables one to provide the
means for knowing all the necessary information on
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matter by the wave and energy function and then
to deduce all other information about it. However,
these equations are considered a scientific revolution
that has successfully enabled the initiative to dis-
cover more information. Since the early years of
the discovery of both the relativistic Klein–Gordon
and the nonrelativistic Schrödinger equations, the
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researchers have been keenly interested in applying
them to the study of molecules using different poten-
tials. Among these possibilities is the Morse poten-
tial [1], Yukawa potential [2], Manning–Rosen poten-
tial [3], Woods–Saxon potential [4, 5], Pöschl–Teller
potential [6, 7], Deng–Fan potential [8], Hulthén po-
tential [9, 10], etc. In this work, we will shed light
on two potentials. The first one is the Deng–Fan po-
tential [11] which can be used in chemical physics,
molecular spectroscopy, molecular physics, and re-
lated fields [12], while the second is the Eckart po-
tential [13]. This potential is related to the diatomic
molecular potential model that is used very widely
in physical chemistry and biophysics [14–17]. It was
first introduced by Eckart [13] in 1930. Due to the
importance of wide applications of this potential, as
previously indicated, a considerable number of re-
searchers have devoted knowledge of it in the non-
relativistic Schrödinger equation [18–24]m relativistic
Dirac equation [25–27], and Klein–Gordon equation
[28,29] within the two s and  l waves. Recently, Ikot et
al., by using the Nikiforov–Uvarov functional analy-
sis method, obtained a new approach for exponential-
type potentials including the Eckart potential in the
context of the Schrödinger equation [30]. Many re-
searchers interested in combining two or more po-
tentials to expand the field of applications to in-
clude new ones. A vital example of a system of com-
bined potentials is the deformed generalized Deng–
Fan potential and deformed Eckart potential. In 2013,
Awogaa et al. studied the Schrödinger equation with
these combined potentials in D-dimensions [31]. Ve-
ry recently, Hatami et al. [12] considered the Klein–
Gordon equation under the linear combination of
the deformed generalized Deng–Fan potential and de-
formed Eckart potential using the Nikiforov–Uvarov
and the 𝑞-deformed version of the approximation
scheme proposed in [32], and obtained the relativistic
energy spectrum for any l -state and the correspond-
ing radial wave functions. This new combination is
useful in studying the atomic interaction in diatomic
molecules such as H2, CO, ScN, and ScF [33]. It is
worth to point out that Dong et al. (2005) proposed a
new anharmonic oscillator

(︁
1
2𝜇𝜔

2𝑟2 + ~
2𝜇

𝛼
𝑟2

)︁
and pre-

sented the exact solutions of the Schrödinger equa-
tion with this oscillator including the ring-shaped po-
tential ~

2𝜇
𝛽 cos2(𝜃)
𝑟2 sin2(𝜃)

and established the ladder opera-
tors directly from the normalized radial wave func-

tions and used them to evaluate the closed expres-
sions of matrix elements for some connected functions
[34]. Furthermore, in 2006, Dong and Cassou ob-
tained the exact solutions of the Klein–Gordon equa-
tion with equal scalar and vector

(︀
−𝛼

𝑟

)︀
with the ring-

shaped potential 𝛽 cos2(𝜃)
𝑟2 sin2(𝜃)

. It should be noted that
the energy obtained is very complex [35]. Moreover,
Nath and Roy considered two physically important
potentials (Manning–Rosen and Pöschl–Teller ones)
for the ro-vibrational energy in diatomic molecules
using the combined Greene–Aldrich- and Pekeris-type
approximations within the Nikiforov–Uvarov frame-
work. This employs a recently proposed scheme [36].

As a result of several considerations and many
physical problems arising at the level of the non-re-
normalizable electroweak interaction, the non-regula-
rization of quantum field theories, quantum gravity,
string theory, where the idea of non-commutativity
resulting from properties of a deformation of space-
space (W. Heisenberg in 1930 was the first to sug-
gest the idea, and then it was developed by Sny-
der in 1947) was one of the major solutions of these
problems. In the past two decades, in particular, it
has attracted the great attention of researchers [37–
52]. Naturally, the topographical properties of the
noncommutativity space-space and phase-phase have
a clear effect on the various physical properties of
quantum systems, and this has been a very interest-
ing subject in many fields of physics, as mentioned
previously.

The above-mentioned works inspired us to investi-
gate the approximate solutions of the 3-dimensional
deformed Klein–Gordon equation (DKGE, in short)
and the deformed Schrödinger equation (DSE, in
short) for the improved deformed generalized po-
tential Deng–Fan plus deformed Eckart potential
(IDGDFDE-P) model proposed by Hatami et al. in
the relativistic regime and by Awoga and his cowork-
ers in the nonrelativistic regime [12, 31] in the con-
text of ordinary quantum mechanics. The potential
under study can be applied to some selected diatomic
molecules such as H2, I2, HCl, CH, LiH, and CO
in RNCQM and NRNCQM symmetries. We hope to
discover more investigations on the microscopic scale
and to achieve more scientific knowledge of elemen-
tary particles on the nano-scales. The relativistic and
nonrelativistic energy levels under the deformed gen-
eralized Deng–Fan potential plus the deformed Eckart
potential have not been obtained yet in the RNCQM
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and NRNCQM symmetries. We hope to find new ap-
plications and profound physical interpretations using
a new model of the improved deformed generalized
Deng–Fan potential plus the deformed Eckart poten-
tial, this potential modeled in the new symmetries of
NCQM as follows:⎧⎪⎨⎪⎩
𝑉𝑑𝑓𝑒 (𝑟𝑛𝑐) = 𝑉𝑑𝑓𝑒 (𝑟)−

𝜕𝑉𝑑𝑓𝑒 (𝑟)

𝜕𝑟

LΘ

2𝑟
+𝑂(Θ2),

𝑆𝑑𝑓𝑒(𝑟𝑛𝑐) = 𝑆𝑑𝑓𝑒 (𝑟)−
𝜕𝑆𝑑𝑓𝑒(𝑟)

𝜕𝑟

LΘ

2𝑟
+𝑂(Θ2),

(1)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑉𝑑𝑓𝑒 (𝑟) = 𝑉0

(︂
𝑐− 𝑏𝑒−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟

)︂
−

− 𝑉1𝑒
−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
+

𝑉2𝑒
−𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2

𝑆𝑑𝑓𝑒 (𝑟) = 𝑆0

(︂
𝑐− 𝑏𝑒−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟

)︂
−

− 𝑆1𝑒
−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
+

𝑆2𝑒
−𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 ,

(2)

where the parameter 𝑏 = exp (𝛼𝑟𝑒)−1, 𝑞 is the defor-
mation parameter, (𝑐, 𝛼 and 𝑏) are adjustable con-
stants, (𝑉0, 𝑆0), (𝑉1, 𝑆1) (𝑉2, 𝑆2) are the potential
depths, 𝑟𝑛𝑐 and 𝑟 represent the distances between
the two particles in NCQM and QM symmetries. The
coupling LΘ equals 𝐿𝑥 Θ12 + 𝐿𝑦 Θ23 + 𝐿𝑧 Θ13 with
𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 are represent the usual components
of the angular momentum operator L in RQM and
NRQM while the new noncommutativity parameter
Θ𝑖𝑗 equals 𝜃𝑖𝑗/2. The new algebraic structure of co-
variant noncommutative canonical commutations re-
lations (NCNCCRs) in the three representations of
Schrödinger, Heisenberg, and interactions pictures, in
the new symmetry of NCQM, is as follows [53–63]:[︁
𝑥
(S,H,I)
𝜇 , 𝑝

(S,H,I)
𝜈

]︁
= 𝑖~𝛿𝜇𝜈 =⇒

=⇒
[︁
�̂�
(S,H,I)
𝜇

*,𝑝
(S,H,I)
𝜈

]︁
= 𝑖~eff𝛿𝜇𝜈

(3)

and[︁
𝑥
(S,H,I)
𝜇 , 𝑥

(S,H,I)
𝜈

]︁
= 0 =⇒

=⇒
[︁
�̂�
(S,H,I)
𝜇

*,�̂�
(S,H,I)
𝜈

]︁
= 𝑖𝜃𝜇𝜈

(4)

with �̂�
(S,H,I)
𝜇 =

(︀
�̂�S
𝜇, �̂�

H
𝜇 , �̂�

I
𝜇

)︀
and 𝑝

(S,H,I)
𝜇 =

=
(︀
𝑝S𝜇, 𝑝

H
𝜇 , 𝑝

I
𝜇

)︀
. It is worth to note that Eq. (4)

is a covariant equation (the same behavior of 𝑥𝜇)
under the Lorentz transformation, which includes
boosts and/or rotations of the observer’s inertial
frame. We generalize the NCNCCRs to include
Heisenberg and interaction pictures. It should be
noted that, in our calculation, we have used natural
units ~ = 𝑐 = 1. Here, ~eff ∼= ~ is the effective Planck
constant, 𝜃𝜇𝜈 = 𝜖𝜇𝜈𝜃 (𝜃 is the noncommutative
parameter) which is an infinitesimal parameter,
if compared to the energy values and elements of
antisymmetric (3 × 3) real matrices, and 𝛿𝜇𝜈 is
the Kronecker symbol. The symbol * represents
the Weyl–Moyal star product, which is generalized
between two ordinary functions 𝑓(𝑥) and ℎ(𝑥) to the
new deformed form 𝑓(𝑥) * ℎ(𝑥), which is expressed
in NCQM symmetries as follows [60–75]:

(𝑓 * ℎ) (𝑥) = exp
(︀
𝑖𝜖𝜇𝜈 𝜃𝜕𝑥

𝜇 𝜕𝑥
𝜇

)︀
(𝑓ℎ) (𝑥) ≈ (𝑓ℎ) (𝑥)−

− 𝑖𝜖𝜇𝜈𝜃

2
𝜕𝑥
𝜇𝑓𝜕

𝑥
𝜇ℎ⌋𝑥𝜇=𝑥𝜈 +𝑂

(︀
𝜃2
)︀
. (5)

The indices (𝜇, 𝜈 = 1, 2, 3) , and 𝑂
(︀
𝜃2
)︀

stand for the
second- and higher-order terms of the NC parame-
ter. Physically, the second term in Eq. (5) presents
the effects of space-space noncommutativity. Fur-
thermore, it is possible to unify the operators ̂︀𝜔H

𝜇 (𝑡) =

=
(︀
𝑥H
𝜇 ∨ 𝑝H𝜇

)︀
(𝑡) and ̂︀𝜔I

𝜇 (𝑡) =
(︀
𝑥I
𝜇 ∨ 𝑝I𝜇

)︀
(𝑡) in the

Heisenberg and interaction pictures using the follow-
ing projection relations, respectively:

̂︀𝜔H
𝜇 (𝑡) = exp

(︂
𝑖

~
̂︀H𝑑𝑓𝑒
𝑟𝑛𝑐𝑇

)︂ ̂︀𝜔S
𝜇 exp

(︂
− 𝑖

~
̂︀H𝑑𝑓𝑒
𝑟𝑛𝑐𝑇

)︂
,

̂︀𝜔I
𝜇 (𝑡) = exp

(︂
𝑖

~eff
̂︀H𝑑𝑓𝑒
𝑜𝑛𝑐𝑇

)︂ ̂︀𝜔𝑆
𝜇 exp

(︂
− 𝑖

~eff
̂︀H𝑑𝑓𝑒
𝑜𝑛𝑐𝑇

)︂
,

(6a)

where

𝜔𝐻
𝜇 (𝑡) = exp

(︂
𝑖

~
̂︀𝐻𝑟𝑑𝑓𝑒𝑇

)︂
𝜁𝑆𝜇 exp

(︂
− 𝑖

~
̂︀𝐻𝑟𝑑𝑓𝑒𝑇

)︂
,

𝜔𝐼
𝜇 (𝑡) = exp

(︂
𝑖

~eff
̂︀𝐻𝑜𝑑𝑓𝑒𝑇

)︂
𝜔𝑆
𝜇 (𝑡) exp

(︂
− 𝑖

~eff
̂︀𝐻𝑜𝑑𝑓𝑒𝑇

)︂
,

(6b)

where 𝜔S
𝜇 = 𝑥S

𝜇 ∨ 𝑝S𝜇 is the unified two operators
in the Schrödinger picture, 𝜔H

𝜇 =
(︀
𝑥H
𝜇 ∨ 𝑝H𝜇

)︀
(𝑡) and

𝜔I
𝜇 =

(︀
𝑥I
𝜇 ∨ 𝑝I𝜇

)︀
(𝑡) are the Heisenberg and interaction

pictures in the ordinary QM symmetries. Moreover,
the dynamics of new systems 𝑑̂︀𝜔H

𝜇 (𝑡)

𝑑𝑡 can be described
by the following motion equations in the deformed
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Heisenberg picture as follows:

𝑑𝜔H
𝜇 (𝑡)

𝑑𝑡
= − 𝑖

~

[︁
𝜔H
𝜇 (𝑡) , ̂︀H𝑟𝑑𝑓𝑒

]︁
+

𝜕𝜔H
𝜇 (𝑡)

𝜕𝑡
=⇒

=⇒
𝑑̂︀𝜔H

𝜇 (𝑡)

𝑑𝑡
= − 𝑖

~eff

[︁̂︀𝜔H
𝜇 (𝑡) *, ̂︀𝐻𝑑𝑓𝑒

𝑟𝑛𝑐

]︁
+

𝜕̂︀𝜔H
𝜇 (𝑡)

𝜕𝑡
. (7)

Here, ( ̂︀𝐻𝑑𝑓𝑒
𝑜𝑛𝑐 and ̂︀𝐻𝑑𝑓𝑒

𝑟𝑛𝑐) are the free and total Hamil-
tonian operators for the deformed generalized Deng–
Fan potential plus the deformed Eckart potential
while (̂︀H𝑜𝑑𝑓𝑒 and ̂︀H𝑟𝑑𝑓𝑒) are the corresponding Hamil-
tonians in the NCQM symmetries. The present inves-
tigation aims at constructing a relativistic noncom-
mutative effective scheme for the deformed general-
ized Deng–Fan potential plus the deformed Eckart
potential model. It should be noted that the anticom-
mutators of the generators 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 in the new
symmetries are modified to become as follows:

[𝐿𝛼, 𝐿𝛽 ] = 𝑖𝜀𝛾𝛼𝛽𝐿𝛾 =⇒ [𝐿𝛼
*,𝐿𝛽 ] = 𝑖𝜀𝛾𝛼𝛽𝐿𝛾 . (8)

These generators form a three-dimensional modified
Lie algebra of the extended group SO(3). The new
bilinear product [𝐿𝛼

*,𝐿𝛽 ] will satisfy the modified an-
tisymmetries and Jacobi identity properties:

[𝐿𝛼, 𝐿𝛽 ] = − [𝐿𝛽 , 𝐿𝛼] =⇒ [𝐿𝛼
*,𝐿𝛽 ] = − [𝐿𝛽

*,𝐿𝛼] (9)

and

[𝐿𝛾
*, [𝐿𝛼

*,𝐿𝛽 ]] + [𝐿𝛽
*, [𝐿𝛾

*,𝐿𝛼]] + [𝐿𝛼
*, [𝐿𝛽

*,𝐿𝛾 ]] = 0.

(10)

On the other hand, the choice of combined Eckart
potentials stems from the fact that it exhibits al-
most exact behavior similar to the Morse [1] and
Deng–Fan [8] potentials and so considers it an ex-
cellent choice for the study of atomic interactions for
diatomic molecules such as H2, I2, HCl, CH, LiH,
and CO. Our current work is structured in six sec-
tions. The first one includes the scope and purpose
of our investigation, while the remaining parts of the
paper are structured as follows. A review of the rel-
ativistic KGE with a generalized Deng–Fan poten-
tial plus deformed Eckart potential is presented in
Sect. 2. Sect. 3 is devoted to studying the DRKGE
by applying the ordinary Bopp’s shift method and an
improved approximation of the centrifugal term to
obtain the effective potential of the deformed gener-
alized Deng–Fan potential plus the deformed Eckart

potential. In addittion, via perturbation theory, we
find the expectation values of some radial terms
to calculate the energy shift produced by the per-
turbed effective deformed generalized Deng–Fan po-
tential plus the deformed Eckart potential. Sect. 4
will consider the global energy shift and the global
energy spectra produced with the deformed gener-
alized Deng–Fan potential plus the deformed Eckart
potential in the RNCQM symmetries. In Sect. 5, we
will determine the energy spectra of some selected
diatomic molecules such as H2, I2, HCl, CH, LiH,
and CO under the deformed generalized Deng–Fan
potential plus the deformed Eckart potential in the
RNCQM. In Sect. 6, the summary and conclusions
are presented.

2. Revised of RKGE
under Deformed Generalized Deng–Fan
Potential Plus the Deformed
Eckart Potential Model

The vector and scalar deformed generalized Deng–
Fan potentials plus the deformed Eckart potential in
the symmetries of ordinary quantum mechanics are
given by [12, 31]:

𝑉𝑑𝑓𝑒 (𝑟) = 𝑉0

(︂
𝑐− 𝑏𝑒−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟

)︂2
− 𝑉1𝑒

−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
+

+
𝑉2𝑒

−𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 (11)

and

𝑆𝑑𝑓𝑒 (𝑟) = 𝑆0

(︂
𝑐− 𝑏𝑒−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟

)︂2
− 𝑆1𝑒

−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
+

+
𝑆2𝑒

−𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 . (12)

The first two terms are the deformed generalized
Deng–Fan potential, while the third and fourth terms
are the deformed Eckart potential. For the diatomic
molecule with the reduced mass 𝑀 and wave func-
tion Ψ(𝑟, 𝜃, 𝜙), the 3-dimensional relativistic Klein–
Gordon equation (RKGE) with a scalar potential
𝑆𝑑𝑓𝑒 (𝑟) and a vector potential 𝑉𝑑𝑓𝑒 (𝑟) is given as(︁
−Δ+ (𝑀 + 𝑆𝑑𝑓𝑒 (𝑟))

2 −

− (𝐸𝑛𝑙 − 𝑉𝑑𝑓𝑒 (𝑟))
2
)︁
Ψ(𝑟, 𝜃, 𝜙) = 0. (13)

The vector potential 𝑉𝑑𝑓𝑒 (𝑟) due to the four-vector
linear momentum operator 𝐴𝜇 (𝑉𝑑𝑓𝑒 (𝑟) ,A = 0) and
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space-time scalar potential 𝑆𝑑𝑓𝑒 (𝑟) due to mass, 𝐸𝑛𝑙,
represents the three-dimensional relativistic energy
eigenvalues, and 𝑙 represents the principal and or-
bital quantum numbers. The deformed generalized
Deng–Fan potential and the deformed Eckart poten-
tial have spherical symmetry, allowing the solutions
of the time-independent RKGE of the known form
Ψ(𝑟, 𝜃, 𝜙) = 𝑈𝑛𝑙(𝑟)

𝑟 𝑌 𝑚
𝑙 (𝜃, 𝜙) to separate the radial

𝑈𝑛𝑙 (𝑟) and angular parts 𝑌 𝑚
𝑙 (𝜃, 𝜙) of the wave func-

tion Ψ(𝑟, 𝜃, 𝜙), and Δ is the ordinary 3-dimensional
Laplacian operator. Thus, Eq. (13) becomes:(︃
𝑑2

𝑑𝑟2
−
(︀
𝑀2 − 𝐸2

𝑛𝑙

)︀
− 2 (𝐸𝑛𝑙𝑉𝑑𝑓𝑒 (𝑟) +𝑀𝑆𝑑𝑓𝑒 (𝑟))+

+𝑉 2
𝑑𝑓𝑒 (𝑟)− 𝑆2

𝑑𝑓𝑒 (𝑟)−
𝑙(𝑙 + 1)

𝑟2

)︃
𝑈𝑛𝑙 (𝑟) = 0. (14)

Using the shortened notation 𝐸𝑑𝑓𝑒
eff = 𝑀2 − 𝐸2

𝑛𝑙 and
𝑉 𝑑𝑓𝑒
eff (𝑟) = 2 (𝐸𝑛𝑙𝑉𝑑𝑓𝑒 (𝑟) +𝑀𝑆𝑑𝑓𝑒 (𝑟)) − 𝑉 2

𝑑𝑓𝑒 (𝑟)+

+𝑆2
𝑑𝑓𝑒 (𝑟) +

𝑙(𝑙+1)
𝑟2 , we obtain the following second-

order Schrödinger-like equation:(︂
𝑑2

𝑑𝑟2
−
(︁
𝐸𝑑𝑓𝑒

eff + 𝑉 𝑑𝑓𝑒
eff (𝑟)

)︁)︂
𝑈𝑛𝑙 (𝑟) = 0, (15)

when the vector potential equals the scalar potential
𝑉𝑚𝑝 (𝑟) = 𝑆𝑚𝑝 (𝑟), the effective potential of the de-
formed generalized Deng–Fan potential plus the de-
formed Eckart potential model is as follows:

𝑉 𝑑𝑓𝑒
eff (𝑟) = 2 (𝐸𝑛𝑙 +𝑀)

(︃
𝑉0

(︂
𝑐− 𝑏𝑒−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟

)︂2
−

− 𝑉1𝑒
−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
+

𝑉2𝑒
−𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2

)︃
+

𝑙(𝑙 + 1)

𝑟2
. (16)

Hamati et al. [12] derived analytical expressions for
the wave function and the corresponding energy val-
ues for the deformed generalized Deng–Fan poten-
tial plus the deformed Eckart potential using the
Nikiforov–Uvarov method and employing the approx-
imation scheme for the centrifugal term in the rela-
tivistic regime as

Ψ(𝑟, 𝜃, 𝜙) =
𝑁𝑛𝑙

𝑟
𝑠𝜖𝑛𝑙 (1− 𝑞𝑠)

1/2+𝑣𝑛𝑙 𝑌 𝑚
𝑙 (𝜃, 𝜙)×

× 2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝑣𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠) (17)

and

𝜀𝑞𝑛𝑙 =
2 (𝐸𝑛𝑙 +𝑀) (2𝑉0𝑏𝑐+ 𝑉1) /𝛼

2

ϒ1 (𝛼,𝐸𝑛𝑙, 𝑉0, 𝑉2)
−

− 2 (𝐸𝑛𝑙 +𝑀) (2𝑉0𝑏𝑐+ 𝑉1) /𝛼
2

ϒ(𝛼,𝐸𝑛𝑙, 𝑉0, 𝑉2)
−

− ϒ2

ϒ1 (𝛼,𝐸𝑛𝑙, 𝑉0, 𝑉2)
, (18)

where 𝑠 = exp (−𝛼𝑟), 2𝐹1(−𝑛, 2𝜀𝑛𝑙 + 2𝑣𝑛𝑙 + 𝑛+
+1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠) are the hypergeometric polyno-
mials, while 𝑁𝑛𝑙 is the normalization constant,
ϒ1 (𝛼,𝐸𝑛𝑙, 𝑉0, 𝑉2), ϒ2 and 𝑣𝑛𝑙 are given by:

ϒ1 (𝛼,𝐸𝑛𝑙, 𝑉0, 𝑉2) = 𝑞 (2𝑛+ 1)+

+

⎯⎸⎸⎸⎷ 𝑞2 + 8𝑞 (𝐸𝑛𝑙 +𝑀)𝑉2/𝛼
2 +

+4
(︁
2(𝐸𝑛𝑙+𝑀)𝑉0𝑏

2

𝛼2 + 𝑙 (𝑙 + 1)
)︁ ,

ϒ2 = 2𝑛2

⎯⎸⎸⎸⎷ 𝑞2 + 8𝑞 (𝐸𝑛𝑙 +𝑀)𝑉2/𝛼
2 +

+4
(︁
2(𝐸𝑛𝑙+𝑀)𝑉0𝑏

2

𝛼2 + 𝑙 (𝑙 + 1)
)︁ ,

𝛼2𝜀2𝑛𝑙 = 𝑀2 − 𝐸2
𝑛𝑙 − 2 (𝐸𝑛𝑙 +𝑀)𝑉0𝑐

2,

𝑣𝑛𝑙 = 1/2

[︃
1 + 4

𝐸𝑛𝑙 +𝑀

𝛼2𝑞
𝑉2 +

+4

(︂
2 (𝐸𝑛𝑙 +𝑀)𝑉0𝑏

2

𝛼2𝑞2
+

𝑙 (𝑙 + 1)

𝑞2

)︂]︃1/2
.

3. The Solution of DRKGE
under the IDGDFDE-P Model
in RNCQM Symmetries

3.1. Review of Bopp’s shift method

At the beginning of this subsection, we give and
define the formula of the IDGDFDE-P model in
the symmetries of relativistic noncommutative three-
dimensional real space RNCQM symmetries. To
achieve this goal, it is useful to write the DKGE by
applying the notion of the Weyl–Moyal star product
which has been seen previously in Eqs. (3)–(10) on
the differential equation that is satisfied by the ra-
dial wave function 𝑈𝑛𝑙 (𝑟) in Eq. (15). Thus, the ra-
dial wave function in RNCQM symmetries becomes
as follows [76–82]:(︂
𝑑2

𝑑𝑟2
−
(︁
𝐸𝑑𝑓𝑒

eff + 𝑉 𝑑𝑓𝑒
eff (𝑟)

)︁)︂
* 𝑈𝑛𝑙 (𝑟) = 0. (19)
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It is established extensively in the literature and a ba-
sic text that star products can be simplified by Bopp’s
shift method [68, 78–84]. The physicist Fritz Bopp
was the first to consider pseudodifferential operators
obtained from a symbol by the quantization rules 𝑥 →
→ 𝑥 − 𝑖

2
𝜕
𝜕𝑝 and 𝑝 → 𝑝 + 𝑖

2
𝜕
𝜕𝑥 instead of the

ordinary correspondence 𝑥 → 𝑥 and 𝑝 → 𝑖
2

𝜕
𝜕𝑥

[83, 84]. In the physics literature, this is known as
Bopp’s shifts method. This quantization procedure
is called Bopp quantization. Specialists know that
Bopp’s shift method [65, 80, 81], has been applied
effectively and has succeeded in simplifying the three
basic equations: DSE [49, 53–55, 62–64], DKGE
[48,52, 74, 75, 78, 80–82],and deformed Dirac equation
(DDE) [51, 58] with the notion of star product to the
Schrödinger equation (SE), KGE, and Dirac equation
(DE) with the notion of ordinary product, respec-
tively. Thus, Bopp’s shift method is based on reduc-
ing second-order linear differential equations (DSE,
DKGE, and DDE) with star product to second-order
linear differential equations (SE, KGE, and DE) with-
out star product with simultaneous translation in
the space-space. The CNCCRs with star product in
Eqs. (3) and (4) become new CNCCRs without the
notion of star product as follows (see, e.g., [44–54]):[︁
�̂�(S,H,I)
𝜇 , 𝑝(S,H,I)

𝜈

]︁
= �̂�(S,H,I)

𝜇 𝑝(S,H,I)
𝜈 −

− 𝑝(S,H,I)
𝜈 �̂�(S,H,I)

𝜇 = 𝑖~eff𝛿𝜇𝜈 (20)

and[︁
�̂�(S,H,I)
𝜇 , �̂�(S,H,I)

𝜈

]︁
= �̂�(S,H,I)

𝜇 �̂�(S,H,I)
𝜈 −

− �̂�(S,H,I)
𝜈 �̂�(S,H,I)

𝜇 = 𝑖𝜃𝜇𝜈 . (21)

The generalized positions and momentum co-
ordinates �̂�

(S,H,I)
𝜇 =

(︀
𝑥S
𝜇, �̂�

H
𝜇 , �̂�

I
𝜇

)︀
and 𝑝

(S,H,I)
𝜇 =

=
(︀
𝑝S𝜇, 𝑝

H
𝜇 , 𝑝

I
𝜇

)︀
, in the symmetries of RNCQM are

defined in terms of the corresponding coordinates in
the symmetries of RQM 𝑥

(S,H,I)
𝜇 =

(︀
𝑥S
𝜇, 𝑥

H
𝜇 , 𝑥

I
𝜇

)︀
and

𝑝
(S,H,I)
𝜇 =

(︀
𝑝S𝜇, 𝑝

H
𝜇 , 𝑝

I
𝜇

)︀
via, respectively [40–50]:

�̂�(S,H,I)
𝜇 = 𝑥(S,H,I)

𝜇 −
3∑︁

𝜈=1

𝜃𝜇𝜈
2

𝑝(S,H,I)
𝜈 , (22)

𝑝(S,H,I)
𝜇 = 𝑝(S,H,I)

𝜇 . (23)

This allows us to find the operator 𝑟2𝑛𝑐 equal to 𝑟2 −
−LΘ (see in the Introduction) in NCQM symmetries
[71–74].

3.2. The new effective
potential of the IDGDFDE-P
model in RNCQM symmetries

According to the Bopp shift method, Eq. (19) be-
comes similar to the following, like the Schrödinger
equation (without the notions of star product):(︂
𝑑2

𝑑𝑟2
−
(︀
𝑀2 − 𝐸2

𝑛𝑙

)︀
− 𝑙 (𝑙 + 1)

𝑟2𝑛𝑐
−

− 2𝑉𝑑𝑓𝑒 (𝑟𝑛𝑐) (𝐸𝑛𝑙 +𝑀)

)︂
𝑈𝑛𝑙 (𝑟) = 0. (24)

The new operators 𝑉𝑑𝑓𝑒 (𝑟𝑛𝑐) and 𝑙(𝑙+1)
𝑟2𝑛𝑐

expressed
in RNCQM symmetries are as follows:

𝑉𝑑𝑓𝑒 (𝑟𝑛𝑐) = 𝑉0

(︂
𝑐− 𝑏𝑒−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟

)︂
−

− 𝑉1𝑒
−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
+

𝑉2𝑒
−𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 −

− 𝜕𝑉𝑑𝑓𝑒 (𝑟)

𝜕𝑟

LΘ

2𝑟
+𝑂

(︀
Θ2
)︀
, (25)

𝑙 (𝑙 + 1)

𝑟2𝑛𝑐
=

𝑙 (𝑙 + 1)

𝑟2
+

𝑙 (𝑙 + 1)

𝑟4
LΘ+𝑂

(︀
Θ2
)︀
. (26)

Therefore, we can rewrite:

2𝑉𝑑𝑓𝑒 (𝑟𝑛𝑐) (𝐸𝑛𝑙 +𝑀) =

= 2𝑉𝑑𝑓𝑒 (𝑟) (𝐸𝑛𝑙 +𝑀)−
(︂
𝐸𝑛𝑙 +𝑀

𝑟

)︂
×

× 𝜕𝑉𝑑𝑓𝑒 (𝑟)

𝜕𝑟
LΘ+𝑂(Θ2). (27)

Moreover, to illustrate the above equation in a sim-
ple mathematical way and attractive form, it is useful
to introduce the symbol 𝑉 𝑑𝑓𝑒

𝑛𝑐−eff (𝑟). Thus, the radial
equation (24) becomes:(︂
𝑑2

𝑑𝑟2
−
(︁
𝐸𝑑𝑓𝑒

eff + 𝑉 𝑑𝑓𝑒
𝑛𝑐−eff (𝑟)

)︁)︂
𝑈𝑛𝑙 (𝑟) = 0, (28)

with

𝑉 𝑑𝑓𝑒
𝑛𝑐−eff (𝑟) = 𝑉 𝑑𝑓𝑒

eff (𝑟) + 𝑉 𝑑𝑓𝑒
pert (𝑟). (29)

Moreover, 𝑉 𝑑𝑓𝑒
pert (𝑟) is given by the following

relation:

𝑉 𝑑𝑓𝑒
pert (𝑟) =

=

(︂
𝑙 (𝑙 + 1)

𝑟4
− 𝐸𝑛𝑙 +𝑀

𝑟

𝜕𝑉𝑑𝑓𝑒 (𝑟)

𝜕𝑟

)︂
LΘ+𝑂

(︀
Θ2
)︀
.(30)

188 ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 3



Diatomic Molecules

After straightforward calculations, we obtain

𝜕𝑉𝑑𝑓𝑒 (𝑟)

𝜕𝑟
=

𝛽1𝑒
−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
+

𝛽2𝑒
−2𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 +

+
𝛽3𝑒

−3𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
3 +

𝛽4𝑒
−𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 +

+
𝛽5𝑒

−2𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
4 , (31)

where 𝛽1 = (2𝑉0𝑏𝑐+ 𝑉1)𝛼, 𝛽2 = 2𝑏𝑉0𝑐𝑞𝛼− 2𝑉0𝑏
2𝛼+

+𝑉1𝑞𝛼, 𝛽3 = −2𝑉0𝑏
2𝑞𝛼, 𝛽4 = −𝑉2𝛼 and 𝛽5 =

= −𝑉2𝑞𝛼. We insert Eq. (31) into Eq. (30), which al-
lows it to be rewritten in the following form:

𝑉 𝑑𝑓𝑒
pert (𝑟) =

(︃
𝑙 (𝑙 + 1)

𝑟4
−
(︂
𝐸𝑛𝑙 +𝑀

𝑟

)︂
×

×

(︃
𝛽1𝑒

−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
+

𝛽2𝑒
−2𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 +

+
𝛽3𝑒

−3𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
3 +

𝛽4𝑒
−𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 +

+
𝛽5𝑒

−2𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
4

)︃)︃
LΘ+𝑂

(︀
Θ2
)︀
. (32)

It should be noted that Eq. (15) with the deformed
generalized Deng–Fan potential plus the deformed
Eckart potential can be exactly solved for the s-wave
(𝑙 = 0), but, in the case 𝑙 ̸= 0, Hamati et al. obtained
approximate analytical solutions of the RKGE with
the arbitrary 𝑙 ̸= 0 state using the Nikiforov–Uvarov
method and employing the approximation scheme for
the centrifugal term. In the new form of the radial-like
Schrödinger equation given by Eq. (28), we have new
terms including 1

𝑟 , 1
𝑟4 and other Coulombic-like terms

which make this equation impossible to be solved an-
alytically for 𝑙 = 0. For 𝑙 ̸= 0, it can only be solved ap-
proximately. From this point of view, we can consider
the improved approximation of the centrifugal term
proposed by Badawi et al. [85], this method proved
its power and efficiency, when compared with the
Greene–Aldrich approximation [85]. The approxima-
tions of the type suggested by Greene and Aldrich
for a short-range potential is an excellent approxima-
tion to the centrifugal term and allows us to get a
second-order solvable differential equation unlike the

following approximation used in the previous works
[19, 30, 31, 48, 52, 53, 82]:

1

𝑟2
≈ 𝛼2𝑒−2𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 =

𝛼2𝑠2

(1− 𝑞𝑠)
2 =⇒

=⇒ 1

𝑟
≈ 𝛼𝑒−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
=

𝛼𝑠

1− 𝑞𝑠
. (33)

We point out here that the above approximation
is only valid for small values of the screening param-
eter. By considering the transformation of the form
𝑠 = = exp (−𝛼𝑟), Eq. (32) now becomes:

𝑉 𝑑𝑓𝑒
pert (𝑟) =

(︃
𝑙 (𝑙 + 1)

𝑟4
−
(︂
𝐸𝑛𝑙 +𝑀

𝑟

)︂
×

×

(︃
𝛽1𝑠

1− 𝑞𝑠
+

𝛽2𝑠
2

(1− 𝑞𝑠)
2 +

𝛽3𝑠
3

(1− 𝑞𝑠)
3 +

+
𝛽4𝑠

(1− 𝑞𝑠)
2 +

𝛽5𝑠
2

(1− 𝑞𝑠)
4

)︃)︃
LΘ+𝑂

(︀
Θ2
)︀
. (34)

We now use the approximation noted above,
Eq. (33), to find an approximation for the effective
potential 𝑉 𝑑𝑓𝑒

pert (𝑠) that is applied to a small value of
the screening parameter:

𝑉 𝑑𝑓𝑒
pert(𝑠) =

(︃
𝛽 (𝑛, 𝑙) 𝑠4

(1− 𝑞𝑠)
4 − 𝛼 (𝐸𝑛𝑙 +𝑀)×

×

(︃
𝛽1𝑠

2

(1− 𝑞𝑠)
2 +

𝛽2𝑠
3

(1− 𝑞𝑠)
3 +

+
𝛽4𝑠

2

(1− 𝑞𝑠)
3 +

𝛽5𝑠
3

(1− 𝑞𝑠)
5

)︃)︃
LΘ+𝑂

(︀
Θ2
)︀
, (35)

with 𝛽 (𝑛, 𝑙) = 𝛼4𝑙 (𝑙 + 1)− 𝛼 (𝐸𝑛𝑙 +𝑀)𝛽3. We have
applied the approximations by Greene and Aldrich
to the term 𝑙(𝑙+1)

𝑟4 . The deformed generalized po-
tential Deng–Fan plus deformed Eckart potential is
extended by including new terms proportional to
the radial terms 𝑠2

(1−𝑞𝑠)4
, 𝑠2

(1−𝑞𝑠)2
, 𝑠3

(1−𝑞𝑠)3
, 𝑠2

(1−𝑞𝑠)3

and 𝑠3

(1−𝑞𝑠)5
to become the IDGDFDE-P model in

RNCQM symmetries. The produced new effective
potential 𝑉 𝑑𝑓𝑒

𝑛𝑐−eff (𝑠) is also proportional to the in-
finitesimal vector Θ. This allows us to consider the
additive part 𝑉 𝑑𝑓𝑒

pert (𝑠) as a perturbation potential
compared with the main potential 𝑉 𝑑𝑓𝑒

eff (𝑠) (parent
potential operator in the symmetries of RNCQM;

ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 3 189



A. Maireche

i.e., the inequality 𝑉 𝑑𝑓𝑒
pert (𝑠) ≪ 𝑉 𝑑𝑓𝑒

eff (𝑠) has become
achieved. Hence, all physical justifications for apply-
ing the time-independent perturbation theory become
satisfied. This allows us to give a complete prescrip-
tion for determining the energy level of the general-
ized excited states.

3.3. The expectation values
in RNCQM symmetries

In this subsection, we want to apply perturbative the-
ory. In the case of RNCQM, we find the expectation
values of the radial terms ( 𝑠2

(1−𝑞𝑠)4
, 𝑠2

(1−𝑞𝑠)2
, 𝑠3

(1−𝑞𝑠)3
,

𝑠2

(1−𝑞𝑠)3
and 𝑠3

(1−𝑞𝑠)5
) and consider the unperturbed

wave function seen previously in Eq. (17). Thus, after
straightforward calculations, we obtain the following
results:⟨

𝑠2

(1− 𝑞𝑠)
4

⟩
(𝑛𝑙𝑚)

=

= 𝑁2
𝑛𝑙

+∞∫︁
0

𝑠2𝑑𝑟

(1− 𝑞𝑠)
4 𝑠

2𝜖𝑛𝑙 (1− 𝑞𝑠)
1+2𝜈𝑛𝑙 ×

× [2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝜈𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠)]
2
, (36a)⟨

𝑠2

(1− 𝑞𝑠)
2

⟩
(𝑛𝑙𝑚)

𝑁2
𝑛𝑙 =

=

+∞∫︁
0

𝑠2

(1− 𝑞𝑠)
2 𝑠

2𝜖𝑛𝑙 (1− 𝑞𝑠)
1+2𝜈𝑛𝑙 ×

× [2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝜈𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠)]
2
𝑑𝑟,

(36b)⟨
𝑠3

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

=

= 𝑁2
𝑛𝑙

+∞∫︁
0

𝑠3

(1− 𝑞𝑠)
3 𝑠

2𝜖𝑛𝑙 (1− 𝑞𝑠)
1+2𝜈𝑛𝑙 ×

× [2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝜈𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠)]
2
𝑑𝑟,

(36c)⟨
𝑠2

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

=

= 𝑁2
𝑛𝑙

+∞∫︁
0

𝑠2

(1− 𝑞𝑠)
3 𝑠

2𝜖𝑛𝑙 (1− 𝑞𝑠)
1+2𝜈𝑛𝑙 ×

× [2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝜈𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠)]
2
𝑑𝑟,

(36d)

⟨
𝑠3

(1− 𝑞𝑠)
5

⟩
(𝑛𝑙𝑚)

=

= 𝑁2
𝑛𝑙

+∞∫︁
0

𝑠3

(1− 𝑞𝑠)
5 𝑠

2𝜖𝑛𝑙 (1− 𝑞𝑠)
1+2𝜈𝑛𝑙 ×

× [2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝜈𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠)]
2
𝑑𝑟.

(36e)

We have used useful abbreviations ⟨𝑋⟩(𝑛𝑙𝑚) =

= ⟨𝑛, 𝑙,𝑚 𝑋 𝑛, 𝑙,𝑚⟩ to avoid the extra burden of
writing equations. Furthermore, we have applied the
property of the spherical harmonics, which has the
form

∫︀
𝑌 𝑚
𝑙 (𝜃, 𝜙)𝑌 𝑚′

𝑙′ (𝜃, 𝜙) sin (𝜃) 𝑑𝜃𝑑𝜙 = 𝛿𝑙𝑙′𝛿𝑚𝑚′ .
We have 𝑠 = exp (−𝛼𝑟), which allows us to obtain
𝑑𝑟 = − 1

𝛼
𝑑𝑠
𝑠 . From the asymptotic behavior of 𝑠 =

= exp (−𝛼𝑟), when (𝑟 → 0) (𝑠 → +1) and (𝑟 → +∞)
(𝑠 → 0), this allows us to reformulate Eqs. (31)-(36)
as follows:⟨

𝑠2

(1− 𝑞𝑠)
4

⟩
(𝑛𝑙𝑚)

=
𝑁2

𝑛𝑙

𝛼

+𝑞∫︁
0

𝑠2𝜖𝑛𝑙+1 (1− 𝑞𝑠)
2𝜈𝑛𝑙−3 ×

× [2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝜈𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠)]
2
𝑑𝑠,

(37a)⟨
𝑠2

(1− 𝑞𝑠)
2

⟩
(𝑛𝑙𝑚)

=
𝑁2

𝑛𝑙

𝛼

+𝑞∫︁
0

𝑠2𝜖𝑛𝑙+1 (1− 𝑞𝑠)
2𝜈𝑛𝑙−1 ×

× [2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝜈𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠)]
2
𝑑𝑠,

(37b)⟨
𝑠3

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

=
𝑁2

𝑛𝑙

𝛼

+𝑞∫︁
0

𝑠2𝜖𝑛𝑙+2 (1− 𝑞𝑠)
2𝜈𝑛𝑙−2 ×

× [2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝜈𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠)]
2
𝑑𝑠,

(37c)⟨
𝑠2

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

𝑁2
𝑛𝑙

𝛼

+𝑞∫︁
0

𝑠2𝜖𝑛𝑙+1 (1− 𝑞𝑠)
2𝜈𝑛𝑙−2 ×

× [2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝜈𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠)]
2
𝑑𝑠,

(37d)⟨
𝑠3

(1− 𝑞𝑠)
5

⟩
(𝑛𝑙𝑚)

𝑁2
𝑛𝑙

𝛼

+𝑞∫︁
0

𝑠2𝜖𝑛𝑙+2 (1− 𝑞𝑠)
2𝜈𝑛𝑙−4 ×

× [2𝐹1 (−𝑛, 2𝜀𝑛𝑙 + 2𝜈𝑛𝑙 + 𝑛+ 1; 1 + 2𝜀𝑛𝑙; 𝑞𝑠)]
2
𝑑𝑠.

(37e)
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When the deformation parameter equals one, we can
use the method proposed by Dong et al. [86] and ap-
plied by Zhang [87] and can calculate the integrals
in Eqs. (37, 𝑖 = 1, 6). With the help of the special
integral formula

+1∫︁
0

𝑠𝜉−1 (1− 𝑠)
𝜎−1

[2𝐹1 (𝑐1, 𝑐2; 𝑐3; 𝑠)]
2
𝑑𝑠 =

=
Γ (𝜉) Γ (𝜎)

Γ (𝜉 + 𝜎)
3𝐹2 (𝑐1, 𝑐2, 𝜎; 𝑐3, 𝜎 + 𝜉; 1), (38)

where 3𝐹2 (𝑐1, 𝑐2, 𝜎; 𝑐3, 𝜎 + 𝜉; 1). Is obtained
from the generalized hypergeometric function
3𝐹2 (𝛼1, 𝛼2, ..., 𝛼𝑝;𝛽1, 𝛽2, ..., 𝛽𝑞; 1) for 𝑝 = 3 and
𝑞 = 2, while Γ (𝜎) denoting the usual gamma
function, we obtain, from Eqs. (37, 𝑖 = 1, 6), the
following results:⟨

𝑠2

(1− 𝑞𝑠)
4

⟩
(𝑛𝑙𝑚)

=
𝑁2

𝑛𝑙

𝛼

Γ (2𝜖𝑛𝑙 + 2)Γ (2𝜈𝑛𝑙 − 2)

Γ (Λ)
×

× 3𝐹2 (−𝑛,Λ + 𝑛+ 1, 2𝜈𝑛𝑙 − 2; 1 + 2𝜀𝑛𝑙,Λ; 1), (39a)⟨
𝑠2

(1− 𝑞𝑠)
2

⟩
(𝑛𝑙𝑚)

=
𝑁2

𝑛𝑙

𝛼

Γ (2𝜖𝑛𝑙 + 2)Γ (2𝜈𝑛𝑙)

Γ (Λ + 2)
×

× 3𝐹2 (−𝑛,Λ + 𝑛+ 1, 2𝜈𝑛𝑙; 1 + 2𝜀𝑛𝑙,Λ + 2; 1), (39b)⟨
𝑠3

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

=
𝑁2

𝑛𝑙

𝛼

Γ (2𝜖𝑛𝑙 + 3)Γ (2𝜈𝑛𝑙 − 1)

Γ (Λ + 2)
×

× 3𝐹2 (−𝑛,Λ + 𝑛+ 1, 2𝜈𝑛𝑙 − 1; 1 + 2𝜀𝑛𝑙,Λ + 2; 1),

(39c)⟨
𝑠2

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

=
𝑁2

𝑛𝑙

𝛼

Γ (2𝜖𝑛𝑙 + 2)Γ (2𝜈𝑛𝑙 − 1)

Γ (Λ + 1)
×

× 3𝐹2 (−𝑛,Λ + 𝑛+ 1, 2𝜈𝑛𝑙 − 1; 1 + 2𝜀𝑛𝑙,Λ + 1; 1),

(39d)⟨
𝑠3

(1− 𝑞𝑠)
5

⟩
(𝑛𝑙𝑚)

=
𝑁2

𝑛𝑙

𝛼

Γ (2𝜖𝑛𝑙 + 3)Γ (2𝜈𝑛𝑙 − 3)

Γ (Λ)
×

× 3𝐹2 (−𝑛,Λ + 𝑛+ 1, 2𝜈𝑛𝑙 − 3; 1 + 2𝜀𝑛𝑙,Λ; 1), (39e)

where Λ (𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2) = 2𝜖𝑛𝑙 + 2𝜈𝑛𝑙.

3.4. The energy shift
for the IDGDFDE-P model
in RNCQM symmetries

The global relativistic energy shift for the IDGDFDE-
P model in RNCQM symmetries is composed of
three principal parts. The first one is produced from
the effect of the generated spin-orbit effective poten-
tial. This effective potential is obtained by replac-
ing the coupling of the angular momentum oper-
ator and the noncommutative vector LΘ with the
new equivalent coupling ΘLS (with Θ2 = Θ2

12 +
+Θ2

23 +Θ2
13). This degree of freedom comes con-

sidering that the infinitesimal noncommutative vec-
tor Θ is arbitrary. We have chosen the noncommu-
tativity vector to become parallel with the spin-
S of the diatomic molecules under a deformed
generalized Deng–Fan potential plus the deformed
Eckart potential. Furthermore, we replace the new
spin-orbit coupling ΘLS with the corresponding
physical form (Θ/2)G2, with G2 = J2−L2−S2. Mo-
reover, in quantum mechanics, the operators ( ̂︀𝐻𝑑𝑓𝑒

𝑟𝑛𝑐,
J2, L2, S2 and J𝑧) form a complete set of con-
served physical quantities, the eigenvalues of the
operator G2 are equal to the values 𝑘 (𝑗, 𝑙, 𝑠) =
= [𝑗(𝑗 + 1)− 𝑙(𝑙 + 1)− 𝑠(𝑠+ 1)] /2, with |𝑙 − 𝑠| ≤
≤ 𝑗 ≤ |𝑙 + 𝑠|. As a direct consequence, the partial en-
ergy shift Δ𝐸𝑠𝑜

𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝑗, 𝑙, 𝑠) due to
the perturbed effective potential 𝑉 𝑑𝑓𝑒

pert (𝑠) produced
for the 𝑛th excited state, in RNCQM symmetries as
follows:

Δ𝐸𝑠𝑜
𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝑗, 𝑙, 𝑠) =

= Θ(𝑗(𝑗 + 1)− 𝑙(𝑙 + 1)− 𝑠(𝑠+ 1))×

×⟨z⟩𝑅𝑑𝑓𝑒
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2). (40)

The global expectation value
⟨z⟩𝑅𝑑𝑓𝑒

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉1, 𝑉2) is determined from the
following expression:

⟨z⟩𝑅𝑑𝑓𝑒
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉1, 𝑉2) =

= 𝛽 (𝑛, 𝑙)

⟨
𝑠4

(1− 𝑞𝑠)
4

⟩
(𝑛𝑙𝑚)

− 𝛼 (𝐸𝑛𝑙 +𝑀)×

×

(︃
𝛽1

⟨
𝑠4

(1− 𝑞𝑠)
4

⟩
(𝑛𝑙𝑚)

+ 𝛽2

⟨
𝑠3

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

+

+𝛽4

⟨
𝑠2

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

+ 𝛽5

⟨
𝑠3

(1− 𝑞𝑠)
5

⟩
(𝑛𝑙𝑚)

)︃
. (41)
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The second part is obtained from the magnetic ef-
fect of the perturbative effective potential 𝑉 𝑑𝑓𝑒

pert (𝑠)
under the IDGDFDE-P model. This effective po-
tential is achieved, when we replace both (LΘ
and Θ12) by (𝜎𝐵𝐿𝑧 and 𝜎𝐵), respectively. Here,
𝐵 and 𝜎 symbolize the intensity of the magnetic
field induced by the effect of a deformation of the
space-space geometry and a new infinitesimal non-
commutativity parameter so that the physical unit
of the original noncommutativity parameter Θ12

(length)2 is the same unit of 𝜎𝐵. We have also
need to apply ⟨𝑛′, 𝑙′,𝑚′𝐿𝑧𝑛, 𝑙,𝑚⟩ = 𝑚𝛿𝑚′𝑚𝛿𝑙′𝑙𝛿𝑛′𝑛

(−𝑙′ ≤ 𝑚′ ≤ 𝑙 and −𝑙 ≤ 𝑚 ≤ 𝑙). All of these data
allow the discovery of the new energy shift
Δ𝐸𝑚𝑎𝑔

𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝜎,𝑚) due to the per-
turbed Zeeman effect which was created by the in-
fluence of the IDGDFDE-P model for the 𝑛th excited
state in RNCQM symmetries as follows:

Δ𝐸𝑚𝑎𝑔
𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝜎, 𝑗, 𝑙, 𝑠) =

= 𝜎𝐵 ⟨z⟩𝑅𝑑𝑓𝑒
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2)𝑚. (42)

For our purposes, we are interested in finding a
new third automatically important symmetry for the
IDGDFDE-P model at the zero temperature in the
RNCQM symmetries. This physical phenomenon is
induced automatically by the influence of a per-
turbed effective potential 𝑉 𝑑𝑓𝑒

pert (𝑠) which is seen in
Eq. (35). We discover these important physical phe-
nomena, when our studied system consists of nonin-
teracting particles and is considered a Fermi gas. It
is formed from all the particles in their gaseous state
(H2, I2, HCl, CH, LiH, and CO) undergoing the rota-
tion with angular velocity Ω, if we make the following
two simultaneous transformations to ensure that the
previous calculations are not repeated:

Θ → 𝜒Ω and LΘ → 𝜒LΩ. (43)

Here, 𝜒 is just an infinitesimal real proportional
constant. We can express the effective potential
𝑉 𝑑𝑓𝑒−rot
pert (𝑠) which induced the rotational movements

of the diatomic molecules as follows:

𝑉 𝑑𝑓𝑒−rot
pert (𝑠) =

𝛽 (𝑛, 𝑙) 𝑠4

(1− 𝑞𝑠)
4 LΩ− 𝛼𝜒 (𝐸𝑛𝑙 +𝑀)×

×

(︃
𝛽1𝑠

2

(1− 𝑞𝑠)
2 +

𝛽2𝑠
3

(1− 𝑞𝑠)
3 +

+
𝛽4𝑠

2

(1− 𝑞𝑠)
3 +

𝛽5𝑠
3

(1− 𝑞𝑠)
5

)︃
LΩ. (44)

To simplify the calculations without compromising
physical content, we choose the rotational velocity Ω
parallel to the 𝑂𝑧 axis. Then we transform the spin-
orbit coupling to the new physical phenomenon as
follows:

𝜒𝑘(𝑠)LΩ =𝜒𝑘(𝑠)Ω𝐿𝑧 (45)

with

𝑘(𝑠) =
𝛽 (𝑛, 𝑙) 𝑠4

(1− 𝑞𝑠)
4 − 𝛼 (𝐸𝑛𝑙 +𝑀)×

×

(︃
𝛽1𝑠

2

(1− 𝑞𝑠)
2 +

𝛽2𝑠
3

(1− 𝑞𝑠)
3 +

+
𝛽4𝑠

2

(1− 𝑞𝑠)
3 +

𝛽5𝑠
3

(1− 𝑞𝑠)
5

)︃
. (46)

All of these data allow the discovery of the new en-
ergy shift Δ𝐸𝑓−rot

𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝜒,𝑚) due to
the perturbed Fermi gas effect 𝑉 𝑑𝑓𝑒−rot

pert (𝑟) which is
generated automatically by the influence of the de-
formed generalized Deng–Fan potential plus the de-
formed Eckart potential for the 𝑛th excited state in
RNCQM symmetries as follows:

Δ𝐸𝑓−𝑟𝑜𝑡
𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝜒,𝑚) =

= 𝜒 ⟨z⟩𝑅𝑑𝑓𝑒
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝑉2) Ω𝑚. (47)

It is worth mentioning that the authors of Refs. [88,
89]studied rotating isotropic and anisotropic har-
monically confined ultra-cold Fermi gases in two-
and three-dimensional spaces at the zero temper-
ature. But in that study, the rotational term was
added to the Hamiltonian operator, in contrast to
our case, where this rotation term 𝜒𝑘(𝑠)LΩ automat-
ically appears due to the large symmetries resulting
from the deformation of the space-phase.

4. Results and Discussion

Here, we summarize our obtained results
Δ𝐸𝑠𝑜

𝑑𝑓𝑒(𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝑗, 𝑙, 𝑠),

Δ𝐸𝑚𝑎𝑔
𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,𝑚)

and Δ𝐸𝑓−rot
𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,𝑚)

for the 𝑛th excited state due to the spin-orbital
coupling, modified Zeeman effect, and perturbed
Fermi gas potential induced with 𝑉 𝑑𝑓𝑒

pert (𝑠) on
the basis of the superposition principle. This al-
lows us to deduce the additive energy shift
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Δ𝐸tot
𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝑗, 𝑙, 𝑠,𝑚) ≡ Δ𝐸tot

𝑑𝑓𝑒 under
the influence of the IDGDFDE-P model in RNCQM
symmetries as follows:
Δ𝐸tot

𝑑𝑓𝑒 = ⟨z⟩𝑅𝑑𝑓𝑒
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2)×

× (Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵 +𝑚𝜒Ω𝑚) . (48)

The above results present the global energy shift,
which was generated with the effect of noncommuta-
tivity properties of the space-space; it depends explic-
itly on the noncommutativity parameters (Θ, 𝜎, 𝜒),
the parameters of the generalized Deng–Fan potential
plus deformed Eckart potential (𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2) in
addition to the atomic quantum numbers (𝑗, 𝑙, 𝑠,𝑚).
We observed that the obtained global effective en-
ergy under the deformed generalized Deng–Fan po-
tential plus the deformed Eckart potential has a carry
a unit energy, because it is combined with the carrier
of energy (𝑀2 − 𝐸2

𝑛𝑙). As a direct consequence, the
energy 𝐸𝑑𝑓𝑒

𝑟−𝑛𝑐(𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝑗, 𝑙, 𝑠,𝑚) produced
with the IDGDFDE-P model, in the symmetries of
RNCQM is the sum of the root quart of the shift en-

ergy Δ
[︁
𝐸𝑓−rot

𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝜒,𝑚)
]︁1/2

and the
relativistic energy 𝐸𝑛𝑙 produced by the effect due to
the deformed generalized Deng–Fan potential plus the
deformed Eckart potential in RQM, as follows:
𝐸𝑑𝑓𝑒

𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= 𝐸𝑛𝑙 +

[︃
⟨z⟩𝑅𝑑𝑓𝑒

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2)

(Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵𝑚+𝑚𝜒Ω𝑚)

]︃1/2
. (49)

The relativistic energy 𝐸𝑛𝑙 is determined from the
energy equation (18). For the ground state and first
excited state, the above equation can be reduced to
the following form:
𝐸𝑑𝑓𝑒

𝑟−𝑛𝑐 (𝑛 = 0, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= 𝐸0𝑙+

[︃
⟨z⟩𝑅𝑑𝑓𝑒

(𝑛𝑙𝑚) (𝑛 = 0, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2)

(Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵𝑚+𝑚𝜒Ω𝑚)

]︃1/2
(50)

and
𝐸𝑑𝑓𝑒

𝑟−𝑛𝑐 (𝑛 = 1, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= 𝐸1𝑙 +

[︃
⟨z⟩𝑅𝑑𝑓𝑒

(𝑛𝑙𝑚) (𝑛 = 1, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2)

(Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵𝑚+𝑚𝜒Ω𝑚)

]︃1/2
.(51)

Equation (49) can describe the relativistic energy
of some diatomic molecules such as H2, I2, HCl, CH,
LiH, and CO under the IDGDFDE-P model in the
symmetries of relativistic NC quantum mechanics.

4.1. Relativistic particular
cases under the IDGDFDE-P model

After examining the bound-state solutions of any l -
state deformed Klein–Gordon equation within the
IDGDFDE-P model in RNCQM symmetries, our task
is now to discuss some particular cases in what fol-
lows. By adjusting the potential parameters for each
case, some familiar potentials, which are useful for
other physical systems, can be obtained.

First: Setting 𝑉1 and 𝑉2 to zero, the potential in
Eq. (11) turns to the deformed generalized Deng–Fan
potential [8] in RQM symmetries, as follows:

𝑉𝑑𝑓 (𝑟) = 𝑉0

(︂
𝑐− 𝑏𝑒−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟

)︂2
. (52)

The perturbed effective potential 𝑉 𝑑𝑓𝑒
pert (𝑠) in Eq. (35)

turns to the perturbed effective potential 𝑉 𝑑𝑝
pert (𝑟) in

the symmetries of RNCQM as follows:

𝑉 𝑑𝑓𝑒
pert (𝑠) =

(︃
𝛽 (𝑛, 𝑙) 𝑠4

(1− 𝑞𝑠)
4 − 𝛼 (𝐸𝑛𝑙 +𝑀)×

×

(︃
2𝑉0 𝑏𝑐𝛼𝑠

2

(1− 𝑞𝑠)
2 +

𝛽𝑛
2 𝑠

3

(1− 𝑞𝑠)
3

)︃)︃
LΘ+𝑂

(︀
Θ2
)︀
, (53)

where 𝛽𝑛
2 = 2𝑏𝑉0𝑐𝑞𝛼 − 2𝑉0𝑏

2𝛼. In this case, the
additive energy shift Δ𝐸tot

𝑑𝑓 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑗, 𝑙, 𝑠,𝑚) ≡
≡ Δ𝐸tot

𝑑𝑓 under the influence of the modified equally
mixed deformed generalized Deng–Fan potential in
RNCQM symmetries is determined from the follow-
ing formula:

Δ𝐸tot
𝑚𝑝 = ⟨z⟩𝑅𝐷𝐹

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0)×
× (Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵 +𝑚𝜒Ω𝑚). (54)

Thus, the corresponding global expectation value
⟨z⟩𝑅𝐷𝐹

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0) is determined from the follow-
ing expression:

⟨z⟩𝑅𝐷𝐹
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0) =

= 𝛽 (𝑛, 𝑙)

⟨
𝑠2

(1− 𝑞𝑠)
4

⟩
(𝑛𝑙𝑚)

− 𝛼 (𝐸𝑛𝑙 +𝑀)×

×

(︃
2𝑉0𝑏𝑐𝛼

⟨
𝑠2

(1− 𝑞𝑠)
2

⟩
(𝑛𝑙𝑚)

+

+𝛽𝑛
2

⟨
𝑠3

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

)︃
. (55)
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The new relativistic energy in Eq. (49) reduces to
the new energy 𝐸𝑑𝑝

𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚)
under the new deformed generalized Deng–Fan po-
tential in RNCQM, as follows:

𝐸𝑑𝑓
𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= 𝐸𝑑𝑝
𝑛𝑙 +

[︃
⟨z⟩𝑅𝐷𝐹

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0)

(Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵𝑚+𝑚𝜒Ω𝑚)

]︃1/2
. (56)

Making the corresponding parameter replacements in
Eq. (18), we obtain the energy equation for the de-
formed generalized Deng–Fan potential in the Klein–
Gordon theory with equally mixed potentials, in
RQM symmetries as:

𝜀𝑞𝑛𝑙 =
4𝑉0𝑏𝑐

(︁
𝐸𝑑𝑝

𝑛𝑙 +𝑀
)︁
/𝛼2

ϒ3
−

−
4𝑉0𝑏𝑐

(︁
𝐸𝑑𝑝

𝑛𝑙 +𝑀
)︁
/𝛼2

ϒ3
−

−
𝑛2

√︃
𝑞2 + 4

(︂
2(𝐸𝑑𝑝

𝑛𝑙+𝑀)𝑉0𝑏2

𝛼2 + 𝑙 (𝑙 + 1)

)︂
ϒ3

, (57)

where

−𝛼2𝜀2𝑛𝑙 = 𝑀2 − 𝐸𝑑𝑝2
𝑛𝑙 − 2

(︁
𝐸𝑑𝑝

𝑛𝑙 +𝑀
)︁
𝑉0𝑐

2

and

ϒ3 = 𝑞 (2𝑛+ 1)+

+

⎯⎸⎸⎸⎷𝑞2 + 4

⎛⎝2
(︁
𝐸𝑑𝑝

𝑛𝑙 +𝑀
)︁
𝑉0𝑏2

𝛼2
+ 𝑙 (𝑙 + 1)

⎞⎠.

Second: Setting 𝑉0 to be zero, the potential in
Eq. (11) turns to the deformed Eckart potential in
RQM symmetries, as follows:

𝑉𝑒𝑝 (𝑟) = − 𝑉1𝑒
−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
+

𝑉2𝑒
−𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 . (58)

The perturbed effective potential 𝑉 𝑑𝑓𝑒
pert (𝑠) in

Eq. (35) turns to the perturbed effective potential
𝑉 𝑒𝑝
pert (𝑟) in the symmetries of RNCQM as follows:

𝑉 𝑒𝑝
pert (𝑠) =

(︃
𝛼4𝑙 (𝑙 + 1) 𝑠4

(1− 𝑞𝑠)
4 − 𝛼 (𝐸𝑛𝑙 +𝑀)×

×

(︃
𝑉1𝛼𝑠

2

(1− 𝑞𝑠)
2 +

𝑉1𝑞𝛼𝑠
3

(1− 𝑞𝑠)
3 −

− 𝑉2𝛼𝑠
2

(1− 𝑞𝑠)
3 − 𝑉2𝑞𝛼𝑠

3

(1− 𝑞𝑠)
5

)︃)︃
LΘ+𝑂

(︀
Θ2
)︀
. (59)

In this case, the additive energy shift
Δ𝐸tot

𝑒𝑝 (𝑛, 𝛼, 𝑉1, 𝑉2, 𝑗, 𝑙, 𝑠,𝑚) under the influence
of the modified equally mixed new deformed Eckart
potential in RNCQM symmetries is determined from
the following formula:

Δ𝐸tot
𝑒𝑝 (𝑛, 𝛼, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= ⟨z⟩𝑅𝐸𝑃
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑉1, 𝑉2)×

× (Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵 +𝑚𝜒Ω𝑚). (60)

Thus, the corresponding global expectation value
⟨z⟩𝑅𝐸𝑃

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑉1, 𝑉2) is determined from the follow-
ing expression:

⟨z⟩𝑅𝐸𝑃
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑉1, 𝑉2) =

= 𝛼4𝑙 (𝑙 + 1)

⟨
𝑠2

(1− 𝑞𝑠)
4

⟩
(𝑛𝑙𝑚)

− 𝛼2 (𝐸𝑛𝑙 +𝑀)×

×

(︃
𝑉1

⟨
𝑠2

(1− 𝑞𝑠)
2

⟩
(𝑛𝑙𝑚)

+ 𝑞𝑉1

⟨
𝑠3

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

−

−𝑉2

⟨
𝑠2

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

− 𝑞𝑉2

⟨
𝑠3

(1− 𝑞𝑠)
5

⟩
(𝑛𝑙𝑚)

)︃
. (61)

The new relativistic energy in Eq. (49) reduces to the
new energy 𝐸𝑒𝑝

𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) un-
der new deformed Eckart potential in RNCQM, as
follows:

𝐸𝑒𝑝
𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= 𝐸𝑒𝑝
𝑛𝑙 +

[︃
⟨z⟩𝐸𝑃

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑉1, 𝑉2)

(Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵𝑚+𝑚𝜒Ω𝑚)

]︃1/2
. (62)

Making the corresponding parameter replacements
in Eq. (18), we obtain the energy equation for the
deformed Eckart potential in the Klein–Gordon the-
ory with equally mixed potentials, in RQM symme-
tries, as:√︂(︁

𝐸𝑒𝑝2
𝑛𝑙 −𝑀2

)︁
/𝛼2 =

=
2𝑉1 (𝐸

𝑒𝑝
𝑛𝑙+𝑀) /𝛼2−2𝑉1 (𝐸

𝑒𝑝
𝑛𝑙+𝑀) /𝛼2

𝑞 (2𝑛+ 1) +
√︀
𝑞2+8𝑞 (𝐸𝑒𝑝

𝑛𝑙+𝑀)𝑉2/𝛼2+4𝑙 (𝑙+1)
−

−
𝑛2
√︀

𝑞2+8𝑞 (𝐸𝑒𝑝
𝑛𝑙+𝑀)𝑉2/𝛼2+4𝑙 (𝑙 + 1)

𝑞 (2𝑛+ 1)+
√︀
𝑞2+8𝑞 (𝐸𝑒𝑝

𝑛𝑙+𝑀)𝑉2/𝛼2+4𝑙 (𝑙 + 1)
.

(63)
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5. Nonrelativistic Spectrum
under the IDGDFDE-P Model

In this section, we want to derive the nonrelativis-
tic spectrum, which is produced by the effect of the
IDGDFDE-P model for diatomic molecules such as
H2, I2, HCl, CH, LiH, and CO. From Eqs. (1) and
(11), we can write this potential in the nonrelativis-
tic noncommutative three-dimensional real space for
NRNCQM symmetries as follows:

𝑉 𝑑𝑓𝑒
𝑛𝑐 (𝑟) = 𝑉0

(︂
𝑐− 𝑏𝑒−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟

)︂
− 𝑉1𝑒

−𝛼𝑟

1− 𝑞𝑒−𝛼𝑟
+

+
𝑉2𝑒

−𝛼𝑟

(1− 𝑞𝑒−𝛼𝑟)
2 + 𝑉 𝑑𝑓𝑒

𝑛𝑟−pert (𝑟). (64)

Here, 𝑉 𝑑𝑓𝑒
pert (𝑟) is the perturbative potential in non-

relativistic noncommutative three-dimensional real
space with NRNCQM symmetries:

𝑉 𝑑𝑓𝑒
𝑛𝑟−pert (𝑟) =

𝑙 (𝑙 + 1)

𝑟4
LΘ− 𝜕𝑉 𝑑𝑓𝑒

𝑛𝑐 (𝑟)

𝜕𝑟

LΘ

2𝑟
+𝑂

(︀
Θ2
)︀
.

(65)

The first term in Eq. (65) is caused by the centrifuge
term 𝑙(𝑙+1)

𝑟2𝑛𝑐
in NRNCQM (Eq. (26)), which equals

the usual centrifuge term 𝑙(𝑙+1)
𝑟2 plus the perturbative

centrifugal term 𝑙(𝑙+1)
𝑟4 LΘ, whereas the second term

is caused by the effect of the deformed generalized
Deng-Fan potential. We used the Greene–Aldrich ap-
proximation type for a short-range potential, which
is an excellent approximation to the centrifugal term
for the Eckart potential, and we calculated 𝜕𝑉 𝑑𝑓𝑒

𝑛𝑐 (𝑟)
𝜕𝑟

(see Eq. (31). Now, substituting Eq. (26) into Eq. (65)
and applying the approximation in Eq. (33), we get
the perturbative potential created with the effect of
the IDGDFDE-P model in NRNCQM symmetries as
follows:

𝑉 𝑑𝑓𝑒
𝑛𝑟−pert (𝑟) =

(︃
𝛽 (𝑛, 𝑙) 𝑠4

(1− 𝑞𝑠)
4 −

− 1

2

(︃
𝛽1𝑠

2

(1− 𝑞𝑠)
2 +

𝛽2𝑠
3

(1− 𝑞𝑠)
3 +

+
𝛽4𝑠

2

(1− 𝑞𝑠)
3 +

𝛽5𝑠
3

(1− 𝑞𝑠)
5

)︃)︃
LΘ+𝑂

(︀
Θ2
)︀
. (66)

To find the nonrelativistic energy corrections pro-
duced by the perturbative potential 𝑉 𝑑𝑓𝑒

𝑛𝑟−pert (𝑠),

we need to know the expectation values of
𝑠2

(1−𝑞𝑠)4
, 𝑠2

(1−𝑞𝑠)2
, 𝑠3

(1−𝑞𝑠)3
, 𝑠2

(1−𝑞𝑠)3
and 𝑠3

(1−𝑞𝑠)5
. We

get the corresponding global expectation values
⟨z⟩𝑁𝑅𝑑𝑓𝑒

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2) by using the expecta-
tions values obtained in Eqs. (39a), (39b), (39c),
(39d), and (39e) for the 𝑛-th excited state:

⟨z⟩𝑁𝑅𝑑𝑓𝑒
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2) =

= 𝛽 (𝑛, 𝑙)

⟨
𝑠4

(1− 𝑞𝑠)
4

⟩
(𝑛𝑙𝑚)

−

− 1

2

(︃
𝛽1

⟨
𝑠4

(1− 𝑞𝑠)
4

⟩
(𝑛𝑙𝑚)

+ 𝛽2

⟨
𝑠3

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

+

+𝛽4

⟨
𝑠2

(1− 𝑞𝑠)
3

⟩
(𝑛𝑙𝑚)

+ 𝛽5

⟨
𝑠3

(1− 𝑞𝑠)
5

⟩
(𝑛𝑙𝑚)

)︃
. (67)

By following the same physical methodology that
we devoted in our relativistic previous study, the en-
ergy corrections
Δ𝐸𝑛𝑟

𝑑𝑓𝑒(𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚)

for the 𝑛th excited state due to the spin-orbit cou-
pling, modified Zeeman effect, and nonrelativistic
perturbed Fermi gas potential which induced under
the influence of the IDGDFDE-P model in NRNCQM
symmetries as follows:

Δ𝐸𝑛𝑟
𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= ⟨z⟩𝑁𝑅𝑑𝑓𝑒
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉1, 𝑉2) (Θ𝑘 (𝑗, 𝑙, 𝑠)+

+𝜎𝐵 +𝑚𝜒Ω𝑚). (68)

As a direct consequence, the new nonrelativistic
energy 𝐸𝑑𝑓𝑒

𝑛𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚)
produced within the IDGDFDE-P model, in the
symmetries of NRNCQM for the 𝑛th generalized
excited states, the sum of the energy corrections
Δ𝐸𝑛𝑟

𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) plus the
nonrelativistic energy 𝐸𝑛𝑟

𝑛𝑙 produced with the main
part of the potential (the deformed generalized
Deng–Fan potential plus the deformed Eckart
potential) in NRQM as follows:

𝐸𝑑𝑓𝑒
𝑛𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= 𝐸𝑛𝑟
𝑛𝑙 + ⟨z⟩𝑁𝑅𝑑𝑓𝑒

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2)×

× (Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵𝑚+ 𝜒Ω𝑚). (69)
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The nonrelativistic energy 𝐸𝑛𝑟
𝑛𝑙 due to the effect of

the deformed generalized Deng–Fan potential plus the
deformed Eckart potential is determined directly from
the work Awoga et al. [31] given by:

𝐸𝑛𝑟
𝑛𝑙 =− 𝛼2

2𝑀

[︃(︀
2𝑀/𝛼2

)︀
(2𝑏𝑐𝑉0 + 𝑙(𝑙 + 1))+2𝑀𝑏2𝑉0

2𝑞2𝛼2 (𝑛+ 𝜎𝑞)
−

− 𝑛+ 𝜎𝑞

2

]︃2
+ 𝑐2𝑉0, (70)

with 𝜎𝑞 = 1
2

[︁
1 +

√︀
1 + 4 (2𝑀𝑏2𝑉0/𝑞2𝛼2 + 𝛽/𝑞)

]︁
and

𝛽 = 2𝑀
𝛼2 [(𝑉2 + 𝑙(𝑙 + 1))]. Now, considering composite

systems such as molecules made of 𝑁 = 2 particles
of masses 𝑚𝑛 (𝑛 = 1, 2) in the frame of a noncommu-
tative algebra, it is worth to account for the features
of descriptions of the systems in the space. In NRQM
symmetries, it was obtained that composite systems
with different masses are described with different non-
commutative parameters [90–93]:[︁
�̂�(S,H,I)
𝜇

*,�̂�(S,H,I)
𝜈

]︁
= 𝑖𝜃𝑐𝜇𝜈 , (71)

where the noncommutativity parameter 𝜃𝑐𝜇𝜈 is gi-
ven by:

𝜃𝑐𝜇𝜈 =

2∑︁
𝑛=1

𝜇2
𝑛 𝜃

(𝑛)
𝜇𝜈 , (72)

with 𝜇𝑛 = 𝑚𝑛∑︀
𝑚𝑛
𝑛

, the indices (𝑛 = 1,2) label the par-

ticle, and 𝜃
(𝑛)
𝜇𝜈 is the parameter of noncommutativity,

corresponding to the particle of mass 𝑚𝑛. Note that,
in the case of a system of two particles with the same
mass 𝑚1 = 𝑚2 such as the homogeneous (H2 and I2)
diatomic molecules, the parameter 𝜃

(𝑛)
𝜇𝜈 = 𝜃𝜇𝜈 . Thus,

the two parameters Θ and 𝜎 which appear in Eq. (69)
are changed to the new form:

Θ𝑐2 =

(︃
2∑︁

𝑛=1

𝜇2
𝑛Θ

(𝑛)
12

)︃2
+

(︃
2∑︁

𝑛=1

𝜇2
𝑛Θ

(𝑛)
23

)︃2
+

(︃
2∑︁

𝑛=1

𝜇2
𝑛Θ

(𝑛)
13

)︃2
,

(73)

𝜎𝑐2 =

(︃
2∑︁

𝑛=1

𝜇2
𝑛𝜎

(𝑛)
12

)︃2
+

(︃
2∑︁

𝑛=1

𝜇2
𝑛𝜎

(𝑛)
23

)︃2
+

(︃
2∑︁

𝑛=1

𝜇2
𝑛𝜎

(𝑛)
13

)︃2
(74)

and

𝜒𝑐2 =

(︃
2∑︁

𝑛=1

𝜇𝜒
(𝑛)
12

)︃2
+

(︃
2∑︁

𝑛=1

𝜇𝜒
(𝑛)
23

)︃2
+

(︃
2∑︁

𝑛=1

𝜇𝜒
(𝑛)
13

)︃2
. (75)

As was mentioned above, in the case of a sys-
tem of two particles with the same mass 𝑚1 =
= 𝑚2 such as the homogeneous (H2 and I2) di-
atomic molecules, Θ

(𝑛)
𝜇𝜈 = Θ𝜇𝜈 and 𝜎

(𝑛)
𝜇𝜈 = 𝜎𝜇𝜈 . Fi-

nally, we can generalize the nonrelativistic global en-
ergy 𝐸𝑑𝑓𝑒

𝑛𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ
𝑐, 𝜎𝑐, 𝜒𝑐, 𝑗, 𝑙, 𝑠,𝑚)

within the IDGDFDE-P model considering that com-
posite systems with different masses are described
with different noncommutative parameters for the di-
atomic HCl, CH, LiH, and CO as:

𝐸𝑑𝑓𝑒
𝑛𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ

𝑐, 𝜎𝑐, 𝜒𝑐𝑗, 𝑙, 𝑠,𝑚) =

= 𝐸𝑛𝑟
𝑛𝑙 + ⟨z⟩𝑁𝑅𝑑𝑓𝑒

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2)×

× (Θ𝑐𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝑐𝐵 +𝑚𝜒𝑐Ω𝑚). (76)

We now take a look at the special cases. This is done
by adjusting the constants in the studied potential.

First: Modified Hulthén potential. If we make the
choice 𝑉0 = 𝑉2 = 𝑐 = 0 and 𝑞 = 1, the perturbative
potential created with the effect of the IDGDFDE-P
model in NRNCQM symmetries reduces to the per-
turbative potential for the modified Hulthén potential
as follows:

𝑉 𝑑𝑓𝑒
𝑛𝑟−pert (𝑠)=

(︃(︀
𝛼4𝑙 (𝑙+1)−2𝛼2 (𝐸𝑛𝑙+𝑀)𝑉0𝑏

2
)︀
𝑠4

(1− 𝑠)
4 −

− 𝑉1𝛼

2

(︃
𝑠2

(1− 𝑠)
2 +

𝑠3

(1− 𝑠)
3

)︃)︃
LΘ+𝑂

(︀
Θ2
)︀
. (77)

The new relativistic energy in Eq. (69) reduces to the
new energy 𝐸𝑒𝑝

𝑛𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) for
the new modified Hulthén potential in NRNCQM, as
follows:

𝐸𝑑𝑓𝑒
𝑛𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑏, 𝑉1,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= − 𝛼2

2𝑀

[︂
2𝑀𝑉1

𝛼2 (𝑛+ 𝑙 + 1)
− 𝑛+ 𝑙 + 1

2

]︂2
+

+ ⟨z⟩𝑁𝑅𝐻𝑃
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑏, 𝑉1) (Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵 +𝑚𝜒Ω𝑚).

(78)
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The corresponding global expectation value
⟨z⟩𝑁𝑅𝐻𝑃

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑏, 𝑉1) is determined from the
following expression:

⟨z⟩𝑁𝑅𝐻𝑃
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑏, 𝑉1) =

=

(︂
𝛼4𝑙 (𝑙 + 1)

−2𝛼2 (𝐸𝑛𝑙 +𝑀)𝑉0𝑏
2

)︂⟨
𝑠2

(1− 𝑠)
4

⟩
(𝑛𝑙𝑚)

−

− 𝑉1𝛼

2

⎛⎝⟨ 𝑠2

(1− 𝑠)
2

⟩
(𝑛𝑙𝑚)

+

⟨
𝑠3

(1− 𝑞)
3

⟩
(𝑛𝑙𝑚)

⎞⎠ (79)

with 𝜎ℎ
𝑞 = 1

2

[︁
1 +

√︁
1 + 8𝑀

𝛼2 (𝑉2 + 𝑙(𝑙 + 1))
]︁
.

Second: If we make the choice 𝑉1 = 𝑉2 = 𝑐 = 0
and 𝑞 = 1, the perturbative potential created with
the effect of the IDGDFDE-P model in NRNCQM
symmetries reduces to the perturbative potential for
the modified Manning–Rosen potential as follows:

𝑉 𝑚𝑟𝑝
pert (𝑠) =

(︃(︀
𝛼4𝑙 (𝑙 + 1) + 2𝛼2 (𝐸𝑛𝑙 +𝑀)𝑉0𝑏

2
)︀
𝑠4

(1− 𝑠)
4 +

+
𝑉0𝑏

2𝛼𝑠3

(1− 𝑠)
3

)︃
LΘ+𝑂

(︀
Θ2
)︀
. (80)

The new relativistic energy in Eq. (69) reduces to
the new energy 𝐸𝑚𝑟𝑝

𝑛𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑏, 𝑉0,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚)
for a new modified Manning–Rosen potential in
NRNCQM, as follows:

𝐸𝑚𝑟𝑝
𝑛𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑏, 𝑉0,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) =

= − 𝛼2

2𝑀

[︂
𝑀𝑏2𝑉0

𝛼2 (𝑛+ 𝜌)
− 𝑛+ 𝜌

2

]︂2
+

+ ⟨z⟩𝑁𝑅𝑀𝑅𝑃
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑏, 𝑉0)×

× (Θ𝑘 (𝑗, 𝑙, 𝑠) + 𝜎𝐵𝑚+ 𝜒Ω𝑚), (81)

with 𝜌 = 1
2

[︁
1 +

√︀
(2𝑙 + 1)2 + 8𝑀𝑏2𝑉0/𝛼2

]︁
,

and the corresponding global expectation value
⟨z⟩𝑁𝑅𝑀𝑅𝑃

(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑏, 𝑉0) is determined from the
following expression:

⟨z⟩𝑁𝑅𝑀𝑅𝑃
(𝑛𝑙𝑚) (𝑛, 𝛼, 𝑏, 𝑉0) =

⟨
𝑠2

(1− 𝑠)
4

⟩
(𝑛𝑙𝑚)

×

×
(︂
𝛼4𝑙 (𝑙 + 1)
+2𝛼2 (𝐸𝑛𝑙 +𝑀)𝑉0𝑏

2

)︂
+ 𝑉0𝑏

2𝛼

⟨
𝑠3

(1− 𝑠)
3

⟩
(𝑛𝑙𝑚)

.

(82)

The KGE is the most well-known relativistic wave
equation describing spin-zero particles, but its ex-
tension in RNCQM symmetries, DKGE, under the
improved deformed generalized Deng–Fan potential
plus the deformed Eckart potential has a physi-
cal behavior similar to the Duffin–Kemmer equa-
tion for mesons with spin. It can describe the dy-
namic state of a particle with spin one in the sym-
metries of relativistic noncommutative quantum me-
chanics. This is one of the most important new re-
sults of this research. Worthwhile, it is better to men-
tion that, for the two simultaneous limits (Θ, 𝜎, 𝜒)
and (Θ𝑐, 𝜎𝑐, 𝜒𝑐) → (0, 0, 0) , we recover the results in
Refs. [12, 31].

6. Summary and Conclusions

In this work, we have found the approximate bound-
state solutions of DRKGE and DNRSE using the
tool of Bopp’s shift and standard perturbation the-
ory methods of the improved deformed general-
ized Deng–Fan potential plus the deformed Eckart
potential in both relativistic and nonrelativistic
regimes, which correspond to high- and low-energy
physics. We have employed the improved approx-
imation scheme to deal with the centrifugal term
to obtain the new relativistic bound-state solutions
𝐸𝑑𝑓𝑒

𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) corre-
sponding to the generalized 𝑛th excited states
that appear as a sum of the total energy
shift Δ𝐸tot

𝑑𝑓𝑒 and the relativistic energy 𝐸𝑛𝑙 of
the deformed generalized Deng–Fan potential plus
the deformed Eckart potential. Furthermore, we
have obtained the new nonrelativistic global en-
ergy 𝐸𝑑𝑓𝑒

𝑛𝑟−𝑛𝑐 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) of
some diatomic molecules such as N2, I2, HCl,
CH, LiH, and CO in the NRNCQM sym-
metries as a sum of the nonrelativistic en-
ergy [see Eq. (69)] and the perturbative correc-
tions Δ𝐸𝑛𝑟

𝑑𝑓𝑒 (𝑛, 𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) [see
Eq. (68)]. The new relativistic and nonrelativistic en-
ergies appear as a function of the discrete atomic
quantum numbers (𝑛, 𝑗, 𝑙, 𝑠,𝑚), the potential param-
eters (𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2) in addition to three noncom-
mutativity parameters (Θ, 𝜎, 𝜒). This behavior under
study is similar to that of a physical system that
is affected by three infinitesimal external influences
in comparison to the main potential effect (general-
ized Deng–Fan potential plus the deformed Eckart
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potential). But in our case, these effects appear au-
tomatically as a result of the new deformation of
the space-space which is presented in Eqs. (3) and
(4). Moreover, we have applied our results to compos-
ite systems such as molecules made of 𝑁 = 2 parti-
cles of masses 𝑚𝑛 (𝑛 = 1, 2). We have also dealt with
some related special cases in relativistic and nonrel-
ativistic cases. We have observed that the DRKGE
under the improved deformed generalized Deng–Fan
potential plus the deformed Eckart potential model
becomes similar to the Duffin–Kemmer equation for
mesons with spin 𝑠. It can describe a dynamic state
of the particle with spin one in the symmetries of
RNCQM. It is worth mentioning that, in all cases
where we apply the two simultaneous limits (Θ, 𝜎, 𝜒)
and (Θ𝑐, 𝜎𝑐, 𝜒𝑐) → (0, 0, 0), the ordinary physical
quantities are recovered. Furthermore, our research
findings could also be applied to atomic physics, vi-
brational and rotational spectroscopies, mass spec-
tra, nuclear physics, and other applications. Finally,
given the effectiveness of the methods that we fol-
lowed in achieving our goal in this research, we ad-
vise researchers to apply the same methods to delve
more deeply into other potentials in the relativistic
or nonrelativistic regime.
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No. B00L02UN280120180001 and by the Labora-
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to improve, enrich, and develop our work.
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А.Мереш

ДВОАТОМНI МОЛЕКУЛИ З ПОКРАЩЕНИМ
ДЕФОРМОВАНИМ УЗАГАЛЬНЕНИМ ПОТЕНЦIАЛОМ
ДЕНГА–ФАНА У МОДЕЛI З ДЕФОРМОВАНИМ
ПОТЕНЦIАЛОМ ЕКАРТА З ВИКОРИСТАННЯМ
РОЗВ’ЯЗКIВ МОДИФIКОВАНИХ РIВНЯНЬ
КЛЯЙНА–ГОРДОНА ТА ШРЬОДIНГЕРА
З СИМЕТРIЯМИ НЕКОМУТАТИВНОЇ
КВАНТОВОЇ МОДЕЛI

Знайдено розв’язки модифiкованих рiвнянь Кляйна–
Гордона та Шрьодiнгера з покращеним узагальненим
деформованим потенцiалом Денга–Фана i в моделi з
деформованим потенцiалом Екарта, використовуючи
метод Боппа зi зсувом та теорiю збурень з ураху-

ванням симетрiй узагальненої квантової механiки.
Використано покращене наближення для вiдцентрового
доданка. Розраховано релятивiстичнi та нерелятивiстичнi
енергiї зв’язаних станiв деяких двоатомних молекул,
таких як N2, I2, HCl, CH, LiH i CO. Релятивiстичний
зсув енергiї Δ𝐸tot

𝑑𝑓𝑒(𝑛, 𝛼, 𝑐, 𝑏,𝑉0,𝑉1,𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚)

та пертурбативнi нерелятивiстичнi поправки
Δ𝐸𝑛𝑟

𝑑𝑓𝑒(𝑛, 𝛼, 𝑐, 𝑏,𝑉0,𝑉1,𝑉2,Θ, 𝜎, 𝜒, 𝑗, 𝑙, 𝑠,𝑚) знайдено як функ-
цiї параметрiв (𝛼, 𝑐, 𝑏, 𝑉0, 𝑉1, 𝑉2), параметрiв некомутатив-
ностi (Θ, 𝜎, 𝜒) та атомних квантових чисел (𝑛, 𝑗, 𝑙, 𝑠,𝑚). В
нерелятивiстичному i релятивiстичному випадках показа-
но, що поправки для спектра енергiй меншi, нiж у звичай-
них релятивiстичнiй та нерелятивiстичнiй квантових меха-
нiках. Граничний перехiд до звичайної квантової механiки
демонструє узгодження з результатами iнших робiт. Для
нових симетрiй некомутативної квантової механiки немає
точних аналiтичних розв’язкiв для 𝑙 = 0 та 𝑙 ̸= 0, i можна
отримати тiльки наближенi розв’язки. Чiтко показано,
що рiвняння Шрьодiнгера та Кляйна–Гордона з новими
симетрiями фiзично описують обидва рiвняння Дiрака та
рiвняння Дафiна–Кеммера.

Ключ о в i с л о в а: рiвняння Кляйна–Гордона, рiвняння
Шрьодiнгера, узагальнений деформований потенцiал
Денга–Фана, деформований потенцiал Екарта, двоатомнi
молекули, некомутативна геометрiя, метод зсуву Боппа,
зiрчастi добутки.
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