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DIFFERENTIAL CROSS-SECTION
IN THE PRESENCE OF A WEAK LASER FIELD
FOR INELASTIC SCATTERING

The objective of this work is to study the differential cross- section in the presence of a
weak laser field (visible and UV) in the case of inelastic scattering. When the target absorbs
the energy, the differential cross section increases, according to the theoretically constructed
model. The differential cross-section initially decreases to a minimum and finally takes a max-
imum value, when the target emits the energy. The energy emission occurs at 5 eV, 10 eV,
13 eV, 16 eV, 20 eV, 25 eV, and 30 eV. In addition, the differential cross-section also in-
creases with the scattering angle.
K e yw o r d s: inelastic scattering, laser field, scattering angle, differential cross-section.

1. Introduction

The experimental study of the scattering of electrons
by atoms was executed by Franck and Hertz, and the
early theoretical works were carried out by Massey
and Mohr. During the last few decades, the study
of electron-atom collisions in the presence of a laser
field has been the subject of intense research activ-
ity. This is because of its importance in applied do-
mains such as astrophysics, laser and plasma physics,
and the fundamental atomic collision theory. Laser-
assisted scattering is necessary, because, in the pres-
ence of laser-free electrons, it allows the absorption
or emission of photons during the scattering processes
by atoms. Due to advances in new experimental tech-
niques, both elastic and inelastic electron-atom scat-
terings can be studied. Cionga et al. [1] calculated
the differential cross-section for the elastic scattering
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in the presence of a laser for hydrogen atoms, using a
static potential, the numerically obtained a differen-
tial cross-section of the order

(︀
log10 𝐼

−1 𝑑𝜎
𝑑Ω

)︀
= 8 max-

imum with high intensity 1012 W/cm−2. Similarly,
Bucia [12] calculated the differential cross-section
in a similar way for the inelastic scattering of the
same atom of the same order with high intensity
1010 W/cm−2. But, at low intensities, no differential
cross-section was studied for hydrogen atoms with po-
larized potential. This lack motivates the authors to
calculate the differential cross-section.

Electron energy-loss spectroscopy is an analytical
technique that measures changes in the kinetic en-
ergy of electrons after the interaction with the tar-
get. This technique allows one to study structural
and chemical information about a solid on the atomic
level. The energy resolution in this technique ranges
from 1 eV to 0.1 eV. Moreover, the plasmon peaks,
inner-shell ionization edges, as well as the fine struc-
ture, electronic densities of states, local properties, in-
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cluding the specimen thickness, mechanical and elec-
tronic properties, and chemical composition, were dis-
cussed [3]. The Coulomb interaction between the in-
cident electron and atomic electrons gives rise to the
inelastic scattering within the interval of a few elec-
tron volts to hundreds of electron volts [4]. The target
electron is a hydrogen atom electron, and its radius
is about ⟨𝑟2⟩ = 3𝑎,20, where 𝑎0 is Bohr’s radius and
equal to ~2

𝑒2𝑚𝑒
. The dipole polarizabilities of this atom

were calculated by different researchers and are lim-
ited by upper and lower bounds with

4𝑎30 ≤ 𝛼 ≤ 16

3
𝑎20

calculated by using the variational wave function ap-
proach. Some improvements were done by Dalfovo
and Stringari with

33

8
4𝑎20 ≤ 𝛼 ≤ 100

21
𝑎20

and with the approximation method [4]. The range
was set as

3

4
4𝑎20 ≤ 𝛼 ≤ 4.59 𝑎20,

which is well agreed witth the upper bound.
The polarizability is defined as

𝛼𝑛𝑙𝑚 = 𝛼𝑛𝑙
0 + 𝛼𝑛𝑙

2

3𝑚2 − 𝑙(𝑙 + 1)

𝑙(2𝑙 − 1)
,

where 𝛼𝑛𝑙
0 and 𝛼𝑛𝑙

2 are known as the scalar and ten-
sor polarizabilities. The polarizability depends upon
three quantum numbers (𝑛), azimuthal quantum
number (l), and magnetic quantum number (m). The
first term of the polarizability is scalar and depends
on the principal quantum number and azimuthal
quantum number, while the second term is a tensor
and depends upon all three quantum numbers. For
(𝑛) = 1, (𝑙) = 0, (𝑚) = 0. Therefore, the polariz-
ability only depends on the scalar term. More details
can be found in [5], and the numerical values of the
scalar and tensor polarizabilities are listed by Mitroy
et al. in 2010. The electric (dipole) polarizability of
a nucleus (or atom) is also defined by

𝛼𝐸 = 2𝛼
∑︁
𝑁 ̸=0

|⟨𝑁 |𝐷𝑧⟩|0⟩|2

𝐸𝑁 − 𝐸0
.

Moreover, we define, in terms of the cross-section,

𝛼𝐸 =
1

2𝜋

∞∫︁
𝜔th

𝑑𝜔
𝜎𝑢𝑑
𝛾

𝜔2
.

The significant sensitivity of 𝛼𝐸 is also depends on
the nuclear binding energies and was calculated us-
ing the no-core shell model (NCSM) in relative coor-
dinates by Navratil et al. in 2007 and Hayes et al. in
2003 [6]. In a static homogeneous electric field, the
dipole polarizability tensor of the ground electronic
state is described by the quadratic Stark effect and is
defined as

𝛼𝛼𝛽 = 2
∑︁
𝑛

⟨0|𝑟𝛼|𝑛⟩⟨𝑛|𝑟𝛽 |0⟩
𝐸𝑛 − 𝐸0

. (1)

For the multielectron systems, the quadratic Stark
shift is always negative for the ground state, whereas
the dipole polarizability is always positive and non-
zero (Saftonova et al., 2015 and Delone et al., 1999).
The static scalar dipole polarizability for a neutral
H-atom in 2s state is about 4.5 a.u. See more de-
tails in the works by Goldman, 1989; Tang et al.,
2012, and Filippin et al., 2014. The isotopes of hydro-
gen 1H and 2H have approximate static polarizability
with the fine structure constant. The directly mea-
sured value available for the hydrogen static dipole
polarizability was measured by Scheffers and Stark
as 𝛼 = 4.0 ± 1.3 a.u. The dynamic dipole polar-
izability for hydrogen is 4.59 ± 0.07 a.u. (Scheffers,
1940). The experimental static dipole polarizability
[7] for H2 to be 5.437 a.u. yields a value equal to
4.503 ± 0.049 a.u. for atomic hydrogen (Marlow et
al., 1965 and Schuler et al., 1925). Accurate theo-
retical estimates of the static and dynamic dipole
polarizabilities are reported for the ground and ex-
cited states of hydrogen atoms. A variation of the
computed polarizabilities is observed as a function of
the number of grid points (Karplus et al., 1972 and
1963). The dynamic polarizabilities of the 1s ground-
state frequency interval 0 ≤ 𝜔 ≤ 0.5 a.u. at infinity
(greater than 10 a.u.) is 4.5 a.u. erported in [8]. The
infinite distance here is considered greater or equal
to 20 a.u. The dynamic and static dipole polarizabil-
ities are the same, i.e., 4.5 a.u. (Laughlin et al. 2002,
Burrows et al., 2005, and Montgomery, 2002).

The intensity of the laser field is as follows:

𝐼 =
1

2

√︂
𝜀0
𝜇0

𝐸2
0 =

𝜀0𝑐𝐸
2
0

2
.
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Here, 𝜀0 is the permittivity of the free space, 𝜇0 is
the permeability, 𝐸0 is the electric field, and 𝑐 is the
velocity of light. The behavior of an atom in high laser
intensities ≥1013 W cm−2 is usually analyzed basing
on the Keldysh parameters given as

𝛾 =
𝜔0

√
2𝑚𝐼0
𝑒𝐴

,

here 𝜔0 is the frequency, 𝑚 is the electron mass, 𝐼0
is the ionization potential, 𝐴 is the amplitude of the
driver field, and 𝑒 is the charge of the electron. In the
present day, the laser intensities range from 1013 to
1017 W cm−2 for a high-power laser with correspond-
ing magnetic field strength 1010 to 1012 V/m. The
recent development of the laser technology has re-
sulted in the construction of short-pulse lasers ca-
pable of generating fs light pulses with PW powers
and intensities exceeding 1021 W cm−2, and has laid
the basis for the multi-PW lasers, just being built
in Europe [9]. This will produce fs pulses of ultra-
relativistic intensities 1023–1024 W cm−2. The inten-
sity 6.53 × 1011 W/cm2, angular distribution (AD)
has a bell shape with the maximum pointing perpen-
dicularly to the laser polarization. Moreover, AD was
computed for several laser field intensities in the range
of 13× 109 to 6.53× 1011 W cm−2 [10].

Laser-assisted electron scattering (LAES) involves
the interaction between light and matter with the
energy transfer between light fields and free elec-
trons. Treiber et al. [11] studied the interaction of su-
perfluid He in bulk between 32–340 Å with a strong
laser field. Treiber et al. also reported that at high in-
tensity the target from Xe and AC (acetone) gains an
energy of 25–30 eV. LAES offers a unique advantage
for time-resolved electron probes and can increase or
decrease their kinetic energy by multiples of the pho-
ton energy ±𝑛~𝜔, in the presence of a strong laser
field with atoms or molecules as the target. Kanya
and Yamanouchi [12] showed that, above the thresh-
old energy, the inelastic interactions are insignificant
and have good agreement with a much lower cross-
section as compared to the elastic interaction.

Double and triple differential cross-sections for the
ionization of hydrogen-like atom was studied by Bid-
vari and Fathi [13] using the second Born approx-
imation and showed that the ejected electron has
energies of 16.4, 26.4, 36.4, and 39.4 eV, which is
compared to both experimental and theoretical avail-
able results. The interaction of a laser field with un-

bound electrons (free electron) is treated in a non-
perturbative way by the use of Volkov waves, which
was proposed by Joachain et al. in 1988 for the elec-
tron ejected from the target with residual H+ photon
[14]. Ajana et al. [15] studied the differential cross-
section for low energies using the Born approximation
and obtained the total differential cross-section be-
tween 0 to 1.4 a.u. with the energy incidencing from
30 eV to 100 eV, and the laser photon energy was
equal to 1.17 eV.

2. Material and Method

The polarized potential is given as

𝑉 (𝑟) = − 𝛼𝑝

2(𝑟2 + 𝑑2)2

and

𝑑2 =
𝛼𝑝

2𝑍1/3
,

where 𝛼𝑝 is the dipole polarizability, and 𝑍 is the
atomic number. The Fourier transformation for a po-
larized potential is

𝑉 (Δ) =
𝛼𝑝𝑒

−Δ𝑑

16𝜋𝑑
, |𝑉 (Δ)|2 =

𝛼2
𝑝𝑒

−2Δ𝑑

256𝜋2𝑑2
. (2)

Using the Taylor series expansion and neglecting
higher-order terms, we get

|𝑉 (Δ)|2 =
𝛼2
𝑝

256𝜋2𝑑2
.

Then the scattering cross-section in terms of the tran-
sition matrix [16, 17] is given by

𝑑𝜎

𝑑Ω
=

𝑚2

(2𝜋~2)2
𝑘𝑓
𝑘𝑖

|𝑇𝑘𝑓𝑘𝑖
|2, (3)

|𝑇𝑘𝑓𝑘𝑖 |2 =
∑︁
𝑙

𝐽2
𝑙 (Δ.𝛼0)|𝑉 (Δ)|2. (4)

For 𝑛 = 1, the Bessel function becomes

𝐽1(𝑥) =
(Δ.𝛼0)

1

21Γ(1 + 1)
×

×
[︂
1− (Δ.𝛼0)

2

2.2(1 + 1)
+

(Δ.𝛼0)
4

2.4.2(1 + 1)(1 + 2)
+ ...

]︂
. (5)

Here, dot (.) indicates a dot product. If we consider
𝜉 to be the angle between the electric field and the
transform momentum, then

Δ.𝛼0 = Δ𝛼0 cos 𝜉. (6)
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For high frequencies and low intensities, the high or-
der term in the Bessel function is neglected, because
𝛼0 = = 𝑒𝐸0

𝑚𝜔2 . At the zero angle (momentum and elec-
tric field are parallel), the Bessel function is

𝐽1(Δ.𝛼0) =
Δ𝛼0

2
,

and
[𝐽1(Δ.𝛼0)]

2
=

Δ2𝛼2
0

4
.

For 𝑛 = −1, we obtain

𝐽−1(Δ.𝛼0) = −Δ𝛼0

2
,

and
[𝐽−1(Δ.𝛼0)]

2
=

Δ2𝛼2
0

4
.

Now, |𝑇𝑘𝑓𝑘𝑖
|2 becomes

|𝑇𝑘𝑓𝑘𝑖
|2 =

(︃
𝛼2
0Δ

2𝛼2
𝑝

1024𝜋2𝑑2

)︃
. (7)

Putting 𝛼0 = 𝑒𝐸0

𝑚𝜔2 , the differential cross-section fol-
lows from Eqs. (3) and (4) as

𝑑𝜎

𝑑Ω
=

𝑚2

(2𝜋~2)2
𝑘𝑓
𝑘𝑖

(︂
𝑒𝐸0Δ𝛼𝑝

32𝑚𝑑𝜋𝜔2

)︂2
. (8)

Since we consider the inelastic scattering, the change
of the momentum Δ = 𝑘𝑓 − 𝑘𝑖, and the dot product
of a change in the momentum gives

Δ2 = 𝑘2𝑓 − 2𝑘𝑓𝑘𝑖 cos 𝜃 + 𝑘2𝑖 . (9)

Here, 𝜃 is the angle between 𝑘𝑓 and 𝑘𝑖 which is the
scattering angle between the initial and final mo-
menta of the projected particle (electron). Arranging
Eq. (9) gives

Δ2

𝑘2𝑖
=

𝑘2𝑓
𝑘2𝑖

− 2
𝑘𝑓
𝑘𝑖

cos 𝜃 + 1. (10)

In the inelastic scattering, the energy is not con-
served. Therefore, the energy of the final electron is
equal to 𝐸𝑘𝑓

= 𝐸𝑘𝑖
− 𝑙~𝜔 ± 𝐸𝑜𝑒. Here, 𝐸𝑘𝑓

is the
energy of the incidence electron, ~𝜔 is the energy of
a single photon in the laser field, 𝐸𝑜𝑒 is either the
energy absorbed or emitted during the transforma-
tion (scattering). Moreover +𝐸𝑜𝑒 and −𝐸𝑜𝑒 denote,
respectively, the energy gain and energy loss by the
scattered electron as a result of the interaction of elec-
trons and photons. Hence, this scattering is inelastic
by definition. We have
𝐸𝑘𝑓

𝐸𝑘𝑖

=

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
. (11)

Here, 𝐸𝑘𝑖
is the energy of the projected electron. In

view of the relation 𝑝2

2𝑚 , Eq. (11) gives

𝑘𝑓
𝑘𝑖

=

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂1
2

. (12)

Substituting Eq. (10) in (12) and arranging, we get

Δ2 = 𝑘2𝑖

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
−

− 2

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂1
2

cos 𝜃 + 1. (13)

Now, we substitute Eq. (13) in the differential cross-
section (8) and get

𝑑𝜎

𝑑Ω
=

𝑚2𝛼2
0𝛼

2
𝑝𝑘

2
𝑖

4096𝜋4~4𝑑2

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂1
2

×

×

[︃(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
−2

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂1
2

cos 𝜃+1

]︃
.

(14)

Multiplying Eq. (14) by ~2 with 𝛼0 = 𝑒𝐸0

𝑚𝜔2 and solv-
ing the resulting equation, we get

𝑑𝜎

𝑑Ω
=

𝑚2𝛼2
0𝛼

2
𝑝𝐸

2
0𝐸

2
𝑘𝑖
𝜆4

32378𝜋4~4𝑑2𝑐2

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂1
2

×

×

[︃(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
−2

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂1
2

cos 𝜃+1

]︃
.

(15)
Let

𝐶 =
𝑚𝑒2𝛼2

𝑝

3237𝜋8~6𝑑2𝑐4
= 1.65× 10−10,

where 𝛼𝑝 = 4.5 a.u. is the dipole at a distance
greater than 10 a.u. Hence, we can consider that
𝑑 = 20 a.u. and

𝑑𝜎

𝑑Ω
=

𝐶𝐸2
0𝐸

2
𝑘𝑖

𝜔4

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂1
2

×

×

[︃(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
−2

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂1
2

cos 𝜃+1

]︃
.

(16)

Here, 𝜔 = 2𝜋𝑓 = 2𝜋 𝑐
𝜆 is the number of pho-

tons transferred during the interaction. Now, in the
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atomic units, the inelastic differential cross-section
from Eq. (16) becomes

𝑑𝜎

𝑑Ω
=

𝐶𝐸2
0𝐸

2
𝑘𝑖

𝜔4

[︃(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂3
2

−

− 2

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
cos 𝜃+

(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂1
2

]︃
. (17)

Assuming 𝑥 = 𝑙𝜔
𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖
in Eq. (17) and using the

expansions for the first and third terms, we get(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂3
2

=

= (1− 𝑥)
3
2 = 1− 3

2
𝑥− 3

4

𝑥2

2!
+

3

8

𝑥3

3!
− ... . (18)

Taking the first two terms for a better solution, we
have(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂3
2

= (1− 𝑥)
3
2 = 1− 3

2

(︂
𝑙𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
.

(19)

Similarly, for the third term, we get(︂
1− 𝑙~𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂1
2

= (1− 𝑥)
1
2 = 1− 1

2

(︂
𝑙𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
.

(20)

Now, from Eqs. (17), (19), and (20), we obtain

𝑑𝜎

𝑑Ω
=

4𝐶𝐸2
0𝐸

2
𝑘𝑖

𝜔4

(︂
1− 𝑙𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
sin2

𝜃

2
. (21)

Here, 𝐸𝑜𝑒 is the energy which is either gained by the
electron or lost by the incidence electron after the
scattering. This equation represents the differential
cross-section for the inelastic scattering. Moreover,
this equation indicates a different condition.

Case I: The energies of the incidence electron and
photo (laser field) are not greater than the threshold
energy of atom’s electron. Then Eq. (21) becomes(︂
𝑑𝜎

𝑑Ω

)︂
𝐸𝑘𝑖

,𝐸𝑝<𝐸𝑡ℎ

=
4𝐶𝐸2

0𝐸
2
𝑘𝑖

𝜔4

(︂
1± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
sin2

𝜃

2
. (22)

This is true, because the 𝑙𝜔 term doesn’t play any
role in the interaction, although the scattering takes
place in the presence of a laser field or photons.

Case II: The energies of the incidence electron and
photon (laser field) are greater than the threshold of

atom’s electron. Then Eq. (21) is a fit for this condi-
tion. We have(︂
𝑑𝜎

𝑑Ω

)︂
𝐸𝑘𝑖

,𝐸𝑝>𝐸th

=
4𝐶𝐸2

0𝐸
2
𝑘𝑖

𝜔4

(︂
1− 𝑙𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
sin2

𝜃

2
.

(23)

Comparison of the differential cross-section:(︀
𝑑𝜎
𝑑Ω

)︀
𝐸𝑘𝑖

,𝐸𝑝<𝐸th(︀
𝑑𝜎
𝑑Ω

)︀
𝐸𝑘𝑖

,𝐸𝑝>𝐸th

=

(︁
1± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︁
(︁
1− 𝑙𝜔

𝐸𝑘𝑖
± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︁ . (24)

The relation(︂
1± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
>

(︂
1− 𝑙𝜔

𝐸𝑘𝑖

± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︂
holds, because the two-term expression is the same in
both cases, and 𝑙𝜔

𝐸𝑘𝑖
in
(︁
1− 𝑙𝜔

𝐸𝑘𝑖
± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︁
is the addi-

tional negative term. Therefore, we have(︀
𝑑𝜎
𝑑Ω

)︀
𝐸𝑘𝑖

,𝐸𝑝<𝐸th(︀
𝑑𝜎
𝑑Ω

)︀
𝐸𝑘𝑖

,𝐸𝑝>𝐸th

=

(︁
1± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︁
(︁
1− 𝑙𝜔

𝐸𝑘𝑖
± 𝐸𝑜𝑒

𝐸𝑘𝑖

)︁ > 1, (25)

(︂
𝑑𝜎

𝑑Ω

)︂
𝐸𝑘𝑖

,𝐸𝑝<𝐸th

>

(︂
𝑑𝜎

𝑑Ω

)︂
𝐸𝑘𝑖

,𝐸𝑝>𝐸th

. (26)

This equation shows that the differential cross-section
of the scattering with the incidence energies of an
electron and a photon less than the threshold (𝐸th) is
greater than the differential cross-section of the scat-
tering with incidence energies of an electron and a
photon greater than the threshold. The differential
cross-section is greater, since the electron-target in-
teraction during the collision forces electrons to oscil-
late. The target electrons do not escape the orbits of
the atom due to the insufficient incidence in the en-
ergy of the electron. But the differential cross-section
decreases. When the energies of a photon and the in-
cidence electron are high, the electrons have no time
to oscillate. Moreover, the electron goes to an excited
state after the energy absorption from the laser field
(photon).

3. Results and Discussion

The energy ranges for the differential cross-section
for the scattering of electrons by helium were stud-
ied in the interval 1–20 eV with a high-intensity
carbon dioxide laser. The reported cross-sections are

ISSN 2071-0194. Ukr. J. Phys. 2022. Vol. 67, No. 4 231



S.H. Dhobi, K. Yadav, S.P. Gupta et al.

Fig. 1. Differential cross-section area with the incidence en-
ergy of the electron during the inelastic collision at 𝜃 = 100

and 𝜔 = 0.5 a.u.

not zero, but confirm similar experiments with ar-
gon as the scattering centers reported in [18]. The-
refore, the authors are using visible and UV ranges
of the electron energy for hydrogen atoms, because
there are no studies of the scattering in such energy
interval. Some authors studied the differential cross-
section with high-energy electrons from a few keV
to MeV like Joachain [19], Buica [2], etc. To study
the differential cross-section, one can use Nd : YAG
(𝜔 = 1.17 eV) or He : Ne (𝜔 = 2 eV) lasers in ear-
lier laser-assisted electron-atom experiments used by
Hark et al. in 2011 and other researchers.

3.1. Inelastic differential
cross -section in a weak laser field
with the energies of incidence electron
and the photon less than the threshold

In the inelastic scattering, the electron absorbs or
emits the energy during the interaction. Therefore,
the energies after and before the reaction or inter-
action are not equal. Equation (22) developed above
shows the differential cross-section for the inelastic
scattering. The dashed curve (line) in Fig. 1 shows
the differential cross-section when gaining the energy
during a collision. This means that the final energy
of the electron after the scattering is greater than
the initial one. But the undashed and smooth curves
show electrons which lose the energy after the scatter-
ing. The graph below also shows that the differential
cross-section is greater, when electrons gain energy,
while it is less, when electrons lose the energy dur-
ing the scattering. Moreover, when electrons lose the
1-eV energy, the nature of differential cross-section is

the same as the electron gain energy. But when elec-
trons absorb 5 eV and 10 eV, the nature of differen-
tial cross-section is different. It decreases initially and
then increases. In the figures 𝐸𝑙 represent the energy
loss from the target to the field and electron, whereas
𝐸𝑔 represents the energy gain from the field and elec-
tron by the target.

The differential cross-section increases with the en-
ergy of the incidence electron, when the electron loses
the energy of 1 eV during the inelastic scattering.
This occurs, because the energy loss is very low
and causes the electron oscillation. But as the en-
ergy loss of the incidence electron after the scat-
tering (between 5 eV and 10 eV), the differential
cross-section decreases, as the incidence energy of
the electron increases. At the interaction point, the
energy transfer occurs, and the breaking point is
observed. Note that the oscillations cause an in-
crease in the differential cross-section. The decreased
cross-section means that the energy of the incidence
electron transforming to a target electron and at
a low differential cross-section, the maximum en-
ergy transformation takes place, due to which the
target electron oscillation happens. Hence, the dif-
ferential cross-section increases and becomes maxi-
mum at a resonance state. Therefore, the differential
cross-section firstly decreases and then increases af-
ter the transformation of the energy at breakpoints
(5 eV and 10 eV) with the energy loss. When elec-
trons lose the 13-eV energy to the target, the dif-
ferential cross-section decreases and becomes low,
because the electron goes to an excited or Fermi
state.

3.2. Inelastic differential
cross section in a weak laser field
with scattering angle

The differential cross-section with some scattering
angle and at the 10-eV incidence electron energy is
shown in Fig. 2. The differential cross-section increase
with the scattering angle, but the differential cross-
section during the energy gain is greater than at he
energy loss. Such pattern is seen, because the tar-
get electron gains energy from the incidence electron
and oscillates, due to which the cross-sections in both
cases increase. When the electron gain energy oscilla-
tion enhances, the differential cross-section is higher
than in the energy loose cases.
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3.3. Inelastic differential
cross section in a weak laser field
when the energies of the incidence electron
and a photon are greater than the threshold
Figure 3 shows the differential cross-section of the
inelastic scattering with 𝑙 = 1 (emission of one pho-
ton). When the scattering takes place in a laser field
(photon energy is greater than the threshold of the
target electron atom), and the emission of a photon
occurs. The emission of a photon takes place, when
the incidence electron transfers a partial energy to the
target electron which absorbs the energy from pho-
tons and goes to an excited state. By emitting pho-
tons, it transits to the ground state. In this way, the
photon is emitted (𝑙 = 1), and the scattered electron
either absorbs or loses the energy at that instant. The
dashed curve shows the energy gained by the elec-
tron during the target-electron interaction. But the
smooth curve shows that scattered electrons lose en-
ergy during the interaction of the target, incidence
electron, and photons at an instant. The breakpoint
in the figure is due to the transformation of the energy
between the electrons after the oscillation which in-
creases and decreases the differential cross area. The
decrease in the differential cross-section happens due
to the transformation of the energy to the target. Af-
ter the interaction, the differential cross-section in-
creases due to the oscillation of electrons.

Figure 4 represents a differential cross-section of
the inelastic scattering with 𝑙 = −1 (absorption of
one photon). When the scattering takes place in the
laser field (photon energy is greater than the thresh-
old of the target electron atom), and the absorption
of one photon is realized, the absorption of a pho-
ton pccurs, when the incidence electron transforms a
partial energy to the target electron, and the target
electron absorbs the energy from the photon instantly
(laser field). The dashed curve shows that the energy
is gained by the scattered electrons during the inter-
action. The smooth curve shows that scattered elec-
trons lose energy.

The numerically calculated differential cross-
section is obtained for the ranges such as log

(︀
𝑑𝜎
Ω

)︀
= 2

to log
(︀
𝑑𝜎
Ω

)︀
= 12. This is comparable with the differ-

ential cross-section obtained by Burica for the inelas-
tic scattering and Cionga et al. for the elastic differ-
ential cross-section for a hydrogen atom. As Kanya
and Yamanouchi [12] reported, the differential cross-
section above the threshold energy for inelastic in-

Fig. 2. Differential cross-section at a scattering angle in the
inelastic scattering

Fig. 3. Differential cross-section with 𝑙 = 1 and the energy
greater than the threshold

Fig. 4. Differential cross-section during the absorption of a
photon

teractions is very lower in comparison to the elas-
tic interaction. Therefore, the calculated differential
cross-section by the authors in this work ranges from
1.5 a.u. to 12 a.u. which is also small and agrees
with Kanya and Yamanouchi. In addition, the dif-
ferential cross-setcion calculated by Ajana et al. [15]
ranges from 0 to 1.4 a.u. for low energies (30 eV to
100 eV) with a laser photon energy of 1.17 eV. The
maximum differential cross-section was calculated by
Ajana et al., and the minimum found by the authors
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is 0.1 a.u. Since the authors consider low incidence en-
ergies (1 eV to 30 eV), the differential cross-section is
dependent upon

(︁
1± 𝑙~𝜔

𝐸𝑘𝑖

)︁
. For the lower value of the

incidence energy, a higher differential cross-section
was observed to be hence greater than that given by
Ajana et al.

4. Conclusion

The developed mathematical equations (21) and (22)
are used to study the differential cross-sections in the
presence of a weak laser field for the inelastic scatter-
ing. Equation (21) is visualized in Figs. 3 and 4 based
on a laser field intensity of 106 W/cm−2 and the in-
cidence energy greater than the ground-state energy
of a hydrogen atom. Similarly, Eq. (22) is visualized
in Figs. 1 and 2 based on the same intensity and in-
cidence energy less than the ground-state energy of
the hydrogen atom. The differential cross-section was
found greater, when scattered electrons gain energy
instead of its loss from the system. The differential
cross-section was found minimum at 5, 10, 13, 16, 20,
25, and 30 eV, because the target emits the energy to
the system. In addition, the differential cross-section
increases with the scattering angle.
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ДИФЕРЕНЦIАЛЬНИЙ ПЕРЕРIЗ
ДЛЯ НЕПРУЖНОГО РОЗСIЮВАННЯ
У ПРИСУТНОСТI СЛАБКОГО ПОЛЯ ЛАЗЕРА

Ми вивчаємо диференцiальний перерiз непружного розсiю-
вання у присутностi слабкого поля лазера (видиме свiтло
та ультрафiолет). Коли мiшень поглинає енергiю, диферен-
цiальний перерiз зростає згiдно з теоретичною моделлю.
Диференцiальний перерiз спочатку зменшується до мiнiму-
му та потiм досягає максимального значення, коли мiшень
випромiнює енергiю. Випромiнювання енергiї вiдбувається
при 5, 10, 13, 16, 20, 25 i 30 еВ. Крiм того, диференцiальний
перерiз зростає зi збiльшенням кута розсiювання.

Ключ о в i с л о в а: непружне розсiювання, поле лазера,
кут розсiювання, диференцiальний перерiз.
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