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TEMPERATURE DEPENDENCE
OF SPIN PINNING AND SPIN-WAVE DISPERSION
IN NANOSCOPIC FERROMAGNETIC WAVEGUIDES

The field of magnonics attracts significant attention due to the possibility of utilizing infor-
mation coded into the spin-wave phase or amplitude to perform computation operations on
the nanoscale. Recently, spin waves were investigated in Yttrium Iron Garnet (YIG) waveg-
uides with widths down to 50 nm and aspect ratios of thickness to width approaching unity. A
critical width was found, below which the exchange interaction suppresses the dipolar pin-
ning phenomenon, and the system becomes unpinned. Here, we continue these investigations
and analyze the pinning phenomenon and spin-wave dispersion as functions of temperature,
thickness, and material parameters. Higher order modes, the influence of a finite wavevector
along the waveguide, and the impact of the pinning phenomenon on the spin-wave lifetime
are discussed, as well as the influence of a trapezoidal cross-section and edge roughness of
the waveguide. The presented results are of particular interest for potential applications in
magnonic devices and the incipient field of quantum magnonics at cryogenic temperatures.
K e yw o r d s: spin waves, yttrium iron garnet, Brillouin light scattering spectroscopy, low
temperatures.

1. Introduction
The field of magnonics proposes a promising approach
for a novel type of computing systems, in which
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magnons, the quanta of spin waves, carry the infor-
mation instead of electrons [1–13]. Since the phase
of a spin wave provides an additional degree of free-
dom, efficient computing concepts can be used result-
ing in a valuable decrease in the footprint of logic
units. Moreover, the scalability of magnonic struc-
tures down to the nanometer scale and the possibil-
ity to operate with spin waves of nanometer wave-
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lengths are additional advantages of the magnon-
ics approach. The further miniaturization will, con-
sequently, result in an increase in the frequency of
spin waves used in the devices from the currently em-
ployed GHz range up to the THz range. In classical
magnonics, spin-wave modes in thin films or rather
planar waveguides with thickness-to-width aspect ra-
tios 𝑎r = ℎ/𝑤 ≪ 1 have been utilized. In the case of
a waveguide, edge magnetostatic charges arise, which
can be accounted for by the introduction of boundary
conditions [14]. Therefore, thin waveguides demon-
strate the effect of “dipolar pinning” at the lateral
edges, and, for its theoretical description, the thin
strip approximation was developed, in which only the
pinning of the much-larger-in-amplitude dynamic in-
plane magnetization component is taken into account
[15–20].

The recent progress in the fabrication technol-
ogy leads to the development of nanoscopic mag-
netic devices in which the width 𝑤 and the thick-
ness ℎ become comparable [21–29]. The description
of such waveguides is beyond the thin strip model
of effective pinning, because the scale of nonuni-
formity of the dynamic dipolar fields, which is de-
scribed as “effective dipolar boundary conditions”,
becomes comparable to the waveguide width. Addi-
tionally, both, in-plane and out-of-plane dynamic
magnetization components, become involved in the
effective dipolar pinning, as they become of compa-
rable amplitude. Thus, a more general model should
be developed and verified experimentally. In addition,
such nanoscopic feature sizes imply that the spin-
wave modes bear a strong exchange character, since
the widths of the structures are now comparable to
the exchange length [30]. A proper description of the
spin-wave eigenmodes in nanoscopic strips which con-
siders the influence of the exchange interaction, as
well as the shape of the structure, was recently per-
formed in [31] and is fundamental for the field of
magnonics.

Very recently, the fields of quantum magnonics
and magnonics at cryogenic temperatures were es-
tablished. Among the highlights, one should mention
the first realization of coherent coupling between a
ferromagnetic magnon and a superconducting qubit
[32], the first observation of the interaction between
magnons and Abrikosov fluxes in superconductor-
ferromagnet hybrid structures [33], the investiga-
tion of the interplay of the magnetization dynam-

ics with a microwave waveguide at cryogenic tem-
peratures [34] and many more interesting phenomena
[35–37]. Thus, the understanding of the influence of
the temperature on spin pinning conditions and on
the spin-wave dispersion in nanostructures is of high
demand.

Here, we continue the investigation carried out
in Phys. Rev. Lett. 122, 247202 (2019). The evolu-
tion of the frequencies and profiles of the spin-wave
modes in Yttrium Iron Garnet (YIG) waveguides
with a thickness of 39 nm and widths down to 50 nm
are discussed in detail. The phenomenon of unpin-
ning and the underlying theory, as well as the ex-
perimental proof, are outlined. A thorough discus-
sion of the effective width and the critical width,
at which the system becomes unpinned, in depen-
dence on the thickness and the material of choice
is presented. Moreover, the temperature dependence
is analyzed theoretically. Higher order modes up to
𝑛 = 2, the influence of a finite wavevector along
the waveguide and the impact of the pinning phe-
nomenon on the spin wave lifetime are discussed. To
account for the imperfections of a real system, the in-
fluence of a trapezoidal cross-section and edge rough-
ness on the effective width and the critical width are
investigated.

2. Methodology

2.1. Sample fabrication

A 39 nm thick Yttrium Iron Garnet (YIG) film has
been grown on a 1 inch (111) 500 𝜇m thick Ga-
dolinium Gallium Garnet (GGG) substrate by the
liquid phase epitaxy from PbO–B2O3 based high-
temperature solutions at 860 ∘C using the isother-
mal dipping method (see, e.g., Ref. [38]). A pure
Y3Fe5O12 film with a smooth surface was obtained
by rotating the substrate horizontally with a rotation
rate of 100 rpm. The saturation magnetization of the
YIG film is 1.37 × 105 A/m, its Gilbert damping is
𝛼 = 6.41× 10−4 and the inhomogeneous linewidth is
𝜇0Δ𝐻0 = 0.001 mT, as it was extracted by ferromag-
netic resonance spectroscopy [39].

The nanostructures were fabricated by utilizing a
hard mask ion milling procedure. The key steps in
the fabrication process are shown in Fig. 1, a. First,
a double layer of polymethyl methacrylate (PMMA)
was spin-coated on the YIG film and a chromium/ti-
tanium hard mask was fabricated using electron beam
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Fig. 1. Schematically depicted main steps in the nanostruc-
turing process (a). Sketch of the sample and the experimen-
tal configuration: a set of YIG waveguides is placed on a mi-
crostrip line to excite the quasi-FMR in the waveguides. BLS
spectroscopy is used to measure the local spin-wave dynamics
(b). SEM micrograph of a 1 𝜇m and a 50-nm wide YIG waveg-
uide of 39-nm thickness. The color code shows the simulated
amplitudes of the fundamental mode at the quasiferromagnetic
resonance, i.e., 𝑘𝑥 = 0, in the waveguides. The mode in the
50𝑛m waveguide is almost uniform across the width of the
waveguide evidencing the unpinning directly (c) and (d) [31]

lithography and electron beam evaporation. This
hard mask acts as a protective layer in a succes-
sive Ar+ ion milling step. In a final step, any resid-
ual chromium is removed using an acid that YIG is
inert to.

2.2. Microfocused Brillouin Light
Scattering (BLS) spectroscopy measurements

BLS spectroscopy is a unique technique for measur-
ing the spin-wave intensities in frequency, space, and
time domains. It is based on the inelastic scattering of
an incident laser beam from a magnetic material. In
our measurements, a laser beam of 457 nm wave-
length and a power of 1.8 mW is focused through
the transparent GGG substrate on the center of the
respective individual waveguide using a 100× mi-
croscope objective with a large numerical aperture
(NA = 0.85). The effective spot-size is 350 nm. The
scattered light was collected and guided into a six-

pass Fabry–Pérot interferometer to analyze the fre-
quency shift.

2.3. Numerical simulations

The micromagnetic simulations of the space- and
time-dependent magnetization dynamics were perfor-
med by the GPU-accelerated simulation program
Mumax3 using a finite-difference discretization [40].
The structure is schematically shown in Fig. 1, b.
The following material parameters were used in
the simulations: the saturation magnetization 𝑀s =
= 1.37× 105 A/m and the Gilbert damping 𝛼 =
= 6.41× 10−4 were extracted by ferromagnetic reso-
nance spectroscopy measurements of the plain film
before the patterning [41]. The gyromagnetic ratio
𝛾 = 175.86 rad/(ns ·T) and the exchange constant
𝐴 = 3.5 pJ/m for a standard YIG film were as-
sumed. The external field 𝐵 = 108.9 mT was ap-
plied along the waveguide long axis. Three steps
were performed to calculate the spin-wave disper-
sion curve: (i) The external field was applied along
the waveguide, and the magnetization was allowed
to relax into a stationary state (ground state). (ii) A
sinc field pulse 𝑏𝑦 = 𝑏0sinc(2𝜋𝑓𝑐 𝑡), with the os-
cillation field 𝑏0 = 1 mT and cut-off frequency
𝑓𝑐 = 10 GHz, was used to excite spin waves in a
wide range. (iii) The spin-wave dispersion relations
were obtained by performing the two-dimensional
Fast Fourier Transformation of the time- and space-
dependent data. Furthermore, the spin-wave width
profiles were extracted from the 𝑚𝑧 component across
the width of the waveguides using a single frequency
excitation.

2.4. Quasianalytic theoretical model

In order to accurately describe the spin-wave char-
acteristics in nanoscopic longitudinally magnetized
waveguides, a more general semianalytic theory is
provided which goes beyond the thin strip approx-
imation [31]. Here, we assume a uniform spin wave
mode profile across the waveguide thickness (no 𝑧-
dependence), which is valid for the fundamental
thickness mode in thin waveguides. In a general case,
the 𝑧-dependence of any higher thickness mode can
be included in a similar way as shown here. Please
note that the theory is not applicable in transversely
magnetized waveguides due to their more involved
internal field landscape [22]. The lateral spin-wave

1096 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 12



Temperature Dependence of Spin Pinning

mode profile m𝑘𝑥
(𝑦) and frequency can be found as

solutions of the linearized Landau–Lifshitz equation
[42, 43]

−𝑖𝜔𝑘𝑥m𝑘𝑥(𝑦) = 𝜇×
(︁
Ω̂𝑘𝑥 ·m𝑘𝑥(𝑦)

)︁
, (1)

with appropriate exchange boundary conditions,
which take into account the surface anisotropy at the
edges. Here, 𝜇 is the unit vector in the static mag-
netization direction, and Ω̂𝑘𝑥

is a tensorial Hamilton
operator, which is given by

Ω̂𝑘𝑥
·m𝑘𝑥

(𝑦) =

(︂
𝜔H + 𝜔M𝜆2

(︂
𝑘2𝑥 − 𝑑2

𝑑𝑦2

)︂)︂
m𝑘𝑥

(𝑦)+

+𝜔M

∫︁
Ĝ𝑘𝑥

(𝑦 − 𝑦′) ·m𝑘𝑥
(𝑦′)𝑑𝑦′. (2)

Here, 𝜔H = 𝛾𝐵, 𝐵 is the static internal magnetic
field that is considered to be equal to the external field
due to the negligible demagnetization along the 𝑥-
direction, 𝜔M = 𝛾𝜇0𝑀s, 𝛾 is the gyromagnetic ratio,
and Ĝ𝑘𝑥

is a Green’s function (see next subsection).
A numerical solution of Eq. (1) gives both, the spin-

wave profile m𝑘𝑥 and frequency 𝜔𝑘𝑥 . In the following,
we will regard the ouf-of-plane component 𝑚𝑧(𝑦) to
show the mode profiles representatively. In the past,
it was demonstrated that in microscopic waveguides,
the fundamental mode is well fitted by the function
𝑚𝑧(𝑦) = 𝐴0 cos(𝜋𝑦/𝑤eff) with the amplitude 𝐴0 and
the effective width 𝑤eff [17, 18]. This mode, as well
as the higher modes, are referred to as “partially
pinned”. Pinning hereby is related to the fact that
the amplitude of the mode at the edges of the waveg-
uide is reduced. In that case, the effective width 𝑤eff

determines where the amplitude of the modes would
vanish outside the waveguide [9, 17, 29]. With this ef-
fective width, the spin-wave dispersion relation can
also be calculated by the analytic formula [9]:

𝜔0(𝑘𝑥) =

=
√︁
(𝜔H+ 𝜔M(𝜆2𝐾2+ 𝐹 𝑦𝑦

𝑘𝑥
))(𝜔H+ 𝜔M(𝜆2𝐾2+ 𝐹 𝑧𝑧

𝑘𝑥
)),

(3)

where 𝐾 =
√︀
𝑘2𝑥 + 𝜅2 and 𝜅 = 𝜋/𝑤eff . The ten-

sor F̂𝑘𝑥 = 1
2𝜋

∫︀∞
−∞

|𝜎𝑘|2
�̃� N̂𝑘𝑑𝑘𝑦 accounts for the dy-

namic magnetization, 𝜎𝑘 =
∫︀ 𝑤/2

−𝑤/2
𝑚(𝑦)𝑒−𝑖𝑘𝑦𝑦𝑑𝑦 is

the Fourier-transform of the spin-wave profile across
the width of the waveguide, and �̃� =

∫︀ 𝑤/2

−𝑤/2
𝑚(𝑦)2𝑑𝑦

is the normalization of the mode profile 𝑚(𝑦).

2.5. Numerical solution of the eigenproblem

In this subsection, we discuss the details of the nu-
merical solution of the eigenproblem. Eigenproblem
(1) should be solved with proper boundary condi-
tions at the lateral edges of the waveguide. We use
a complete description of the dipolar interaction via
Green’s functions:

Ĝ𝑘𝑥(𝑦) =
1

2𝜋

∞∫︁
−∞

N̂𝑘𝑒
𝑖𝑘𝑦𝑦𝑑𝑘𝑦. (4)

Here,

N̂𝑘 =

⎛⎜⎜⎜⎜⎜⎝
𝑘2𝑥
𝑘2

𝑓(𝑘ℎ)
𝑘𝑥𝑘𝑦
𝑘2

𝑓(𝑘ℎ) 0

𝑘𝑥𝑘𝑦
𝑘2

𝑓(𝑘ℎ)
𝑘2𝑦
𝑘2

𝑓(𝑘ℎ) 0

0 0 1− 𝑓(𝑘ℎ)

⎞⎟⎟⎟⎟⎟⎠, (5)

where 𝑓(𝑘ℎ) = 1−(1−exp(−𝑘ℎ))/𝑘ℎ, 𝑘 =
√︁

𝑘2𝑥 + 𝑘2𝑦,

and it is assumed that the waveguides are infinitely
long.

The boundary condition (6) only accounts for the
exchange interaction and surface anisotropy (if any)
and reads [44]

m×
(︂
𝜇0𝑀s𝜆

2 𝜕m

𝜕n
−∇M𝐸a

)︂
= 0, (6)

where n is the unit vector defining the inward normal
direction to the waveguide edge, and 𝐸a(m) is the en-
ergy density of the surface anisotropy. In the studied
case of a waveguide magnetized along its long axis,
conditions (6) for the dynamic magnetization compo-
nents can be simplified to

±𝜕𝑚𝑦

𝜕𝑦
+ 𝑑𝑚𝑦

⃒⃒
𝑦=±𝑤/2

= 0,
𝜕𝑚𝑧

𝜕𝑦

⃒⃒⃒⃒
𝑦=±𝑤/2

= 0, (7)

where 𝑑 = −2𝐾s/(𝑚0𝑀
2
s 𝜆

2) is the pinning param-
eter [19], and 𝐾s is the surface anisotropy constant
at the waveguide lateral edges. More complex cases
like, e.g., diffusive interfaces, can be considered in
the same manner [45].

For the numerical solution of Eq. (1), it is con-
venient to use finite-element methods and to dis-
cretize the waveguide into 𝑛 elements of the width
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Δ𝑤 = 𝑤/𝑛, where 𝑤 is the width of the waveg-
uide. The discretization step should be at least sev-
eral times smaller than the waveguide thickness and
the spin-wave wavelength 2𝜋/𝑘𝑥 for a proper descrip-
tion of the magneto-dipolar fields. The discretization
transforms Eq. (1) into a system of linear equations
for the magnetizations m𝑗 , 𝑗 = 1, 2, 3, ..., 𝑛

𝑖𝜇×
(︂
(𝜔M + 𝜔M𝜆2𝑘2𝑥)m𝑗 −

−𝜔M𝜆2m𝑗−1 − 2m𝑗 +m𝑗+1

Δ𝑤2
+

+𝜔M

𝑛∑︁
𝑗′=1

Ĝ𝑗−𝑗′ ·m𝑗′

)︂
= 𝜔m𝑗 , (8)

where the dipolar interaction between the discretized
elements is described by

Ĝ𝑘𝑥,𝑗(𝑦) =

=
1

Δ𝑤

Δ𝑤/2∫︁
−Δ𝑤/2

𝑑𝑦

Δ𝑤/2∫︁
−Δ𝑤/2

𝑑𝑦′Ĝ𝑘𝑥
(𝑦 − 𝑦′ − 𝑗Δ𝑤). (9)

The direct use of Eq. (9) is complicated, since Green’s
function Ĝ𝑘𝑥

(𝑦) is an integral itself. Using the Fourier
transformation, it can be derived as

Ĝ𝑘𝑥,𝑗(𝑦) =
Δ𝑤

2𝜋

∫︁
sinc(𝑘𝑦Δ𝑤/2)N̂𝑘𝑒

𝑖𝑘𝑦𝑗Δ𝑤𝑑𝑘𝑦, (10)

with sinc(𝑥) = sin(𝑥)
𝑥 . This can be easily calcu-

lated, especially using the fast Fourier transforma-
tion. Equation (8) is, in fact, a 2𝑛-dimensional linear
algebraic eigenproblem (since m𝑗 is a 2-component
vector), which is solved by standard methods. The
values m0 and m𝑛+1 in Eq. (8) are determined from
the boundary conditions (7). In particular, for the
negligible anisotropy at the waveguide edges, one
should set m0 = m1 and m𝑛+1 = m𝑛.

3. Results and Discussions

3.1. Original experimental findings

In these studies, we consider rectangular magnetic
waveguides as shown schematically in Fig. 1, b. In the
experiment, a spin-wave mode is excited by a stripline
that provides a homogeneous excitation field over the
sample containing various waveguides etched from a
ℎ = 39 nm thick YIG film. The widths of the waveg-
uides range from 𝑤 = 50 nm to 𝑤 = 1 𝜇m and the

length is 60 𝜇m. The waveguides are uniformly mag-
netized along their long axis by an external field 𝐵
(𝑥-direction). Figures 1, c, and 1, d show scanning
electron microscopy (SEM) micrographs of the largest
and the narrowest waveguide studied in the exper-
iment. The intensity of the magnetization preces-
sion is measured by microfocused BLS spectroscopy
[46] (see the “Methodology” section) as shown in
Fig. 1, b. Black and red lines in Fig. 3, a show the fre-
quency spectra for the 1 𝜇m and 50-nm wide waveg-
uides, respectively. No standing modes across the
thickness were observed in our experiment, as their
frequencies lie higher than 20 GHz due to the small
thickness. The quasi-FMR frequency is 5.007 GHz for
the 1 𝜇m wide waveguide. This frequency is compa-
rable to 5.029 GHz, the value predicted by the classi-
cal theoretical model using the thin strip approxima-
tion [17–19]. In contrast, the quasi-FMR frequency is
5.35 GHz for a 50 nm wide waveguide which is much
smaller than the value of 7.687 GHz predicted by the
same model. The reason for this is that the thin strip
approximation overestimates the effect of the dipo-
lar pinning in waveguides with aspect ratio either
𝑎r = 1 or close to one, for which the nonuniformity
of the dynamic dipolar fields is not well-localized at
the waveguide edges. Additionally, in such nanoscale
waveguides, the dynamic magnetization components
become of the same order of magnitude and both af-
fect the effective mode pinning, in contrast to thin
waveguides, in which the in-plane magnetization com-
ponent is dominant.

3.2. Spin pinning in nanostructures

In the following, the experiment is compared to the
theory and to micromagnetic simulations.

The bottom panels of Figs. 2, a and b show the
spin-wave mode profile of the fundamental mode for
𝑘𝑥 = 0, which corresponds to the quasi-FMR, in
the 1 𝜇m (a) and 50 nm (b) wide waveguides which
have been obtained by micromagnetic simulations
(blue dots) and by solving Eq. (1) numerically (black
lines) (higher width modes are discussed in the next
sections). The top panels illustrate the mode pro-
file and the local precession amplitude in the waveg-
uide. As it can be seen, the two waveguides feature
quite different profiles of their fundamental modes:
in the 1 𝜇m wide waveguide, the spins are partially
pinned, and the amplitude at the edges of the waveg-
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uide is reduced compared to the maximal value of
𝑚𝑧 = 1. This still resembles the cosine-like profile of
the lowest width mode 𝑛 = 0 that has been well es-
tablished in investigations of the spin-wave dynamics
in waveguides on the micron scale [25,29,47] and that
can be well-described by the simple introduction of a
finite effective width 𝑤eff > 𝑤 (𝑤eff = 𝑤 for the case
of full pinning). In contrast, the spins at the edges of
the narrow waveguide are completely unpinned, and
the amplitude of the dynamic magnetization 𝑚𝑧 of
the lowest mode 𝑛 = 0 is almost constant across the
width of the waveguide, resulting in 𝑤eff → ∞.

To understand the nature of this depinning, it is in-
structive to consider the spin-wave energy as a func-
tion of the geometric width of the waveguide normal-
ized by the effective width 𝑤/𝑤eff . This ratio corre-
sponds to some kind of the pinning parameter taking
values in between 1 for the fully pinned case and 0
for the fully unpinned case. According to Ritz’s vari-
ational principle, the profiles of the spin wave modes
correspond to the respective minima of the spin wave
frequency (energy) functional. Since only one mini-
mization parameter – 𝑤eff – is used, the minimiza-
tion as a function of 𝑤/𝑤eff yields only the approx-
imate spin wave profiles. Nevertheless, this is suffi-
cient for the qualitative understanding. To illustrate
this, Figs. 2, c and d show the normalized square of
the spin-wave eigenfrequencies 𝜔′2/𝜔2

M for the two dif-
ferent widths as a function of 𝑤/𝑤eff . Here, 𝜔′2 refers
to a frequency square, not accounting for the Zeeman
contribution (𝜔2

H + 𝜔H𝜔M), which only leads to an
offset in frequency. The minimum of 𝜔′2 is equivalent
to the solution with the lowest energy correspond-
ing to the effective width 𝑤eff . In addition to the
total 𝜔′2 (black), the individual contributions from
the dipolar term (red) and the exchange term (blue)
are shown, which can only be separated conveniently
from each other, if the square of Eq. (3) is considered
for 𝑘𝑥 = 0. The dipolar contribution is nonmonotonic
and features a minimum at a finite effective width
𝑤eff , which can clearly be observed for 𝑤 = 1 𝜇m. The
appearance of this minimum, which leads to the effect
known as “effective dipolar pinning” [18, 19], is a re-
sult of the interplay of two tendencies: (i) an increase
in the volume contribution with increasing 𝑤/𝑤eff , as
for common Damon–Eshbach spin waves, and (ii) a
decrease in the edge contribution, when the spin-wave
amplitude at the edges vanishes (𝑤/𝑤eff > 1). This
minimum is also present in the case of the 50 nm

Fig. 2. Schematic of the precessing spins and simulated pre-
cession trajectories (ellipses in the second panel) and spin-wave
profile 𝑚𝑧(𝑦) of the quasi-FMR. The profiles have been ob-
tained by micromagnetic simulations (blue dots) and by the
quasianalytic approach (black lines) for the 1 𝜇m (a) and 50 nm
wide (b) waveguides. Corresponding normalized square of the
spin-wave eigenfrequency 𝜔′2/𝜔2

M as a function of 𝑤/𝑤eff and
the relative dipolar and exchange contributions [31] (c), (d)

wide waveguide (red line), even though this is hardly
perceivable in Fig. 2, d due to the scale. In contrast,
the exchange leads to a monotonic increase in the
frequency as a function of 𝑤/𝑤eff , which is mini-
mal for the unpinned case, i.e., 𝑤/𝑤eff = 0 imply-
ing 𝑤eff → ∞, when all spins are parallel. In the
case of the 50 nm waveguide, the smaller width and
the corresponding much larger quantized wavenum-
ber in the case of pinned spins would lead to a much
larger exchange contribution than this is the case for
the 1 𝜇m wide waveguide (please note the vertical
scales). Consequently, the system avoids the pinning,
and the solution with the lowest energy is situated at
𝑤/𝑤eff = 0. In contrast, in the 1 𝜇m wide waveguide,
the interplay of dipolar and exchange energies implies
that the energy is minimized at a finite 𝑤/𝑤eff .

3.3. Dependence of the spin-wave
frequency on the spin pinning and the critical
width of the exchange unpinning

As is evident from Figs. 2, c and 2, d, the pin-
ning and the corresponding effective width have a
large influence on the spin-wave frequency. This al-
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Fig. 3. Frequency spectra for the 1𝜇m and 50 nm wide waveguides measured for respective microwave powers of 6 dBm
and 15 dBm (a). Experimentally determined resonance frequencies (black squares) together with theoretical predictions and
micromagnetic simulations (b). Inverse effective width 𝑤/𝑤eff as a function of the waveguide width (c). The critical width (𝑤crit)
as a function of the thickness ℎ (d). Inverse effective width 𝑤/𝑤eff as a function of the waveguide width for different materials
at a fixed thickness of 39 nm (e). The critical width 𝑤crit as a function of the exchange length 𝜆 for different thicknesses (f).
(a)–(c) [31]

lows for an experimental verification of the presented
theory, since the frequency of partially pinned spin-
wave modes would be significantly higher than in the
unpinned case. Black squares in Fig. 3, b summa-
rize the dependence of the frequency of the quasi-
FMR on the width of the YIG waveguide. The ma-
genta line shows the expected frequencies assuming
pinned spins, the blue (dashed) line gives the reso-
nance frequencies extrapolating the formula conven-
tionally used for micron-sized waveguides [48] to the
nanoscopic scenario, and the red line gives the result
of the theory presented here, together with simula-
tion results (green dashed line). As is seen, the ex-
perimentally observed frequencies can be well repro-
duced, if the real pinning conditions are taken into
account.

As has been discussed alongside with Fig. 2, the un-
pinning occurs, when the exchange interaction contri-
bution becomes so large that it compensates the min-
imum in the dipolar contribution of the spin-wave en-
ergy. Since the energy contributions and the demag-
netization tensor change with the thickness of the in-
vestigated waveguide, the critical width below which
the spins become unpinned is different for different
waveguide thicknesses. This is shown in Fig. 3, c,

where the inverse effective width 𝑤/𝑤eff is shown for
different waveguide thicknesses. Symbols are the re-
sults of micromagnetic simulations, lines are calcu-
lated semianalytically. As can be seen from the figure,
the critical width linearly increases with the thick-
ness. This is summarized in Fig. 3, d, which shows
the critical width (i.e. the maximum width for which
𝑤/𝑤eff = 0) as a function of the thickness.

The critical widths for YIG, Permalloy, CoFeB, and
the Heusler compound Co2Mn0.6Fe0.4Si with differ-
ent thicknesses are investigated. Figure 3, e shows
the inverse effective width 𝑤/𝑤eff as a function of
the waveguide width for these materials which can
be considered as typical materials used in magnon-
ics. Figure 3, f shows the critical width (𝑤crit) as a
function of the exchange length 𝜆 for different thick-
nesses. A simple empirical linear formula is found by
fitting the critical widths for different materials in
a wide range of thicknesses to estimate the critical
width:

𝑤crit = 2.2ℎ+ 6.7𝜆, (11)

where ℎ is the thickness of the waveguide, and 𝜆 is
the exchange length given by 𝜆 =

√︀
2𝐴/(𝜇0𝑀2

s ) with
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Fig. 4. Spin-wave profile representatively depicted using the 𝑚𝑧 component of the
dynamic magnetization for the three lowest width modes obtained by the micromag-
netic simulation (black solid lines) and numerical calculation (red dots) for (a) 5 𝜇m,
(b) 1 𝜇m and (c) 50 nm wide waveguides, respectively

the exchange constant 𝐴, the vacuum permeability
𝜇0, and the saturation magnetization 𝑀s.

3.4. Profiles of higher-order width modes

In [31], only the profile of the fundamental mode
(𝑛 = 0) has been discussed. Therefore, the mode pro-
files of higher width modes are shown in Fig. 4 for
the widths of the waveguides of 5𝜇m correspond-
ing to the practically fully pinned case (Fig. 4, a),
50 nm representing fully unpinned case (Fig. 4, c),
and 1𝜇m which can be considered as an intermedi-
ate case (Fig. 4, b). For the 5𝜇m wide waveguide, all
higher width modes are clearly partially pinned due to
the large width and an insufficient contribution of the
exchange energy. In contrast to this, the higher modes
of the 1𝜇m wide waveguide are clearly unpinned for
modes 𝑛 > 2. Since the fundamental mode is already
unpinned for a 50 nm wide waveguide, also all higher
width modes are fully unpinned.

3.5. Temperature dependence
of the spin pinning and frequencies
of the spin-wave modes

In the following, the quasianalytic theory is used to
study the influence of the temperature on the dis-
cussed phenomena. There are two main parameters

that introduce the temperature dependence of the
spin-wave dispersion, the pinning condition and the
pinning parameter: the saturation magnetization 𝑀s

and the exchange constant 𝐴. Furthermore, the tem-
perature dependence of the surface anisotropy con-
stant 𝐾s at the lateral edges of the waveguide, can
lead to an additional temperature dependence of the
pinning parameter 𝑑 (see Eq. (7)). However, this de-
pendence is typically rather weak and is, therefore,
neglected in the following. The calculated saturation
magnetization 𝑀s for YIG is shown in Fig. 5, a as a
function of the temperature and was obtained using
the theoretical model developed in [49]. The exper-
imentally measured temperature dependence of the
exchange constant 𝐴 taken from [50] is shown in
Fig. 5, b.

Figure 5, c shows the resulting temperature depen-
dence of the frequencies of the first three modes for a
YIG waveguide of the thickness ℎ = 20 nm, width
𝑤 = 200 nm, and for an external magnetic field
𝐵0 = 108.9 mT applied along the stripe. One can
clearly see that the frequencies of all modes decrease
with the temperature due to a decrease in the sat-
uration magnetization. The critical width, at which
the unpinning takes place, depends on both the sat-
uration magnetization and the exchange constant, as
it can be seen, e.g., from the empirical Eq. (11). The
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Fig. 5. Temperature dependence of the saturation magnetization (a) and exchange
constant (b) of YIG. (c) The temperature dependences of the frequencies of the three
first modes for a YIG waveguide with ℎ = 20 nm, 𝑤 = 200 nm and 𝐵0 = 108.9 mT.
(d) The temperature dependence of the inverse effective width (left axis) and critical
width of the exchange unpinning (right axis)

Fig. 6. (Spin-wave dispersion relation of two first width
modes from micromagnetic simulations (color-code) and theory
(dashed lines) (a). Inverse effective width 𝑤/𝑤eff as a function
of the spin-wave wavenumber 𝑘𝑥 for different thicknesses and
waveguide widths, respectively (a) [31]

interplay between both dependencies results in an in-
crease in the critical width with temperature from
a value of around 140 nm at zero temperature up
to around 200 nm at 500 K – see Fig. 5, d. At the
same time, the spin pinning, which is shown in the
same figure in terms of the inverse effective width of
the waveguide 𝑤/𝑤eff , decreases with the increase in
temperature. This happens due to the dominant con-
tribution of the temperature dependence of the satu-
ration magnetization which, consequently, defines the
strength of the dipolar pinning phenomenon. To con-
clude, if one conducts low temperature experiments
which rely on or require a fully unpinned state of the
system, a careful design of the structure dimensions
is necessary.

3.6. Spin-wave dispersion
in nanostructures and the dependence
of the spin pinning on the spin-wave
wavenumber

Up to now, the discussion was limited to the special
case of 𝑘𝑥 = 0. In the following, the influence of the fi-
nite wave vector will be addressed. The spin-wave dis-
persion relation of the fundamental (𝑛 = 0) mode ob-
tained from micromagnetic simulations (color-code)
together with the semianalytic solution (white dashed
line) are shown in Fig. 6, a for the YIG waveguide
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of 𝑤 = 50 nm in width. The figure also shows the
low-wavenumber part of the dispersion of the first
width mode (𝑛 = 1), which is pushed up signifi-
cantly in frequency due to its large exchange contri-
bution. Both modes are described accurately by the
quasi-analytical theory. As it is described above, the
spins are fully unpinned in this particular case. In
order to demonstrate the influence of the pinning
conditions on the spin-wave dispersion, a hypothetic
dispersion relation for the case of partial pinning is
shown in the figure with a dash-dotted white line (the
case of 𝑤/𝑤eff = 0.63 is considered that would re-
sult from the usage of the thin strip approximation
[17]). One can clearly see that the spin-wave frequen-
cies in this case are considerably higher. Figure 6, b
shows the inverse effective width 𝑤/𝑤eff as a function
of the wavenumber 𝑘𝑥 for three exemplary waveguide
widths of 𝑤 = 50 nm, 300 nm, and 500 nm. As can be
seen, the effective width and, consequently, the ratio
𝑤/𝑤eff show only a weak nonmonotonic dependence
on the spin-wave wavenumber in the propagation di-
rection. This dependence is a result of an increase in
the inhomogeneity of the dipolar fields near the edges
for larger 𝑘𝑥, which increases the pinning [19], and of
the simultaneous decrease of the overall strength of
dynamic dipolar fields for shorter spin waves. Please,
note that the mode profiles are not only important for
the spin-wave dispersion. The unpinned mode profiles
also greatly improve the coupling efficiency between
two adjacent waveguides [9, 51–53].

3.7. Spin-wave lifetime
in magnetic nanostructures

The spin-wave lifetime depends on the ellipticity of
the magnetization precession, and, thus, on the spin
pinning conditions. The top panel in Fig. 2, b shows
an additional feature of the narrow waveguide: as
the aspect ratios of the waveguides approach unity,
the ellipticity of the precession, a well-known fea-
ture of micron-sized waveguides which still resemble a
thin film [29,44], vanishes and the precession becomes
nearly circular. In addition, in nanoscale waveguides,
the ellipticity is constant across the width, while it
can be different at the waveguide center and near its
edges for the 1 𝜇m wide waveguide. In general, the
definition of the ellipticity 𝜖 of the precession is given
by the ratio of the precession components as follows:

𝜖 = 1− 𝑚min

𝑚max
, (12)

where 𝑚min and 𝑚max denote the respective ampli-
tudes of the smaller and larger components of the
precession. Calculating the average relation between
the magnetization components 𝑚𝑦 and 𝑚𝑧, we get

⃒⃒⃒⃒
𝑚𝑦

𝑚𝑧

⃒⃒⃒⃒
=

⎯⎸⎸⎷(︃(𝜔H + 𝜔M(𝜆2𝐾2 + 𝐹 𝑧𝑧
𝑘𝑥

)

(𝜔H + 𝜔M(𝜆2𝐾2 + 𝐹 𝑦𝑦
𝑘𝑥

)
)

)︃
, (13)

from which the ellipticity can be calculated for any
width in dependence on the spin-wave wavenumber
𝑘𝑥, as is shown in Fig. 7, a.

The relaxation lifetime 𝜏 of the uniform precession
mode in an infinite medium (without inhomogeneous
linewidth Δ𝐵0) is simply defined as 𝜏 = 1/(𝛼𝜔),
where 𝜔 is the angular frequency of the spin wave,
and 𝛼 is the damping. However, the dynamic demag-
netizing field has to be taken into account in finite
spin-wave waveguides. The lifetime can be found by
the phenomenological model [54–56]

𝜏 =

(︂
𝛼𝜔

𝜕𝜔

𝜕𝜔H

)︂−1

. (14)

The dispersion relation has been shown in Eq. (3).
The demagnetization tensors are independent of
𝜔H. Differentiating Eq. (3) yields the lifetime as

𝜏 =

(︂
1

2
𝛼(2𝜔H + 2𝜔M𝜆2𝐾2 + 𝜔M(𝐹 𝑧𝑧

𝑘𝑥
+ 𝐹 𝑦𝑦

𝑘𝑥
))

)︂−1

.

(15)

This formula clearly shows that the lifetime of the
uniform precession (𝑘𝑥 = 0) depends only on the sum
of the dynamic 𝑦𝑦 and 𝑧𝑧 components of the demag-
netization tensors.

Figure 7, b shows the cross-section, spin precession
trajectory (red line), and the dynamic components
of the demagnetization tensors of different sample
geometries. The spin precession trajectory changes
from elliptic for a thin film (𝑎r ≪ 1) to circular for
a nanoscopic waveguide (𝑎r = 1). The spin preces-
sion trajectory in the bulk material is also circular
(in the geometry, where spin waves propagate par-
allel to the static magnetic field, the same geome-
try as studied for nanoscale waveguides). The depen-
dence of the lifetime on the wavenumber is shown
in Fig. 7, c for YIG with the damping constant
𝛼 = 2 × 10−4. The inhomogeneous linewidth is not
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Fig. 7. Ellipticity as a function of the waveguide width for
different spin-wave wavenumbers 𝑘𝑥 for the thickness ℎ =

= 39 nm and the external magnetic field 𝐵0 = 108.9 mT (a).
The spin precession trajectories (red lines) and the components
of the demagnetization tensor 𝐹 𝑦𝑦

0 and 𝐹 𝑧𝑧
0 for different sam-

ple geometries (b). The spin-wave lifetime as a function of the
spin-wave wavenumber. The lines and dots are obtained from
Eq. (15) and the micromagnetic simulation, respectively (c)

taken into account. The lifetime of the uniform pre-
cession (𝑘𝑥 = 0) for the bulk material is much larger
than that in a thin film and a nanoscopic waveguide,
another consequence of the absence of the dynamic
demagnetization in the bulk (𝐹 𝑧𝑧

0 = 𝐹 𝑦𝑦
0 ). Moreover,

the lifetimes of the uniform precession (𝑘𝑥 = 0) for
a thin film (red line) and for a nanoscopic waveg-
uide (black line) have the same value, because the
lifetime depends only on the sum of the two compo-
nents, which is the same for both cases.

Moreover, the 𝑦𝑦 and 𝑧𝑧 components of the de-
magnetization tensor decrease with an increase in the

spin-wave wavenumber (instead, the 𝑥𝑥 component,
which does not affect the spin wave dynamic in our
geometry, increases). The lifetime is inversely propor-
tional to the square of the wavenumber and the sum of
the dynamic demagnetization components. In the ex-
change region, the lifetime is, thus, dominated by the
wavenumber. Therefore, the lifetimes for short-wave
spin-waves are nearly the same for the three different
geometries.

3.8. Dependence of the spin pinning
on a trapezoidal form of the waveguides

A perfect rectangular form is not achievable in the
experiment due to the involved patterning tech-
nique. As a result of the etching, the cross-section of
the waveguides is always slightly trapezoidal. In this
section, the influence of such a trapezoidal form on
the spin pinning conditions is studied. In our experi-
ment, the trapezoidal edges extent for approximately
20 nm on both sides for all the patterned waveguides,
as can be seen from Fig. 1, d). We performed an ad-
ditional simulation on waveguides with such trape-
zoidal edges. The simulated cross-section is shown in
the top of Fig. 8. The thickness of the waveguide is di-
vided into 5 layers with different widths ranging from
90 nm to 50 nm. The steps at the edges are hard to
be avoided due to the finite difference method used
in MuMax3. The spin-wave profiles in the different
𝑧-layers are shown at the bottom of Fig. 8, a.

The results clearly show that the spin-wave profiles
are fully unpinned along the entire thickness. This is
due to the fact that the largest width (90 nm) is still
far below the critical width. Hence, the influence of
the trapezoidal form of the waveguide on the spin
pinning condition is negligible for very narrow waveg-
uides. For large waveguides, it also does not have a
large impact as the ratio of the edge to the waveguide
area becomes close to zero. Quantitatively, the quasi-
ferromagnetic resonance frequency in the 50 nm wide
waveguide decreases from 5.45 GHz for the rectangu-
lar shape to 5.38GHz for the trapezoidal form due to
the increase in the averaged width which is, in fact,
even closer to the experimental results (5.35 GHz).

The inverse effective width 𝑤/𝑤eff as a function
of the width of the waveguides is simulated for the
trapezoidal and rectangular forms and the result is
shown in Fig. 8, b. Here, the width is defined by
the minimal width for the trapezoidal form, i.e., the
width of the top layer. In the case of a trapezoidal
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Fig. 8. Trapezoidal cross-section of the simulated waveguide
with the normalized spin-wave profile for the different lay-
ers (a). The inverse effective width 𝑤/𝑤eff as a function of
the width of the waveguide for trapezoidal and rectangular
forms (b)

form, the inverse effective width is averaged over all
5 layers. The critical width slightly decreases from
200 nm for the rectangular cross-section to 180 nm
for the trapezoidal form due to an increase in the
averaged width. The difference between the inverse
effective widths decreases with increasing width of
the waveguide and vanishes, when the width is larger
than 300 nm.

Furthermore, it should be noted that the results of
the multilayer simulations demonstrate that the as-
sumption of a uniform dynamic magnetization distri-
bution across the thickness that is used in our analytic
theory and micromagnetic simulations featuring only
one cell in the 𝑧 dimension is valid.

3.9. Influence of edge
roughness on the spin pinning

Perfectly smooth edges are also hard to obtain in the
experiment. Therefore, we have considered the influ-
ence of the edge roughness on the spin pinning. We

Fig. 9. Top: Schematic of the rough waveguide and close-up
image of the introduced edge roughness. A single randomized
defect pattern is generated for each structure width. Bottom:
Inverse effective width 𝑤/𝑤eff as a function of the waveguide
width for rough and smooth edges (a). The normalized spin-
wave intensity as a function of the propagation length for 50 nm
wide waveguides with smooth and rough edges (b)

performed additional simulations on waveguides with
rough boundaries for a fixed thickness of 39 nm. 5 nm
(for 50 nm to 100 nm wide waveguides) or 10 nm (for
100 nm to 1000 nm wide waveguides) wide rectan-
gular nonmagnetic regions with a random length are
introduced randomly on both sides of the waveguides
to act as defects. The introduction of roughness re-
sults in a slight increase in the critical width from
200 nm to 240 nm, as is shown in Fig. 9, a. These
results demonstrate that the edge roughness does not
have a large influence on the spin pinning condition.

Additional simulations are performed to study the
influence of a rough edge on the propagation length
of spin waves with a frequency of 6.16 GHz (𝑘𝑥 =
= 0.03 rad/nm). Figure 9, b shows the normalized
spin-wave intensity as a function of the propagation
length for smooth and rough-edged waveguides 50 nm
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in width. The decay length slightly decreases from
15.96 𝜇m for smooth edges to 15.76 𝜇m for rough
edges. Since the spins in nanoscopic waveguides are
already unpinned, the effect of such an edge rough-
ness is not too important anymore, and the propaga-
tion length is essentially unaffected.

4. Conclusions

To conclude, an in-detail investigation of the pinning
phenomenon based on the theoretical description of
[31] is presented, and the quasianalytic model is out-
lined. The dependence of the effective width on the
thickness and the material parameters is analyzed,
and a simple empirical formula is found to predict
the critical width for a given system. In addition to
[31], higher order width modes up to 𝑛 = 2 are ana-
lyzed. An investigation of the effective width for finite
wavevectors along the waveguide yields only a weak
nonmonotonic dependence. It is shown that assuming
a more realistic trapezoidal cross-section of the struc-
tures rather than the ideal rectangular shape results
in a small decrease in the quasi-FMR frequency and
a slight reduction in the critical width. Moreover, the
influence of edge roughness is studied which shows a
small increase in the critical width compared to the
case of smooth edges. Here, the impact on the decay
length of propagating waves is investigated as well,
and only a small reduction is found. The tempera-
ture dependence of the pinning phenomenon shows
that the dependences of the saturation magnetiza-
tion and the exchange constant of YIG result in a
decrease in the spin pinning with the increase in tem-
perature and in an increase in the critical width of
the exchange unpinning. This assumes that low tem-
peratures are favorable for the dipolar pinning, and
the sizes of the structures have to be decreased fur-
ther in order to operate with fully unpinned uniform
spin-wave modes.

The presented results provide valuable guidelines
for applications in nano-magnonics, where spin waves
propagate in nanoscopic waveguides with aspect ra-
tios close to one and lateral sizes comparable to the
sizes of modern CMOS technology.
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8. T. Brächer, P. Pirro. An analog magnon adder for all-
magnonic neurons. J. Appl. Phys. 124, 152119 (2018).

9. Q. Wang, P. Pirro, R. Verba, A. Slavin, B. Hillebrands,
A.V. Chumak. Reconfigurable nanoscale spin-wave direc-
tional coupler. Sci. Adv. 4, e1701517 (2018).

10. O. Zografos, B. Soree, A. Vaysset, S. Cosemans, L. Amaru,
P. Gaillardon, G. De Micheli, R. Lauwereins, S. Sayan,
P. Raghavan, I.P. Radu, A. Thean. Design and bench-
marking of hybrid cmos-spin wave device circuits compared
to 10nm CMOS. In: Work-in-Progress session, 52nd De-
sign Automation Conference (DAC), 7–11 June 2015, San
Francisco, CA, USA (2015), pp. 686–689.

11. S. Manipatruni, D.E. Nikonov, I.A. Young. Beyond CMOS
computing with spin and polarization. Nature Physics 14,
338 (2018).

12. A. Chumak. Fundamentals of magnon-based computing.
arXiv 1901.08934 (2019).

13. Q. Wang, M. Kewenig, M. Schneider, R. Verba, B. Heinz,
M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adel-
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21. B. Heinz, T. Brächer, M. Schneider, Q. Wang, B. Lä-
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29. T. Brächer, P. Pirro, B. Hillebrands. Parallel pumping for
magnon spintronics: Amplification and manipulation of
magnon spin currents on the micron-scale. Phys. Rep. 699,
1 (2017).

30. G.S. Abo, Y. Hong, J. Park, J. Lee, W. Lee, B. Choi. Defi-
nition of magnetic exchange length. IEEE Trans. Magnet.
49, 4937 (2013).

31. Q. Wang, B. Heinz, R. Verba, M. Kewenig, P. Pirro,
M. Schneider, M. Thomas, B. Lägel, C. Dubs, T. Brächer,
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ТЕМПЕРАТУРНА ЗАЛЕЖНIСТЬ
ЗАКРIПЛЕННЯ СПIНIВ ТА ДИСПЕРСIЇ
СПIНОВИХ ХВИЛЬ У НАНОРОЗМIРНИХ
ФЕРОМАГНIТНИХ ХВИЛЕВОДАХ

Р е з ю м е

На сьогоднi область магнонiки привертає значну увагу зав-
дяки можливостi кодування iнформацiї за допомогою фази
чи амплiтуди спiнової хвилi та подальшiй обробцi на на-
нометровому масштабi. Нещодавно були дослiдженi спiновi
хвилi в хвилеводах залiзо-iтрiєвого гранату (ЗIГ) iз шири-
ною до 50 нм i вiдношенням товщини до ширини, що на-
ближається до одиницi. Знайдено критичну ширину, нижче
якої обмiнна взаємодiя пригнiчує явище дипольного закрi-
плення спiнiв i профiлi мод стають вiльними. У данiй стат-
тi ми продовжуємо цi дослiдження та аналiзуємо дисперсiю
спiнових хвиль i явище закрiплення спiнiв як функцiї тем-
ператури, матерiальних параметрiв та товщини хвилеводу.
Обговорюються особливостi вищих мод, вплив скiнченного
хвильового числа вдовж хвилеводу, трапецiєвидного пере-
рiзу хвилеводу та шорсткостi країв на дисперсiю спiнових
хвиль, а також час життя спiн-хвильових мод. Представле-
нi результати становлять особливий iнтерес для актуальної
областi квантової магнонiки при крiогенних температурах.

1108 ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 12


