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LONGITUDINAL SPIN DYNAMICS
IN THE HEISENBERG ANTIFERROMAGNET:
TWO-MAGNON EXCITATIONS

Understanding the ultrafast spin dynamics in magnetically ordered materials is important for
the comprehenssion of fundamental limits in spin-based magnetic electronics — magnonics. We
have studied a microscopic model of magnetization dynamics in a two-sublattice antiferromag-
net with the emphasis on longitudinal spin excitations. The diagrammatic technique for spin
operators has been used to overcome limitations typical of phenomenological approaches. The
graphical representations of spin wave propagators allow us to summing up the infinite series
of distinctive diagrams. Its sum is transformed into an analytic expression for the longitudinal
spin susceptibility x**(q,w) applicable in all regions of the frequency w and wave vector q
spaces beyond the hydrodynamical and critical regimes. It is found that the longitudinal mag-
netization dynamics consists of two types of excitations, which have different dependences on
the temperature and wave vector q. The obtained result could be important for understanding
the physics of nonequilibrium magnetic dynamics under the effect of ultrafast laser pulses in

antiferromagnetic materials.
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1. Introduction

The concept of spin wave (SW) as a low-energy collec-
tive excitation is a reasonable approximation for the
description of the transverse spin dynamics at low
temperatures and energies. The longitudinal spin ex-
citation demonstrates a more complex behavior. The
study of the longitudinal spin dynamics within the
framework of the Heisenberg model was the subject
of numerous theoretical and experimental works (see,
e.g., [1-8] and references therein). According to the
pioneering paper Vaks, Larkin, and Pikin (VLP) [9],
the longitudinal spin mode arises as a result of the vir-
tual processes of coherent creation and annihilation
of SWs (magnons). More recently, the dynamic lon-
gitudinal spin susceptibilities of the Heisenberg fer-
romagnet and ferrimagnet have been studied using
the diagrammatic technique for spin operators. For
a ferromagnet (2], the uniform longitudinal suscepti-
bility is zero, x**(0,w) = 0, for a nonzero frequency
w # 0. This is a consequence of the total spin con-
servation law. Generally, the longitudinal spin exci-
tations eventuate as the virtual processes of creation
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and annihilation of transverse SWs at the frequency
w(q) = €q — €q+k- Excitation processes are con-
trolled by the occupation factor, determined through
the Bose distribution function which makes the SWs
with wave vector q ~ 0 to be dominant. For a two-
sublattice ferrimagnet [8], the dynamics of longitu-
dinal spin components is due to a few virtual pro-
cesses: (i) acoustic w.(q) = €;q — €iqrk and (ii)
exchange wey(q) = €i,q + €j,q+k Of transverse SWs
(¢ # 4,1, = 1,2). The existence of the exchange lon-
gitudinal mode at such frequencies can result in a new
form of excitation behavior in a ferrimagnetic system,
which is important for understanding the physics of
non-equilibrium magnetic dynamics under the effect
of ultrafast laser pulses in multisublattice magnetic
materials. The ultrafast spin dynamics for ferrimag-
nets close to the spin compensation point is discussed
in [10].

Recent studies have shown the possibility to con-
trol the magnetization dynamics of magnetic materi-
als by optical methods on a femtosecond time scale
[11-15]. Those open new opportunities for the prac-
tical application of magnetic materials and antiferro-
magnets (AFMs), in particular. In the case of AFMs,
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we have a few advantages. First of all, the spin reso-
nance of AFMs is in the terahertz range, that gives
the possibility to make magnonics devices faster than
on the base of ferromagnets [13,15]. Moreover, AFMs
in memory devices are resistant to perturbations from
external magnetic and electric fields [16, 17]. It is
also important that the antiferromagnetic order is
present in a lot of dielectrics, metals, and semiconduc-
tors. However, despite active experimental and the-
oretical studies, the longitudinal magnetization dy-
namics in AFMs is yet not well understandable.

The longitudinal spin dynamics was studied ex-
perimentally in AFM MnF, [18]. Using the polar-
ized neutron scattering, the authors showed that the
spectrum of longitudinal excitations consists of two
branches. One of them is located below the energy
excitation of one magnon and represents the exci-
tation of a magnon and the absorption of another
one. The second branch is located above of the one-
magnon energy and corresponds to the simultaneous
absorption or excitation of two magnons [18]. The
Monte Carlo calculation for anisotropic AFMs also
shows the presence of two types of the longitudi-
nal propagative excitations, which are entirely multi-
ple SWs in nature. The intensity of two-magnon ex-
citations increases with decreasing the wave vector
q; with increasing the temperature, these two peaks
broaden [19].

Here, we will study the spin dynamics of the Hei-
senberg AFM quantum model using the diagram-
matic technique for the spin operators. We will dis-
cuss the conditions of applicability of the proposed
calculation method, its efficiency and accordance to
the task at hand, and we will analyze more tho-
roughly the properties of the systems under conside-
ration. The preliminary results of this study can be
found in Ref. [20].

This work is structured as follows. The next sec-
tion clarifies the model used. The third and fourth
ones give more detailed representations of the longi-
tudinal and transverse Green functions (GFs), respec-
tively. They are necessary for calculating the mag-
netic susceptibility x*#(q,w), which determines the
longitudinal dynamics of an AFM. The following sec-
tion summarizes the calculations, and its subsections
describe the longitudinal dynamic as two-transverse-
magnon processes in more details. We end with Dis-
cussion. Some mathematical details are presented in
Appendices.
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2. The Model

We consider a simple anisotropic model of a two-
sublattice AFM. In the absence of any external influ-
ences, the Heisenberg Hamiltonian is formed purely
by exchange, still anisotropic, interactions:

1 — - z z z
H= Z {QJfg(Sf*Sg + 5S¢ S3) + Ji SESE|. (1)
f.g

Here, S¢ and S, are the spin operators on the f(g)-th
sites of sublattices 1 and 2, respectively. The circular
spin operators ST are S* = §% +iSY, Jtg is the ex-
change interaction between spin x — y components,
Jg, stands for the exchange integral between the z-
components of spins. We suggest that [S¢| = [S,| = S
and Jg, > Jgg > 0, i.e., the sublattices are in the an-
tiparallel orientation along the z-axis in equilibrium.

We represent Hamiltonian (1) as a sum of three
terms H = Eg + Hy + Hint. The first term is the
ground-state energy Ey = —Ji(S*)2N. Here, N is
a number of magnetic primitive cells, J§ = Jz_, is
the Fourier transform of the exchange interaction, Hy
stands for the Hamiltonian of the molecular field of
a standard structure: Hy = yzﬂg (sz — Sg), where
y = (S%)J§. The interaction Hamiltonian Hi,, has
the form:

1
1@:2&@@%+&%H
f.g

+ Jig (SF = (57) (S +(8%) | (2)

In the zero-order approximation of a self-consistent
field, we have (S3)(®) = —(S;>(O) = (8% =p(ByS),
b(x) = SBg(z) and Bg(z) is the Brillouin function,
Yo = bJ§, and 87! = T is the temperature.

Within the microscopic (Green function method)
approach, the study of system’s longitudinal magneti-
zation dynamics is reduced to a calculation of the dy-
namic susceptibility x**(q,w), being a function of the
frequency w and the momentum q [21,22]. The calcu-
lation of system’s longitudinal susceptibility x**(q,w)
corresponds to a calculation of the retarded longitu-
dinal spin GF ijt(R) (q,w) [21,22]:

X (q,w) = <<fMtzot(t)‘MtZot(O)>>|q,w =

2
R
:fffaﬁ’@m. (3)
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Here, M{, is the z-component of the total magne-
tization My, = gun(Sy + Sq), g — g-factor, ug is
the Bohr magneton, and v, stands for the volume of
a primitive magnetic cell. In the ground state of an
AFM, the mean value of the magnetic primitive cell
magnetization M is egual to (M) = 0. The symbol
((.--))qw denotes the Fourier transform of the trace

of po(...) with pg =exp(—BHy)/Sp(exp(—5Hy)); T
stands for the time-ordering operator. The theorems
are proved that the poles of the retarded GFs corre-
spond to the frequencies of magnetization excitations
that are transverse magnetization oscillations of the
spins or ordinary SWs and longitudinal spin oscilla-
tions. In turn, the retarded GFs of the system can
be obtained from the temperature GFs by the an-
alytic continuation from the Matsubara frequencies
iwy, onto the real axis iw, — w + 4, (§ — 0) (for
more details, see, e.g., books [21,22]).

In our case of a two-sublattice system, the total
GF ijt(R)(q, w) can be reduced to four sublattice
longitudinal GFs G} (q,iw,) (i, j = 1, 2) as follows:

G (aiwn) = ((T (65 — 652) | (85F — 652)))|ques

where iw, = i27nT (n = 0,£1,+£2,...) is the Mat-
subara frequency and §S7 = S? — (S?) (i = q,f). Be-
low, we use the notation ¢ = {q, iw, } and rewrite the
above expression as

Gio (@) = [GTi(q) — (Gi3(q) + 5(@)]. (4)

Thus, the calculation of the dynamic susceptibility
X**(q,w) reduces to the calculation of the sublattice
longitudinal GFs G (q, iwy).

51(9) +

3. Green‘s Functions
of Longitudinal Spin Components

To calculate the sublattice GFs, we use the Larkin
equation [9], see also [21, 22]. The graphical repre-
sentation of the equations for the longitudinal GFs

%2(¢) and G3%(q) are shown in Fig. 1. Here, the
loops of thick lines represent the irreducible parts
Yij, and the wavy line matches the interaction J3. In
terms of the diagrammatic technique, the quantity
¥%;(q) is called the irreducible (by Larkin’s method of
choosing the irreducible diagrams) parts [21,22]. Note
that the irreducibility is understood here in the sense
that 37, (q) is represented by the collection of all di-
agrams from the series for G7(q) that cannot be cut
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Fig. 1. The graphical presentation of the longitudinal GFs
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G377 and G35

across a line of interaction Jq or J3. We recall that
the graph series for the G3(¢q) and G53(q) functions
of a two-sublattice AFM can be presented analyticly
in the form:

ii(q) =

¥51(q)
[1-J5E5(@)][1-J5E5, (0)] — (J5)*251 (0)E55(a)

(5)
5i(q) =
(1 — J53T(a)]135:(9) + J521(0)X32(q)
(1= I35 (0)][1 - J§%5, (q)] — (J§)* %5, (Q)Eiz(Q)(' |
6

The expressions for the functions G33(q) and G%5(q)
can be obtained from Egs. (5) and (6), respectively,
by substitutions 1 — 2 — 1.

Summing up the results, we obtain a general ex-
pression Gi%(q) = N(q)/D(q). Here, we specify the
numerator as

N(q) = {%11(q) + ¥32(q) — [X12(q) + 33, (q) —
— 2J;¥55(0)%5:(q) + 2J5¥51(9) 252 ()]} (7)

and the denominator as
D(q) = [1 - J;%5(9)) 1 - J3%5,(q)] —
4 2 z 4
- (Jq) zu(Q)Em((I)- (8)

The graphical representations of the irreducible parts
¥ (q) allow us to summing up the infinite series of
relative diagrams. This gives the possibility to obtain
an expression for the longitudinal spin susceptibility
X**(q,w) applicable in all regions of the frequency
w and wave vector q spaces beyond the hydrody-
namical and critical regimes. Longitudinal GFs’ irre-
ducible parts X7;(q) consist of a series of different
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Fig. 2. One-loop order of the graphical presentation of longi-
tudinal spin GFs’ irreducible parts

types of loops. To sum up, the series a random-phase
approximation (RPA) is typically used [21,22]. It can
be shown that, in the zeroth order of a large inter-
action radius (or of the zeroth order of the parame-
ter 1/ng, where ng is the number of nearest neigh-
bors), one obtains X%,(q) = 6,00, ¥35(q) = dn b,

%5(q) = ¥5,(¢) = 0 (here, V' stands for the first
derivative of the Brillouin function, and 4,0 = d., .0
is the Kronecker symbol for the corresponding fre-
quency difference).

Note that, within the zero-order approximation, we
deal with static fluctuations of the longitudinal spin
components, which are characterized by the deriva-
tives of the Brillouin functions (~ 4, 0b") and are re-
sponsible for the distinction between the isolated and
isothermal susceptibilities of the system. We are in-
terested in isolated system’s susceptibility, and these
diagrams are not shown in Fig. 1. Note in this regard
that the fluctuation relaxation of SWs in a uniaxial
AFM near the Néel temperature was investigated the-
oretically in work [23]. The obtained results showed
that the relaxation rate of magnons vanishes due to
fluctuation scattering, i.e., ~d, ob’, at q — 0. Let us
emphasize in this relation that the traditional repre-
sentation of spin operators by Bose operators (e.g.,
the Holstein—Primakov or Dyson—Maleev representa-
tions, see, e.g. [24]) account only for the dynamic
fluctuations in the magnetization, i.e., a reduction in
the magnetization of the sublattice owing to the ther-
mal excitation of SWs. Static fluctuations of the lon-
gitudinal components of spins are entirely neglected
in terms of these representations.

To restore the dynamical characteristics, we need to
calculate the irreducible parts within non-zeroth ap-
proximations. The graphs for the “uncuttable” parts
¥%;(q) in the one-loop order approximation are shown
in Fig. 2. [Recall that we are interested in the Kubo
(or isolated) susceptibility of the system obtained
from the Gf%(q,iw,) by analytic continuation from
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the Matsubara frequencies onto the real axis iw, —
— w + i5(d — 0). By this reason, the diagrams
which do not depend on the thermodynamic time
(i.e., ~d,,0) in Fig. 2 are not shown.] In the figure,
the thick lines represent the “dressed” transverse GFs,
Gi;(q), and the hollow points indicate vertices corre-
sponding to the operators S?(i = 1,2). The related
analytic expression for X7, (q) is:

=y = 15120” Gjilp — q)- 9)

The dressed lines of transverse GFs of SWs are
a result of the graphical series summation for the
transverse GFs (see Sec. 4). Following the rules of dia-
gram techniques, one can obtain the analytic expres-
sions for GF irreducible parts. For the diagrams in
Fig. 2, we write the result in the form: 23" (q) =
= T(g) + (~6no), 373" (0) = Z3(@) = 2(a)+
+(N6n,0)a and E;él)(Q) = B(q) + (N(Sn()) Here,
(~dn,0) stands for the analytic expressions of the di-
agrams which do not contribute into isolated sys-
tem’s susceptibilities (these diagrams are not shown
in Fig. 2 explicitly). Then the contribution of one-
loop graphs to the longitudinal GFs are

Il(q) = N"'p~ 1X:Gn )G11(p — 9), (10)
®(q ):N715712G12 )Ga1(p — q), (11)
B(q)=N"'8" 1ZG22 )G22(p — q). (12)

The series of one-loop order diagrams for SW propa-
gators are summed up in Ref. [20].

All possible two-loop diagrams which are re-
lated to the Kubo (isolated) susceptibility are
depicted in Fig. 3. The hatched squares repre-
sent graphically the effective four-point vertices
Tiiij (K1, kalk1 — g, k2 + q). The equations for the ef-
fective four-point vertices I';; i, (k1, k2|k1 — q, k2 + q)
are presented graphically in Fig. 4. The analytic ex-
pression for the vortex I'11 19 (k1, ko|ki—q, k2+q) that
is shown in Fig. 4, a looks like:

Tiio (ki kolki — g, ke +q) =

IN Z Jks+qG11(ks)Ga1 (ks + ) x
k3

sz +a +

X Ti1,12 (k3 + q, ka|ks, k2 + q).
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If we multiply both sides by Ji, G11(k1 — q)Ga1 (k1)
and then sum up over ki, this results in a linear re-
lation, and we get explicitly:

J
Lia12 (ks kalkn — g, k2 + q) = 1_1(275((;)7
where Q(q) = ﬁZJpGH(p — q)G21(p). The analytic

expression for the vortex I'az 21 (K1, ko|k1 — ¢, k2 + q)
that is shown in Fig. 4, b looks like:

(13)

Lo o1 (k1, k2lk1 — g, k2 4+ q) = Jiy1q +

1
+ 7 E Jks+qGa2(k3)Gr2(ks + ¢) x
k3

X T'o9.91 (k3 + q, kalks, k2 + q).

Multiplying both sides by Jy, Gaa(k1 — q)G12(k1) and

then summing up over ki, we get

Jis
o901 (K1, kolki — g, k2 +q) = K2t

“ 1Al (14)

where A(g) = BLNEJPGQQ(}? — q)G12(p). The expres-

sions of another two vertices have a similar form:

Jie —
oo 12 (K1, kalkr — ¢, ke +q) = %a (15)
Ti121 (k1 kolky — g, k2 +q) = M~ (16)
1-Q(q)

Using the obtained expressions for the vertices and
summing up all contributions, we get the following
analytic expressions for the two-loop order diagrams
for irreducible parts that are shown in Fig. 3:

22) AB N

pIne% _2<1—A+1—Q’ (17)
22 o QP 1Q

Y= <1—A+1—Q’ (18)
2(2 229 QB+®A QP+ AT
215)222§): 1_A 1-qQ (19)

where A'(q) = gy SJpGa2(p)Gra(p — ) and Q'(q) =
= ﬁiNEJpGH(p)Ggl(p — q). The total contributions
of the irreducible parts are the sum of one-loop and
two-loop orders: %2, = 22V 4+ 22 Thus, to find
the isolated susceptibility x*Z#(q), it is necessary to

caleulate I1(q), ®(q), B(q), Alg), A'(q), Q(q), Q'(9)
which of them consists of transverse GFs.

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 10

4. Transverse Green Functions

Dealing with transverse SW excitations, we are in-
terested in the summation of graphical series for the
GFs in the Hartree—Fock approximation. In this ap-
proximation, the transverse G;;(¢) can be presented
explicitly in the following form (for details, see [20]):

G21(q) = —bK32J12G11(q).

ky—q k, ky—q k,
@ 2 2 1
2
= +
e 1 171 1
2 2 1 1
ky ky

{GM(Q) =bK11 + bK11J12G21(q),

ky +q ko, +q
ky — k ki —q k,
1 1 2 2
+ +
1 1 1 1
1 2 1
ky ka +q key ks +q
a
ki —q k ki —q k
@ 1 2 2 1
Z = + +
1279 2 1 2
2 1 1
ky ky +q ky ky +q
ki—q k. ky — ky
1 1 2 2
1 2 1 2
1 1
ky ky +q ky k, +q
b

Fig. 3. Two-loop order of the graphical presentation
of longi-tudinal spin GFs’ irreducible parts. The hatched
squares represent graphically the effective four-point vertices
Tiiig (k1, kelk1 — g, k2 + q)

ki-q k,
ki-q 1 k,
: 2 2 kst
k; katq k, krtq ky s kytq
a
k>
ki-q , k
: 1 1 ket
K ktq Ky ktq Kk kstq krtq
b
Fig. 4. Graphical presentation of the effective four-
point  vertices: Ti1,12 (K1, k2lk — ¢, k2 +4q) (a) and
Lo 21 (k1, k2|k1 — g, k2 + q) (b)
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The system of equations for the transverse Gaa(q)
and G12(q) GFs possesses a similar structure. Here,
K11 = K (iwy,) = 1/(iwn + y0), Koo = Ko (iwy,) =
= 1/(iwn, — yo), and yo = bJE. Explicit expressions
for the transversal GFs G;;(q) are given by:

bK ;!
Gu(q) = (iwy, + sq)(2i2wn —eq) (20)
Gala) = Ganl0) = ~ i)ﬁwn —5 @
Goalg) = — ST (22)

(iwn + £q) (iwn, — £q)

Since SW’s spectrum of the AFM is degenerate, we
used, here and below, the designation ¢(q) = eq.
The main physics can be captured in a long-wave
limit (aq) < 1 (here, a stands for the lattice spac-
ing). Within this approximation, the energy of trans-
verse SW excitations reads
A"+ (Dg)”, (23)
where D = b\/2JyJ, A = b\/(JE)? — (Jo)?. Here, we
used the quadratic expansion, when evaluating the
quantity Jo — Jq ~ J(aq)? = Jo(aq)?/no.

5. Longitudinal Spin Dynamics

The excitation spectrum of the two-sublattice AFM is
determined by the poles of the analytically continued
temperature GF G, (q,iwy,) iw, — w +id(6 — 0)
[21, 22]. The real part of the pole is the energy of
a quasiparticle excitation, while the imaginary part
characterizes the broadening of this energy level, i.e.,
a quasiparticle damping. Thus, we should investigate
whether the equation D(q,iw, — w + i) = 0,
(0 — 0), for the denominator of GZ% (q, iwy,) has solu-
tions that would determine the longitudinal wave ex-
citations. To this end, let us examine expression (8)
more closely. Within the two-loop approximation, the
denominator in Eq. (8) can be rewritten in the form

2
2 2 (2 (1
D(q) = 1-2J4(% =4 ) + E( ) 252)28) + ( q252)> -

A2 o) w(l (2 2 (1
—(J3) {251)252) + Zgl)EéQ) + 251)222)} (24)

The quantities 21(]}) and Eg) are presented by
Egs. (10)—(12) and Egs. (17)—(19), respectively. In
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Eq. (24), we skip the term 2521)2(222), as it is of a higher-
order approximation. After summing up over the dis-
crete Matsubara frequency for the function ®(q) =
= ®(q,iwy), Eg. (11), we obtain

Jp J, n(e €
q Z P—a p) (pq)i
4N €p €p—q —€ptépq

n(ep) — (5p—q) 1+ n(ep—q) + n(ep) _
iwg +€p —Ep-q iwg +€p +Epq
_ 1 + n(ep) + n(qu)}. (25)
Wq —€p —Ep—q

Here, n(ep) is the Bose distribution function for SW
excitations. The expressions for the II(g), B(gq) and
components of EZ(.?) - A(g), Q(q), N'(q) and Q'(q) —
have a similar structure. As follows from (25), the
dynamics of longitudinal spin components is due to
a few virtual processes of creation and annihilation
of transverse SW modes. Namely, the first channel —
the first and second items in the rhs of Eq. (25) — rep-
resents the processes of absorption of one transverse
magnon and excitation of another one with energies
ep and ep_g, respectively. This channel is controlled
by the thermal occupation factors n(ep ), which makes
the SWs with p ~ 0 to be dominant.

There is also the second channel — the remain-
ing terms in the Eq. (25). Namely, there is the two-
SW creation/annihilation process at the frequency
w(q) = €p + €p—q. This channel remains even in the
absence of thermal excitations, i.e., when n(ep) ~ 0
and/or n(ep_q) ~ 0. Thus, the structure of the de-
nominator D(q,w) and, in particular, the equation
ReD(q,w) = 0 that determines the dispersion law in-
dicate a strong renormalization of the frequency of
longitudinal spin excitations due to the processes of
creation/annihilation of a few virtual transverse SWs.

Let us now examine (24) more closely. Due to a
rather complex dependence of the function on the fre-
quency, we consider the real and imaginary parts of
D(q,w) only in some limiting cases. Namely, we in-
vestigate the function near the singularities of II(g),
®(q), B(a), Ag), Q(q), A'(q), and Q'(q), when the
equations iwﬁ_)(q) = €p —Ep—q OF :I:wH+)(q) =ep+
+ €p—q are fulfilled, i.e., when the related virtual two-
SW processes are most effective. From Re D(q) = 0,
we can obtain the resonance frequencies, and, from
Im D(q), we can find the damping term. We suggest

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 10
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that T — T (T is the Néel temperature), i.e., the
sublattice magnetization b(T") < S. We also consider
the case of small anisotropy, i.e., A < D.

5.1. Exchange Longitudinal Excitation

Let us start with considering the exchange channel,
namely, a two-SW creation/annihilation process. At
wﬁﬂ (d) = ep + €p—q, the equation for the longitu-
dinal SW excitation gives (for more details, see Ap-

pendix A):

4qADJO
3V2J¢
Thus, the frequency of a longitudinal spin excita-

tion of this type lies energetically above the transverse
SW frequency €4 (23) and, at g — 0, demonstrates a

2
wﬁJr) (q) ~ \/4A2 + §q2D2 + (26)

linear dependence on the wave vector w‘(ﬁ) (q) ~2A+
D
T ovana
remains in force even in the absence of thermal ex-
citations. One can show that the overall scattering
weight of the simultaneous creation/annihilation of
two magnons is proportional to the zero-point longi-
tudinal quantum fluctuations in the ground state [24].
The damping coefficient of this channel depends on
the wave vector ¢ and the temperature:

. As was already mentioned, this channel

v(q) ~ Tbq*Co,
_ [ J 2(J4)?
where Cy = 3(21”)2 < ((~]§)2E(Jo)2 — 1).

5.2. Acoustic Longitudinal Excitation

(27)

To find the frequency of the acoustic-type channel —
creation of one magnon and annihilation of another
one — we also need to solve Re D(q) = 0 at wl(f)(q) =
= €p — €p—q- In this case we get:

_ T
wi (@) ~ ba(J5)* Oy X (28)
where
1 3Jzb
C, == 0 . 29
YA\ w(6(2)% = Jod)V2Tod (29)

This channel is controlled by the thermal occupation
factor of magnons, which makes the SWs with the
wave vector q — 0 to be dominant. The frequency
of these longitudinal spin excitations is linear in the

ISSN 2071-0194. Ukr. J. Phys. 2020. Vol. 65, No. 10

wave vector and lies energetically below the trans-
verse SW frequency eq, Eg. (23), at the same temper-
ature and wave vector. The damping of this channel
also has a linear dependence on the wave vector ¢:

3/2
Y(a) = b (T> C, (30)

2JoJ

where

o el ) )

Thus, a feature of the longitudinal excitations in
AFM is their similarity with the longitudinal dynam-
ics in a ferrimagnet. Comparing expressions (23) with
(26) and (28), one can see that the frequency of the
exchange-type longitudinal excitation is above the en-
ergy of the transverse one, while the energy of the
acoustic longitudinal excitation lies below the energy
of a transverse SW. As is seen from Egs. (27) and
(30), the relaxation frequency due to the scattering
of SWs vanishes at g — 0.

6. Discussions

An experimental study of the longitudinal magnetiza-
tion dynamics of the AFM was carried out using the
polarized neutron scattering in [18, 25]. The analysis
of the experimental data on the scattering in RbMnFg
showed the presence of an additional contribution re-
lated to longitudinal fluctuations [25]. The authors of
work [25] showed that the longitudinal contribution
intensity decreases with increasing the wave vector
and with decreasing the temperature below Ty .

The separation between the longitudinal and trans-
verse components of the magnons spectrum was also
found in the polarization analysis of neutron scat-
tering experiments in anisotropic AFM MnF, [18].
The main difference is in the characters of excita-
tions: in the longitudinal case, these are two-magnon
processes, while the transverse excitation is related
to one-magnon processes. Moreover, it was shown
that the longitudinal mode is divided into two re-
gions: two-magnon excitation (absorption) and mag-
non scattering (creation of one magnon and annihi-
lation of another one), which separated by the ener-
gy gap.

The authors of work [19] investigated anisotropic
AFM MnFs5. They identified a set of two-SW anni-
hilation and creation peaks. For the isotropic AFM,
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they also found the presence of both two-SW crea-
tion/annihilation peaks, as well as the creation of one
SW and the annihilation of another one. When T ap-
proaches Ty, the two-SW peaks disappear into the
tails of the one-SW peak.

Like the works [18, 19], our theoretical analysis
has shown that, in an AFM, the longitudinal dy-
namics is generated by the creation and annihila-
tion of two SWs. The peculiarity of the longitudinal
spin dynamics lies in the specific quantum proper-
ties of spin operators [24]. Namely, the commutator
of the one-SW creation (annihilation) operators S+
and S~ is the operator S* that is not a c-number. As
a result, the longitudinal vibrations of the magne-
tization caused by an external magnetic field, h,S?,
may be realized only as the virtual processes of coher-
ent creation and annihilation of two transverse SWs:
h,S% ~ h,(StS™).

From the mathematical point of view, the study
of the longitudinal dynamics is reduced to summing
up all the loop diagrams describing two-magnon pro-
cesses. The series of the related loop diagrams turns
out to be rather complicated. The first-order approxi-
mation contains four different types of loops X77. The
results of studies taking this order into account can
be found in Ref. [20].

The second-order approximation is more compli-
cated and involves finding not only the first-order
loops, but the interaction vertices I'y; ;;(k1,k1 —
— qlka, ka+q) as well. To sum up these series, we have
used a method called the generalized RPA elaborated
earlier [9,23,24]. Using the two-loop order approxima-
tion, we obtained the longitudinal retarded GFs. The
analytic continuation of GFs onto the real frequency
axis allowed us to determine the longitudinal suscep-
tibility x**(q,w) of the AFM. The susceptibility was
examined as a function of the frequency w and the
wave vector q.

Thus, we have shown that the longitudinal suscep-
tibility x**(q,w) of an AFM contains two types of
longitudinal excitations. These excitations have dif-
ferent dependences on the temperature and the wave
vector. It is validated that the frequency of one type
of longitudinal excitations lies above the transverse
SW frequency, while the second type of excitations
lies below the transverse SW frequency. The process
of two-magnon excitation (absorption) remains even
in the absence of thermal excitations. In our opin-
ion, it provides most likely the main contribution
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to the thermally induced longitudinal magnetization
dynamics.

V.K. gratefully acknowledges the numerous fruitful
discussions of various questions of magnetism with
S.M. Ryabchenko.

APPENDIX A

In order to find the frequency and the damping of the cre-
ation or annihilation of two magnons, it is necessary to find
the real and imaginary parts of the denominator D(gq). As
the frequencies of two processes can be separated, we oper-
ate with terms that correspond only to a given channel. For

wﬁﬂ(q) = ¢ep + €p—q, we get the following expressions:

b Jp\
@(q)zmz P) (14 np+np_gq) X
P

€p
1 1
x { - } (A1)
Wwq +€p+Ep—q Wq—Ep ~Ep—q
’ b? IpY
N(g) = Qo) ~ — (—) (14 np +np_g) X
4N > \cp
o { ep — bJ§ ' ep +bJ§ }’ (A2)
wWwq +€p+Ep—q Wq—Ep ~Ep—q
Q@ =20~ 5 (Z) (g e ¢
= ~ — — n Np—
q q AN — \ep P P—q
% { ep—q +bJ§ : €p—q — bJ§ } (A3)
wWwq +€p+Ep—q Wq—Ep ~Ep—q

In this case ®(q) = II(¢) = B(g), and considering the fact

that A + Q = 2J5® the equation for D(q) transforms into:

D(q) =1—2® (J§ + JZ). Thus, to find the energy of longitu-
(

dinal excitations wH+)(q), we need to solve the equation

1—2(J§+ JZ) Re®(q) = 0. (A4)

After that, we find the damping coefficient of this excitation as

(@) = =2 (J§ + J5) Im ®(w = w{ ), (A5)

APPENDIX B

In order to describe the process of creation—annihilation of
SWs, wﬁ_) (a) = ep —ep—q, we need to find the real and imag-

inary parts of D(q). Thus, we need to calculate the items in

@(q), 11(q), B(q), A(9), A(a)’; Q(q), and Q(q)" that match this
channel. In this case, ®(q) # II(q) # B(q) and looks like

bt Jp\
®(q) =~ N . (i) (np —np—q) X

1 1
X 9 — - , (B1)
wg —€p +Ep—q Wq+Ep—Ep—q
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(np —np—q) X

H()NbQZl
V=UN

2
p P

ot bGP (ept bJ)? ) 2
Wwq —€p +€p—q Wq+Ep —Ep—q
B~ Y 1
(q) = N Z 2 (np —np—q) X
P P
x { (cp + 0J5)" _(ep ~bJ5)” } (B3)
iwg —€p +€p—q Wq+Ep—Ep—q
The expressions for components of EE?) are:
b3 Jp\
Q/:Q%—E a (i) (I14+np+np_q) X
« { ep — bJ§ ‘ ep + bJ§ }7 (B4)
iwg —€p +€p—q Wq+Ep —Ep—q
A’—A~£Z Jo 2(1+n +1np_g) X
=AFON e P P—q
P
« { €p—q + bJ§ ‘ €p—q — bJ§ } (B5)
iwg —€p +€p—q Wq+Ep —Ep—q

As for the previous channel, we have A + Q = 2J5®. Substi-
tuting the expressions for ij in Eq. (24), we get the equation

for finding wh_) (q):

1—2J§® —2JZ (P + QB +TIA) —

— (JO)’IIB[1 +2J5®] = 0. (B6)

After some transformations and calculations of the real and
imaginary parts for Egs. (B1)-(B5), we find that Re Il = Re B,
ReA = ReQ, ImIl = —Im B, Im@Q = = —ImA. So, the real
part of the denominator transforms into:

1-2J¢Re® — 2JZ (Re® + 2Im QIm1I) —

— (JZ)?(ImT)?[1 + 2J§Re ®] = 0. (B7)

Here, we skipped some terms that were of a higher-order ap-
proximation. After the substitution of the components Re®,
ImII, Im@Q, we get the resulting expression presented in
Eq. (28).

After similar cumbersome calculations, we get the damping
term for acoustic longitudinal excitations:

~(q) = 2(J§)* Im B(q) Re B(q). (B8)

The final expression for the damping is presented in Eq. (30).
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IIO340B2KHA CIIIHOBA JMHAMIKA
Y T'AN3EHBEPI'IBCHBKOMY AHTU®EPOMATHETUKY:
JBOMAT'HOHHI 3BY/I?2KEHH#

Pezowme

PosyminHsa HammBuIKOI CIIHOBOI IMHAMIKKA B MAarHiTHO-yIIO-

PAIKOBaHUX MaTepiaﬂaX € BaXXJIUBUM JJId yCBi,ZIOMIIeHHH

874

OCHOBHUX MEXK HAJIIBUIKOI CIIIHOBOI €J€KTPOHIKH — MAartHo-
Hiku. Y pobori Ha 6a3i MIKPOCKOIIYHOI MOesi JUHAMIKU Ha-
MartideHoCTi JOCIiI?KEeHO TO3J0BKHIO JUHAMIKY HaMarHideHo-
cTi B ABOHiArpaTKOBOMY aHTUdEpOMArHeTuKy. s mogonanus
0OMEXKEHDb, TUIIOBUX JIjIsi (DEHOMEHOJIOTIYHUX IIIXO/iB, 3aCTO-
COBYBaJIacCh JliarpaMHa TeXHiKa Jjisi CIIIHOBUX oreparopis. ['pa-
¢diuHi 300parkeHHsI CIIIHOBUX MPOMNAraToOpiB J03BOJISIIOTH Bpa-
XyBaTU HECKiIHYeHHY cepiro Biaminuux giarpam. Lsa cyma me-
PETBOPIOETHCS B AHAJITUYHUN BUpPa3 JJIs MTO30BXKHBOI CIIiHO-
BOI cupuitHATIMBOCTI X*7(q, w), AKAI MOKe Oy TH 3aCTOCOBHIM
JIJ1s1 BCIX 9aCTOT w 1 XBUJILOBOT'O BEKTOPA B 00JIACTI 3a MexKa-
MU TiAPOANHAMIYHOTO Ta KPUTUIHOIO PeXKuMiB. Bysio BcTaHoB-
JIEHO, IO TO3JIOBXKHS JUHAMiKa HAMarHi9e€HOCT] CKJIa/Ia€ThCs
3 JIBOX THIIB 30y/>KEHb, sIKi MAIOTh Pi3HY 3aJI€XKHICTb BiJ| TeM-
mepaTrypu Ta XBHJIBOBOIO BeKTOopa . OTpumanwuii pesysibrar
MOzKe OyTH BarKJIMBUM I pO3yMiHHSI (DI3UKHM HEPIBHOBaXKHOT
Mar”iTHOl AUHAMIKHU MiJl BIVINBOM HAAIIBUIKHUX JIA3EPHUX iM-
yJbCiB y aHTHU(EPOMArHiTHUX Marepiaiax.
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