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CHIRAL ASYMMETRY
IN RELATIVISTIC MATTER IN A MAGNETIC FIELDUDC 539.12

In this mini review, we consider chiral asymmetry in the normal ground state of magne-
tized relativistic matter in the NJL model with local four-fermion interaction and QED. It
is shown that the chiral shift parameter associated with the relative shift of the longitudinal
momenta (along the direction of the magnetic field) in the dispersion relations for opposite chi-
rality fermions is dynamically generated in the normal ground state. This contribution affects
fermions in all Fermi levels, including those around the Fermi surface, and contributes to the
non-dissipative axial current taking place in relativistic matter in a magnetic field. The chiral
asymmetry of the normal ground state in QED matter in a magnetic field is characterized by
an additional chiral structure. It formally looks like that of the chiral chemical potential, but
is an odd function of the longitudinal component of momentum along the magnetic field. The
origin of this parity-even chiral structure is directly connected with the long-range character of
the QED interaction. The leading radiative corrections to the chiral separation effect in QED
are calculated, and the form of the Fermi surface in the weak magnetic field is determined.
K e yw o r d s: dense relativistic matter, magnetic field, axial current.
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1. Introduction
Dense relativistic matter in strong magnetic fields
naturally exists in compact stars. The central regions
of neutron stars are characterized by the highest mat-
ter densities that occur in nature and may exceed up
to ten times the density of the nuclear matter. This
may lead to the appearance of quark matter in the
cores of neutron stars. If such a quark matter exists,
then it will be a strongly coupled relativistic mat-
ter. It is also very important that neutron stars are
usually characterized by very strong magnetic fields

c○ E.V. GORBAR, 2016

that could reach up to 1015 G in magnetars [1, 2] (for
a recent review of theoretical developments in studies
of dense matter in compact stars, see Ref. [3]). Many
physical properties of the stellar matter under ex-
treme conditions realized inside compact stars are un-
derstood theoretically and could be tested to some
extent through observational data.

Relativistic matter in a strong magnetic field is cre-
ated too in heavy ion collisions [4]. Such a matter
is actively studied both experimentally and theoreti-
cally. The dynamics of fermions and the chiral asym-
metry of magnetized relativistic matter has attracted
much attention during the last years. In relativistic
matter, chemical potential is much larger than the
mass of particles. In such a case, helicity, which is
the projection of the spin of particles on their mo-
menta, is related to chirality. Consequently, unlike
non-relativistic matter, where spin polarization in a
magnetic field is studied usually, it is more appro-
priate to investigate the chiral asymmetry in magne-
tized relativistic matter. At present, this is an active
research area in particle physics with important de-
velopments also in condensed matter physics.

It was suggested in Refs. [5, 6] that the topo-
logical charge changing transitions in QCD during
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heavy ion collisions may result in the appearance of
metastable domains with 𝒫 and 𝒞𝒫 breaking with
chirality induced in quark-gluon plasma by the ax-
ial anomaly [7]. Phenomenologically, to mimic the ef-
fect of topological charge changing transitions, it was
proposed in [8] to introduce a chiral chemical poten-
tial 𝜇5. This chemical potential couples to the differ-
ence between the number of left- and right-handed
fermions and enters the Lagrangian density through
the term 𝜇5𝜓𝛾

0𝛾5𝜓. This produces a chiral asymme-
try in magnetized relativistic matter and leads to
a non-dissipative electric current j = 𝑒2B𝜇5/(2𝜋

2)
in the presence of an external magnetic field B
[6, 8, 9]. This phenomenon is known in the literature
as the chiral magnetic effect (CME) (for a recent re-
view, see Ref. [10]). Moreover, the charge-dependent
correlations and flow, observed in heavy-ions colli-
sions at RHIC [11–14] and LHC [15], appear to be
in a qualitative agreement with the predictions of the
CME [16, 17] (see, however, the recent discussion in
Ref. [18]).

Unlike the chiral chemical potential, which is a
rather exotic quantity and not so well defined the-
oretically, the chemical potential 𝜇 (associated, for
example, with conserved electric or baryon charge)
is common in many physical systems. Therefore, in
this mini review, we shall consider only systems with
ordinary chemical potential. (This paper is based
on a series of recent papers with V.A. Miransky,
I.A. Shovkovy, and Xinyang Wang.) It was shown
in Refs. [19–21] that a non-dissipative axial current
j5 = 𝑒B𝜇/(2𝜋2) exists in the equilibrium state of
noninteracting massless fermion matter in a mag-
netic field. This effect is known as the chiral sepa-
ration effect (CSE) in the literature (for a brief re-
view, see Sec. 2 in Ref. [10]). In fact, as suggested in
Refs. [22, 23], the CSE may lead to a chiral charge
separation (i.e., effectively inducing a nonzero chiral
chemical potential 𝜇5) and, thus, trigger the CME
even in the absence of topological fluctuations in the
initial state.

The physical and mathematical reasons for the chi-
ral asymmetry in relativistic matter in a magnetic
field are quite transparent (for a recent elegant expo-
sition, see Ref. [24]). In a free theory, the magnetic
field B projects the spins of fermions on the lowest
Landau level (LLL) along the direction of the mag-
netic field. Since fermions can freely propagate in a
magnetic field only along or opposite to the direction

of B, magnetized relativistic matter responds chi-
rally asymmetrically to the magnetic field. This leads
to the appearance of a non-dissipative axial current
j5 = 𝑒B𝜇/(2𝜋2) [19, 20].

It was argued in Refs.[20, 21] that non-dissipative
currents in magnetized relativistic matter are com-
pletely determined by the topological currents in-
duced only in the LLL and intimately connected with
the chiral anomaly. This fact is directly connected
with the well known result that the chiral anomaly is
also generated in a magnetic field only in the LLL [25].

However, the dense relativistic matter in a strong
magnetic field may hold some new theoretical sur-
prises. In particular, it was shown in Ref. [26] that the
normal ground state of such matter is characterized
by a dynamically generated chiral shift parameter Δ.
It enters the effective Lagrangian density through the
following quadratic term: Δ𝜓𝛾3𝛾5𝜓. The meaning of
this parameter is most transparent in the chiral limit:
it determines a relative shift of the longitudinal mo-
menta in the dispersion relations of opposite chiral-
ity fermions, 𝑘3 → 𝑘3 ± Δ, where the momentum
𝑘3 is directed along the magnetic field. This suggests
a possible connection between the parameter Δ and
the axial current along the direction of the magnetic
field. Taking into account that fermions in all Landau
levels, including those around the Fermi surface, are
affected by Δ, the corresponding matter may have
unusual transport and/or emission properties.

It is instructive to discuss the symmetry proper-
ties of the chiral shift parameter Δ. Just like the
external magnetic field, the Δ term, being symmet-
ric with respect to parity transformations 𝒫, breaks
time reversal 𝒯 and the rotational symmetry 𝑆𝑂(3)
down to 𝑆𝑂(2) (i.e., the rotations about the axis set
by the magnetic field). Moreover, since the Δ term
is even under charge conjugation 𝒞, it breaks 𝒞𝒫𝒯
symmetry, which is also broken by the fermion den-
sity. Therefore, the absence of the chiral shift param-
eter is not protected by any symmetry, which, in turn,
suggests that such a term should be dynamically gen-
erated even by perturbative dynamics.

The dynamics responsible for the generation of the
chiral shift parameter in the Nambu–Jona-Lasinio
model was studied at finite temperature beyond the
chiral limit in Ref. [27]. It was shown that Δ is rather
insensitive to temperature when 𝑇 ≪ 𝜇, where 𝜇 is
the chemical potential, and increases with 𝑇 when
𝑇 > 𝜇. The first regime is appropriate for stellar mat-
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ter, and the second one is realized in heavy ion colli-
sions.

The important question is whether the induced
axial current coincides with that in the theory of
noninteracting fermions in a magnetic field [20] or
whether it is affected by interactions (for related dis-
cussions, see Refs. [22, 26–31]) through, for exam-
ple, the dynamically generated chiral shift parame-
ter. The chiral anomaly is exact as an operator re-
lation, but it contains the divergence of the axial
current rather than the current itself. Consequently,
to get the axial current from the chiral anomaly,
one should “integrate” the anomaly and calculate the
ground state expectation value of the correspond-
ing operator. Then, the question concerning an “in-
tegration constant” in the induced axial current and
its dependence on interactions naturally arises. Till
now, no conclusive answer to this question was given
(e.g., see the discussion in Ref. [10]). The first stud-
ies of interaction effects on the chiral asymmetry
of relativistic matter in a magnetic field were done
in Refs. [26, 27, 31] by using Nambu–Jona-Lasinio
(NJL) like models with local interaction. In partic-
ular, by using the Schwinger–Dyson (gap) equation,
it was found that the interaction unavoidably gen-
erates a chiral shift parameter Δ [26, 27], when the
fermion density is nonzero. Furthermore, as shown in
Refs. [22, 26, 27], the chiral shift Δ is responsible for
an additional contribution to the axial current.

It was recently shown in Ref. [22] that while the
dynamics responsible for the generation of the chi-
ral shift Δ essentially modifies the form of this
current, it does not affect the form of the chiral
anomaly. Moreover, while the topological contribu-
tion to the axial current is generated in the infrared
kinematic region (at the LLL), the contribution of Δ
to this current is mostly generated in the ultravio-
let region, which implies that higher Landau levels
are important in this case. The chiral asymmetry for
noninteracting fermions exists only in the LLL. On
the other hand, the chiral shift parameter found in
Refs. [26, 27] in the NJL model is the same for all
Landau levels. This means that the whole Fermi sur-
faces of the left- and right-handed fermions are shifted
relative to each other by 2Δ in the longitudinal direc-
tion in the momentum space. Such an unusual ground
state closely resembles that in Weyl semimetals in
condensed matter physics [32, 33], in which quasipar-
ticles are described by the Weyl equation.

The study of Dirac and Weyl semimetals is at pre-
sent the very active area of research in condensed
matter physics. A relativistic-like electron spectrum
in these materials results in their unique electronic
and transport properties [34–38] intimately related
to the chiral anomaly. A different property of Dirac
and Weyl semimetals was considered in Ref. [39]: a
dynamical rearrangement of their Fermi surfaces in a
magnetic field. It was shown that the manifestation of
this effect in Dirac semimetals is quite spectacular: a
Dirac semimetal is transformed into a Weyl one. The
resulting Weyl semimetal has a pair of Weyl nodes
for each of the original Dirac points. Each pair of the
nodes is separated by a dynamically induced chiral
shift, whose direction coincides with the direction of
the magnetic field. The magnitude of the chiral shift
is determined by the strengths of the magnetic field,
the quasiparticle charge density, and the strength of
the interaction.

Since the NJL model is nonrenormalizable and the
chiral anomaly is intimately connected with ultravi-
olet divergencies, in order to reach a solid conclusion
about the presence or absence of higher-order radia-
tive corrections to the axial current, one should con-
sider them in a renormalizable model. In the recent
paper [40], assuming that the magnetic field B is weak
and using the expansion in powers of B up to linear
order, the leading radiative corrections to the axial
current were calculated in dense QED in a magnetic
field. It was found that, like in the NJL model, the
axial current is not fixed by the chiral anomaly rela-
tion and does not coincide with the expression in the
free theory, solely provided by the LLL. Instead, it re-
ceives nontrivial radiative corrections produced at all
Landau levels. Because of that, it is natural to expect
that, like in the NJL model, the chiral asymmetry in
QED will be induced by interactions in higher Lan-
dau levels too. These expectations were confirmed in
Ref. [41].

The paper is organized as follows. The chiral asym-
metry of the normal ground state of relativistic mat-
ter in a magnetic field in the Nambu–Jona-Lasinio
model is studied in Sec. 2. The general properties
of the model and the gap equation are considered
in Subsec. 2.1. The dynamical generation of the chi-
ral shift parameter and induced axial current are
studied in Subsec. 2.2. In Subsec. 2.3, it is shown
that although the chiral shift parameter contributes
to the axial current, it does not modify the chi-
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ral anomaly. The leading radiative corrections to the
chiral separation effect in QED are considered in
Sec. 3. The chiral asymmetry of the normal state of
magnetized relativistic matter in QED is studied in
Sec. 4. The results are summarized and conclusions
are given in Sec. 5.

2. Chiral Asymmetry
in Nambu–Jona-Lasinio Model

In this section, we study chiral asymmetry of the nor-
mal ground state in magnetized relativistic matter in
the Nambu–Jona-Lasinio model.

2.1. Model and gap equation

The Lagrangian of the NJL model with one fermion
flavor reads

ℒ = 𝜓
(︀
𝑖𝐷𝜈 + 𝜇0𝛿

0
𝜈

)︀
𝛾𝜈𝜓 −𝑚0𝜓𝜓 +

+
𝐺int

2

[︁(︀
𝜓𝜓
)︀2

+
(︀
𝜓𝑖𝛾5𝜓

)︀2]︁
, (1)

where𝑚0 is the bare fermion mass and 𝜇0 is the chem-
ical potential. By definition, 𝛾5 ≡ 𝑖𝛾0𝛾1𝛾2𝛾3. The co-
variant derivative 𝐷𝜈 = 𝜕𝜈 + 𝑖𝑒𝐴𝜈 includes the vec-
tor potential 𝐴𝜈 , which describes the external mag-
netic field 𝐵 pointing in the 𝑧-direction in the Landau
gauge, 𝐴𝜈 = 𝑥𝐵𝛿𝜈2 .

In the chiral limit, 𝑚0 = 0, this model possesses the
chiral 𝑈(1)𝐿×𝑈(1)𝑅 symmetry, which is known to be
spontaneously broken in the vacuum state (𝜇0 = 0)
because of the magnetic catalysis phenomenon [42,43]
due to the enhanced pairing dynamics of fermions and
antifermions in the infrared region. The enhancement
results from the non-vanishing density of states in the
LLL that is subjected to an effective dimensional re-
duction𝐷 → 𝐷−2. At a sufficiently large value of the
chemical potential, the chiral symmetry is expected
to be restored. As we shall see below, the correspond-
ing normal ground state is characterized by a nonzero
chiral shift parameter Δ.

We shall analyze model (1) in the mean field ap-
proximation, which is reliable in the weakly cou-
pled regime when the dimensionless coupling constant
𝑔 ≡ 𝐺intΛ

2/(4𝜋2) ≪ 1, where Λ is an ultraviolet cut-
off. We consider the following ansatz for the inverse
full propagator:

𝑖𝐺−1(𝑢, 𝑢′) =
[︁
(𝑖𝜕𝑡 + 𝜇)𝛾0 − (𝜋 · 𝛾) + 𝑖�̃�𝛾1𝛾2 +

+Δ𝛾3𝛾5 −𝑚
]︁
𝛿4(𝑢− 𝑢′), (2)

where 𝑢 = (𝑡, 𝑟), 𝜋𝑘 = 𝑖(𝜕𝑘 + 𝑖𝑒𝐴𝑘) is the canonical
momentum, 𝑚 is the dynamical fermion mass, 𝜇 is an
effective chemical potential in the fermion dispersion
relation, �̃� is an anomalous magnetic moment, and Δ
is the chiral shift parameter.

In the mean field approximation, the gap equation
reduces to the following set of equations (one may
check that �̃� = 0 is a self-consistent solution of the
gap equation in the mean field approximation):

𝜇− 𝜇0 = −1

2
𝐺int⟨𝑗0⟩, (3)

Δ = −1

2
𝐺int⟨𝑗35⟩, (4)

𝑚−𝑚0 = −𝐺int⟨𝜓𝜓⟩, (5)

where the chiral condensate ⟨𝜓𝜓⟩, vacuum expecta-
tion values of the fermion density 𝑗0, and axial current
density 𝑗35 are

⟨𝑗0⟩ = −tr
[︀
𝛾0𝐺(𝑢, 𝑢)

]︀
, (6)

⟨𝑗35⟩ = −tr
[︀
𝛾3𝛾5𝐺(𝑢, 𝑢)

]︀
, (7)

⟨𝜓𝜓⟩ = −tr [𝐺(𝑢, 𝑢)]. (8)

We shall consider only the normal phase with 𝑚 =
= 𝑚0 = 0 and ⟨𝜓𝜓⟩ = 0. This phase is realized when
the chemical potential 𝜇0 > 𝑚dyn/

√
2 [26], where

𝑚dyn is a dynamical fermion mass in a magnetic field
at zero chemical potential and zero temperature.

It is very instructive to analyze Eqs. (3) and (4)
in perturbation theory in the coupling constant 𝑔. In
the zeroth approximation, we have a theory of free
fermions in a magnetic field with 𝜇 = 𝜇0 and Δ = 0.
However, even in this case, the fermion density ⟨𝑗0⟩
and the axial current density ⟨𝑗35⟩ are nonzero. The
former can be presented as a sum over the Landau
levels:

⟨𝑗0⟩0 =
𝜇0|𝑒𝐵|
𝜋2

[︂
1

2
+

+

∞∑︁
𝑛=1

√︁
𝜇2
0 − 2𝑛|𝑒𝐵| 𝜃

(︁
|𝜇0| −

√︀
2𝑛|𝑒𝐵|

)︁]︂
, (9)

and the latter is [20]

⟨𝑗35⟩0 =
𝑒𝐵

2𝜋2
𝜇0. (10)
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In the next order in the coupling constant, one finds
from Eq. (4) that Δ ∝ 𝐺int⟨𝑗35⟩0 ̸= 0. Thus, in the
normal phase of this theory, there necessarily exists a
nonzero chiral shift parameter Δ. In fact, this is one
of the main results of Ref. [26]. Let us also emphasize
that the result that Δ is generated in perturbation
theory is directly connected with the fact that the
vanishing Δ is not protected as we discussed in the
Introduction by any symmetry. Thus, a nonzero Δ is
an unavoidable consequence in interacting systems.

2.2. Induced axial current

In this subsection, using the gauge invariant point-
splitting regularization (for a review of this regular-
ization, see Refs. [44, 45]), we study the influence of
the chiral shift parameter Δ on the form of the axial
current in the NJL model, where as Eq.(4) implies
Δ = const in all Landau levels. Our main conclusion
is that Δ essentially changes the form of the axial cur-
rent. Moreover, while the contribution of the chemi-
cal potential in the axial current is generated in the
infrared kinematic region (at the LLL) [20], the con-
tribution of Δ in the current is mostly generated in
the ultraviolet region (at all Landau levels).

As it is well known, the general form of the fermion
propagator in a constant magnetic field is [46]

𝐺(𝑢, 𝑢′) = 𝑒𝑖Φ(𝑢,𝑢′)�̄�(𝑢− 𝑢′) (11)

with the Schwinger phase

Φ(𝑢, 𝑢′) = 𝑒

𝑢∫︁
𝑢′

𝑑𝑥𝜈𝐴𝜈 , (12)

where the integration is performed along the straight
line. The translation invariant part �̄�(𝑢−𝑢′) depends
only on the field strength 𝐹𝜇𝜈 .

In the normal phase with 𝑚 = �̃� = 0, the inverse
propagator (2) can be rewritten as

𝑖𝐺−1 = 𝑖𝐷𝜈𝛾
𝜈 + 𝜇𝛾0 +Δ𝛾3𝛾5 =

(︀
𝑖𝐷𝜈𝛾

𝜈 + 𝜇𝛾0 −

−Δ𝑠⊥𝛾
3
)︀
𝒫−
5 +

(︀
𝑖𝐷𝜈𝛾

𝜈 + 𝜇𝛾0 +Δ𝑠⊥𝛾
3
)︀
𝒫+
5 , (13)

where 𝑠⊥ ≡ sign(𝑒𝐵), 𝐷𝜈 = 𝜕𝜈 + 𝑖𝑒𝐴𝜈 , and 𝒫∓
5 =

= (1 ∓ 𝑠⊥𝛾
5)/2. This equation implies that the ef-

fective electromagnetic vector potential equals 𝐴−
𝜈 =

= 𝐴𝜈 +(𝑠⊥Δ/𝑒)𝛿
3
𝜈 and 𝐴+

𝜈 = 𝐴𝜈 − (𝑠⊥Δ/𝑒)𝛿
3
𝜈 for the

− and + chiral fermions, respectively. Since the field

strength 𝐹𝜇𝜈 for 𝐴∓
𝜈 is the same as for 𝐴𝜈 , Δ affects

only the Schwinger phase (12):

Φ−
Δ(𝑢, 𝑢

′) = Φ(𝑢, 𝑢′) + 𝑠⊥Δ(𝑢3 − 𝑢′ 3), (14)

Φ+
Δ(𝑢, 𝑢

′) = Φ(𝑢, 𝑢′)− 𝑠⊥Δ(𝑢3 − 𝑢′ 3). (15)

Thus, we find

𝐺(𝑢, 𝑢′) = exp[𝑖𝑠⊥Δ(𝑢3 − 𝑢′ 3)]𝒫−
5 𝐺0(𝑢, 𝑢

′)+

+ exp[−𝑖𝑠⊥Δ(𝑢3 − 𝑢′ 3)]𝒫+
5 𝐺0(𝑢, 𝑢

′), (16)

where 𝐺0 is the propagator with Δ = 0. Note that Δ
appears now only in the phase factors.

By making use of Eq. (7), the axial current density
in the point-splitting regularization equals

⟨𝑗𝜇5 ⟩ = −tr
[︀
𝛾𝜇𝛾5𝐺(𝑢, 𝑢+ 𝜖)

]︀
𝜖→0

. (17)

The fermion propagator in an electromagnetic field
has the following singular behavior for 𝑢′−𝑢 = 𝜖→ 0
[44, 45]:

𝐺0(𝑢, 𝑢+ 𝜖) ≃ 𝑖

2𝜋2

[︂
𝜖

𝜖4
− 1

16𝜖2
𝑒𝐹𝜇𝜈 (𝜖𝜎

𝜇𝜈 + 𝜎𝜇𝜈𝜖)

]︂
,

(18)

where 𝜖 = 𝛾𝜇𝜖
𝜇. Then, using Eqs. (16)–(18), we find

⟨𝑗𝜇5 ⟩singular =
𝑖𝜖𝜇𝑠⊥
𝜋2𝜖4

(︁
𝑒−𝑖𝑠⊥Δ𝜖3 − 𝑒𝑖𝑠⊥Δ𝜖3

)︁
+

+
𝑖𝑒𝐹𝜆𝜎𝜖𝛽𝜖

𝛽𝜇𝜆𝜎

8𝜋2𝜖2

(︁
𝑒−𝑖𝑠⊥Δ𝜖3 + 𝑒𝑖𝑠⊥Δ𝜖3

)︁⃒⃒⃒
𝜖→0

. (19)

Taking into account that the limit 𝜖 → 0 should be
taken in this equation symmetrically [44, 45], i.e.,
𝜖𝜇𝜖𝜈/𝜖2 → 1

4𝑔
𝜇𝜈 , and the fact that its second term

contains only odd powers of 𝜖, we arrive at

⟨𝑗𝜇5 ⟩singular = − Δ

2𝜋2𝜖2
𝛿𝜇3 =

Λ2Δ

2𝜋2
𝛿𝜇3 , (20)

where we used in the last equality that −1/𝜖2 plays
the role of an Euclidean ultraviolet cutoff Λ2. Eq. (20)
agrees with the results obtained in Ref. [26], where it
was shown that while the contribution of each Lan-
dau level to the axial current density ⟨𝑗𝜇5 ⟩ is finite
at a fixed Δ, their total contribution is quadratically
divergent. However, since 𝐺𝑖𝑛𝑡 = 4𝜋2𝑔/Λ2, the gap
equation (4) implies that the dynamical shift Δ yields
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Δ ∼ 𝑔𝜇 𝑒𝐵/Λ2 and the axial current density is ac-
tually finite. The explicit expressions for Δ and ⟨𝑗35⟩
determined by Eqs. (4) and (7) are [26]:

Δ ≃ −𝑔𝜇 𝑒𝐵

Λ2 (1 + 2𝑎𝑔)
, (21)

⟨𝑗35⟩ ≃
𝑒𝐵

2𝜋2
𝜇+ 𝑎

Λ2

𝜋2
Δ ≃ 𝑒𝐵

2𝜋2

𝜇

(1 + 2𝑎𝑔)
, (22)

where 𝑎 is a dimensionless constant of order one,
which is determined by the regularization scheme
used. Note that both the topological and dynamical
contributions are included in ⟨𝑗35⟩. (Terms of higher
order in powers of |𝑒𝐵|/Λ2 are neglected in both ex-
pressions.)

We conclude that interactions leading to the chiral
shift parameter Δ essentially change the form of the
induced axial current in a magnetic field. It is impor-
tant to mention that unlike the topological contribu-
tion in ⟨𝑗𝜇5 ⟩ [20], the dynamical one is generated by
all Landau levels.

2.3. Chiral shift
parameter and chiral anomaly

In the previous subsection, we showed that the dy-
namically generated chiral shift contributes to the ax-
ial current. Since the chiral anomaly is an exact oper-
ator relation, Δ cannot affect the chiral anomaly. In
this section, we shall check this explicitly.

In the gauge invariant point-splitting regulariza-
tion, the divergence of the axial current in the mass-
less theory equals [44, 45]

𝜕𝜇𝑗
𝜇
5 = 𝑖𝑒𝜖𝛼𝜓(𝑢+ 𝜖)𝛾𝜇𝛾5𝜓(𝑢) 𝐹𝛼𝜇|𝜖→0. (23)

By calculating the vacuum expectation value of the
divergence of the axial current, we find

⟨𝜕𝜇𝑗𝜇5 ⟩ = −𝑖𝑒𝜖𝛼𝐹𝛼𝜇tr
[︀
𝛾𝜇𝛾5𝐺(𝑢, 𝑢+ 𝜖)

]︀
𝜖→0

=

= 𝑖𝑒𝜖𝛼𝐹𝛼𝜇⟨𝑗𝜇5 ⟩, (24)

where 𝐺(𝑢, 𝑢′) is the fermion propagator (16).
We start our analysis by considering the first term

in the axial current density in Eq. (19):

𝑖𝜖𝜇𝑠⊥
𝜋2𝜖4

(︁
𝑒−𝑖𝑠⊥Δ𝜖3 − h.c.

)︁
≃ 2Δ𝜖𝜇𝜖3

𝜋2𝜖4

(︂
1− Δ2𝜖23

6
+ ...

)︂
.

(25)

Its contribution to the right-hand side of Eq. (24) is

2𝑖Δ 𝜖𝛼𝜖𝜇𝜖3

𝜋2𝜖4

(︂
1− Δ2𝜖23

6
+ ...

)︂
𝑒𝐹𝛼𝜇. (26)

Since this expression contains only odd powers of 𝜖,
it gives zero contribution after symmetric averaging
over space-time directions of 𝜖.

Thus, only the second term in Eq. (19) is relevant
for the divergence of axial current in Eq. (24), and we
obtain

⟨𝜕𝜇𝑗𝜇5 ⟩ = −𝑒
2𝜖𝛽𝜇𝜆𝜎𝐹𝛼𝜇𝐹𝜆𝜎𝜖

𝛼𝜖𝛽
8𝜋2𝜖2

(︁
𝑒−𝑖𝑠⊥Δ𝜖3 + h.c.

)︁
→

→ − 𝑒2

16𝜋2
𝜖𝛽𝜇𝜆𝜎𝐹𝛽𝜇𝐹𝜆𝜎 (27)

for 𝜖 → 0 and symmetric averaging over space-time
directions of 𝜖. Therefore, we conclude that the chiral
shift parameter Δ does not affect the chiral anomaly.

3. Radiative Corrections
to the Chiral Separation Effect in QED

Since the NJL model is nonrenormalizable and the
chiral anomaly is intimately connected with ultravi-
olet divergencies, in order to reach a solid conclusion
about the presence or absence of higher-order radia-
tive corrections to the axial current, one should con-
sider them in a renormalizable model. In this section,
assuming that the magnetic field B is weak and using
the expansion in powers of B up to linear order, the
leading radiative corrections to the chiral separation
effect in QED are calculated. We find that they do not
vanish and attribute this result to the singularities
in the fermion propagator at the Fermi surface. On
the technical side, the 𝑖𝜖 sign(𝑘0) prescription in the
fermion propagator, which distinguishes a chemical
potential from the time component 𝐴0 of the photon
field, plays a crucial role in deriving this result.

The Lagrangian density of QED in a magnetic field
reads

ℒ = −1

4
𝐹𝜇𝜈𝐹𝜇𝜈 + 𝜓

(︀
𝑖𝛾𝜈𝒟𝜈 + 𝜇𝛾0 −𝑚

)︀
𝜓+

+ 𝛿2𝜓(𝑖𝛾
𝜈𝜕𝜈 + 𝜇𝛾0 + 𝑒𝐴ext

𝜈 𝛾𝜈)𝜓 − 𝛿𝑚𝜓𝜓, (28)

where 𝜇 is the fermion chemical potential, the last
two terms are counterterms (we use the notation of
Ref. [44], but with the opposite sign of the electric
charge, 𝑒 → −𝑒), and the covariant derivative is
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𝒟𝜇 = 𝜕𝜇 − 𝑖𝑒𝐴𝜇 − 𝑖𝑒𝐴ext
𝜇 . Without loss of general-

ity, we assume like in the previous section that the
external magnetic field B points in the 𝑧-direction
and is described by the vector potential in the Lan-
dau gauge. Note that the counterterms given by the
second line in Eq.(28) include the chemical potential
𝜇 and the external field 𝐴ext

𝜇 .
The renormalization group invariant axial current

density is given by

⟨𝑗35⟩ = −𝑍2tr
[︀
𝛾3𝛾5𝐺(𝑥, 𝑥)

]︀
, (29)

where 𝐺(𝑥, 𝑦) is the full fermion propagator and 𝑍2 =
= 1+𝛿2 is the wave function renormalization constant
of the fermion propagator.

To the first order in the coupling constant 𝛼 =
= 𝑒2/(4𝜋), the full propagator is expressed through
the free propagator 𝑆(𝑥, 𝑦) in the magnetic field and
the one-loop fermion self-energy Σ(𝑢, 𝑣)

𝐺(𝑥, 𝑦) = 𝑆(𝑥, 𝑦) + 𝑖

∫︁
𝑑4𝑢𝑑4𝑣𝑆(𝑥, 𝑢)Σ(𝑢, 𝑣)𝑆(𝑣, 𝑦)+

+ 𝑖

∫︁
𝑑4𝑢𝑑4𝑣𝑆(𝑥, 𝑢)Σct(𝑢, 𝑣)𝑆(𝑣, 𝑦), (30)

where Σct(𝑢, 𝑣) is the counterterms contribution due
to the last two terms in the Lagrangian density (28).
The one-loop fermion self-energy is given by

Σ(𝑥, 𝑦) = −4𝑖𝜋𝛼𝛾𝜇𝑆(𝑥, 𝑦)𝛾𝜈𝐷𝜇𝜈(𝑥− 𝑦), (31)

where 𝐷𝜇𝜈(𝑥− 𝑦) is the free photon propagator

𝐷𝜇𝜈(𝑞) = −𝑖𝑔𝜇𝜈
𝑞2Λ

≡

≡ −𝑖
(︂

𝑔𝜇𝜈
𝑞20 − q2 −𝑚2

𝛾 + 𝑖𝜖
− 𝑔𝜇𝜈
𝑞20 − q2 − Λ2 + 𝑖𝜖

)︂
. (32)

Here, we introduced a nonzero photon mass𝑚𝛾 which
serves as an infrared regulator at the intermediate
stages of calculations. Of course, none of the physi-
cal observables should depend on this parameter (see
discussion below). (Note that since the classical pa-
per of Stueckelberg [47], it is well known that, un-
like non-Abelian theories, introducing a photon mass
causes no problems in an Abelian gauge theory, such
as QED.) As in Ref. [48], we find that the Feynman
regularization of the photon propagator (32) with
ultraviolet regularization parameter Λ presents the
most convenient way of regularizing the theory in the
ultraviolet region.

Fig. 1. The leading radiative corrections to the axial cur-
rent in the approximation linear in magnetic field. Solid and
wavy lines correspond to the fermion and photon propagators,
respectively. Double solid lines describe the axial current in-
sertions, and the external wavy lines attached to the fermion
loops indicate the insertions of the external gauge field

We make use of the weak magnetic field expansion
in the calculation of the axial current density. The
corresponding diagrams are shown in Fig. 1. For the
fermion propagator to linear in 𝐵 order, we have

𝑆(𝑥, 𝑦) = 𝑆(0)(𝑥−𝑦)+𝑖Φ(𝑥, 𝑦)𝑆(0)(𝑥−𝑦)+𝑆(1)(𝑥−𝑦),
(33)

where 𝑆(0)(𝑥− 𝑦) and 𝑆(1)(𝑥− 𝑦) are the zeroth and
first order terms in powers of 𝐵 in the translation
invariant part of the propagator. Their Fourier trans-
forms equal [40]

𝑆(0)(𝑘) = 𝑖
(𝑘0 + 𝜇)𝛾0 − k · 𝛾 +𝑚

(𝑘0 + 𝜇+ 𝑖𝜖 sign(𝑘0))2 − k2 −𝑚2
(34)

and

𝑆(1)(𝑘) = −𝛾1𝛾2𝑒𝐵×

× (𝑘0 + 𝜇)𝛾0 − 𝑘3𝛾
3 +𝑚

[(𝑘0 + 𝜇+ 𝑖𝜖 sign(𝑘0))2 − k2 −𝑚2]
2 . (35)

Using Eqs.(31) and (33), we obtain the following
expansion for the fermion self-energy in the approxi-
mation linear in magnetic field:

Σ(𝑢, 𝑣) = Σ̄(0)(𝑢−𝑣)+𝑖Φ(𝑢, 𝑣)Σ̄(0)(𝑢−𝑣)+Σ̄(1)(𝑢−𝑣),
(36)

where the Fourier transforms of Σ̄(0)(𝑥 − 𝑦) and
Σ̄(1)(𝑥− 𝑦) are given by

Σ̄(0)(𝑝) = −4𝑖𝜋𝛼

∫︁
𝑑4𝑘

(2𝜋)4
𝛾𝜇𝑆(0)(𝑘)𝛾𝜈𝐷𝜇𝜈(𝑝− 𝑘), (37)

and

Σ̄(1)(𝑝) = −4𝑖𝜋𝛼

∫︁
𝑑4𝑘

(2𝜋)4
𝛾𝜇𝑆(1)(𝑘)𝛾𝜈𝐷𝜇𝜈(𝑝− 𝑘). (38)
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The self-energy Σ̄(0)(𝑝) determines the countert-
erms 𝛿2 and 𝛿𝑚 in Eq. (28) that are given by the
following standard expressions [44]:

𝛿2 = − 𝛼

2𝜋

(︃
1

2
ln

Λ2

𝑚2
+ ln

𝑚2
𝛾

𝑚2
+

9

4

)︃
, (39)

𝛿𝑚 = 𝑚−𝑚0 =
3𝛼

4𝜋
𝑚

(︂
ln

Λ2

𝑚2
+

1

2

)︂
. (40)

Omitting the noninteresting zeroth order in 𝐵 con-
tribution in Eq. (30), we find the following linear in
𝐵 contribution to the propagator:

𝐺(1)(𝑥, 𝑥) = 𝑆(1)(𝑥, 𝑥) + 𝑖

∫︁
𝑑4𝑢𝑑4𝑣×

×
[︁
𝑆(1)(𝑥− 𝑢)Σ̄(0)(𝑢− 𝑣)𝑆(0)(𝑣 − 𝑥) +

+𝑆(0)(𝑥− 𝑢)Σ̄(0)(𝑢− 𝑣)𝑆(1)(𝑣 − 𝑥)
]︁
+

+ 𝑖

∫︁
𝑑4𝑢𝑑4𝑣 𝑆(0)(𝑥− 𝑢)Σ̄(1)(𝑢− 𝑣)𝑆(0)(𝑣 − 𝑥)−

−
∫︁
𝑑4𝑢𝑑4𝑣 [Φ(𝑥, 𝑢) + Φ(𝑢, 𝑣) + Φ(𝑣, 𝑥)]×

×𝑆(0)(𝑥− 𝑢)Σ̄(0)(𝑢− 𝑣)𝑆(0)(𝑣 − 𝑥). (41)

Since

Φ(𝑥, 𝑢) + Φ(𝑢, 𝑣) + Φ(𝑣, 𝑥) =

= −𝑒𝐵
2

[(𝑥1 − 𝑢1)(𝑣2 − 𝑥2)− (𝑣1 − 𝑥1)(𝑥2 − 𝑢2)]

is a translation invariant function, it is convenient to
switch to the momentum space on the right-hand side
of Eq. (41). We have

𝐺(1)(𝑥, 𝑥) =

∫︁
𝑑4𝑝

(2𝜋)4
𝑆(1)(𝑝)+

+ 𝑖

∫︁
𝑑4𝑝

(2𝜋)4

[︁
𝑆(1)(𝑝)Σ̄(0)(𝑝)𝑆(0)(𝑝) +

+𝑆(0)(𝑝)Σ̄(0)(𝑝)𝑆(1)(𝑝) + 𝑆(0)(𝑝)Σ̄(1)(𝑝)𝑆(0)(𝑝)
]︁
−

− 𝑒𝐵

2

∫︁
𝑑4𝑝

(2𝜋)4

[︂
𝜕𝑆(0)(𝑝)

𝜕𝑝1
Σ̄(0)(𝑝)

𝜕𝑆(0)(𝑝)

𝜕𝑝2
−

− 𝜕𝑆(0)(𝑝)

𝜕𝑝2
Σ̄(0)(𝑝)

𝜕𝑆(0)(𝑝)

𝜕𝑝1

]︂
. (42)

By substituting this formula in Eq. (29), we obtain
the following expression for the axial current density:

⟨𝑗35⟩ = ⟨𝑗35⟩0 + ⟨𝑗35⟩𝛼, (43)

where

⟨𝑗35⟩0 = −
∫︁

𝑑4𝑝

(2𝜋)4
tr
[︁
𝛾3𝛾5𝑆(1)(𝑝)

]︁
=

= −𝑒𝐵 sign(𝜇)
2𝜋2

√︀
𝜇2 −𝑚2 (44)

is the contribution to the axial current in the free
theory, which coincides, of course, with the very well
known topological contribution [20].

The second term on the right-hand side of Eq. (43)
defines the leading radiative corrections to the axial
current and equals

⟨𝑗35⟩𝛼 =
𝑒𝐵

2

∫︁
𝑑4𝑝

(2𝜋)4
tr

[︃
𝛾3𝛾5

𝜕𝑆(0)(𝑝)

𝜕𝑝1
Σ̄(0)(𝑝)

𝜕𝑆(0)(𝑝)

𝜕𝑝2
−

− 𝛾3𝛾5
𝜕𝑆(0)(𝑝)

𝜕𝑝2
Σ̄(0)(𝑝)

𝜕𝑆(0)(𝑝)

𝜕𝑝1

]︃
− 𝑖

∫︁
𝑑4𝑝

(2𝜋)4
×

× tr

[︃
𝛾3𝛾5𝑆(1)(𝑝)Σ̄(0)(𝑝)𝑆(0)(𝑝)+𝛾3𝛾5𝑆(0)(𝑝)Σ̄(0)(𝑝)×

×𝑆(1)(𝑝) + 𝛾3𝛾5𝑆(0)(𝑝)Σ̄(1)(𝑝)𝑆(0)(𝑝)

]︃
+ ⟨𝑗35⟩ct, (45)

where the counterterms contribution ⟨𝑗35⟩ct in
Eq. (45) contains all the contributions with 𝛿2 and
𝛿𝑚. Its explicit form will be given below.

By substituting propagators (34) and (35) into
Eq. (45), we find the following leading radiative cor-
rections to the axial current:

⟨𝑗35⟩𝛼 = ⟨𝑗35⟩ct + 32𝜋𝛼𝑒𝐵

∫︁
𝑑4𝑝 𝑑4𝑘

(2𝜋)8
1

(𝑃 −𝐾)2Λ
×

×

[︃
(𝑘0+𝜇)[4(𝑝0+𝜇)

2−𝑃 2]−4(𝑝0+𝜇)(p · k+2𝑚2)

(𝑃 2 −𝑚2)3(𝐾2 −𝑚2)
−

− (𝑘0+𝜇)[3(𝑝0+𝜇)
2 − p2+3𝑚2]−2(𝑝0+𝜇)(p · k)

3(𝑃 2−𝑚2)2(𝐾2 −𝑚2)2

]︃
.

(46)

Here, we use the shorthand notation 𝐾2 = [𝑘0 + 𝜇+
+ 𝑖𝜖 sign(𝑘0)]2−k2 and 𝑃 2 = [𝑝0+𝜇+ 𝑖𝜖 sign(𝑝0)]2 −
−p2. As for the definition of (𝑃 − 𝐾)2Λ, it follows
from Eq. (32). In the derivation of Eq. (46), the fol-
lowing replacements have been made in the integrand:
𝑝2⊥ → 2

3p
2, 𝑝23 → 1

3p
2, and 𝑝3𝑘3 → 1

3 (p · k). These
replacements are allowed by the rotational symmetry
of the other parts of the integrand.

In order to calculate the leading radiative correc-
tions, it is very convenient to integrate by parts in
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Eq. (46) using the following identity valid for all in-
teger 𝑛 ≥ 1 (for a more detailed consideration, see
Ref.[40]):

1

[[𝑘0 + 𝜇+ 𝑖𝜖 sign(𝑘0)]2 − k2 −𝑚2]
𝑛 =

=
1

[(𝑘0 + 𝜇)2 − k2 −𝑚2 + 𝑖𝜖]
𝑛 +

2𝜋𝑖(−1)𝑛−1

(𝑛− 1)!
×

× 𝜃(|𝜇| − |𝑘0|)𝜃(−𝑘0𝜇)𝛿(𝑛−1)
[︀
(𝑘0 + 𝜇)2 − k2 −𝑚2

]︀
.

(47)

Then we obtain the following leading radiative cor-
rections to the axial current:

⟨𝑗35⟩𝛼 = 64𝑖𝜋2𝛼𝑒𝐵

∫︁
𝑑4𝑝𝑑4𝑘

(2𝜋)8
×

×

[︃
(𝑘0+𝜇)(𝑝0+𝜇)−p · k−2𝑚2

(𝑃 −𝐾)2Λ(𝐾
2 −𝑚2)

𝛿′[𝜇2−𝑚2−p2]𝛿(𝑝0)+

+
3(𝑝0+𝜇)

2− 3(𝑘0+𝜇)(𝑝0+𝜇) + p2− p · k+ 3𝑚2

3(𝑃 −𝐾)2Λ(𝑃
2 −𝑚2)2

×

×𝛿
(︀
𝜇2 −𝑚2 − k2

)︀
𝛿(𝑘0)

]︃
+ ⟨𝑗35⟩ct. (48)

The result in Eq. (48) is quite remarkable for sev-
eral reasons. Technically, the integration by parts
allowed us to reduce the original two-loop expres-
sion in Eq. (46) down to a much simpler one-loop
form. Indeed, after the integration over one of the mo-
menta in Eq. (48) is performed using the 𝛿-functions
in the integrand, the expression will have an explicit
one-loop form that makes possible to obtain an ana-
lytic result for the leading radiative corrections to the
axial current.

In addition, Eq. (48) shows that all nonzero correc-
tions come from the regions of the phase space, where
either 𝑝 or 𝑘 momentum is restricted to the Fermi
surface. The presence of the singular “matter” term
on the right-hand side of identity (47) was crucial
for obtaining a nonzero result because, in the deriva-
tion of Eq. (48), all nonsingular terms are gone after
the integration by parts. Therefore, we conclude that
the nonzero radiative corrections to the axial current
are intimately connected with the precise form of the
singularities in the fermion propagator at the Fermi
surface.

The calculation of the axial current in Eq. (48)
is still technically quite involved. However, it is rel-
atively straightforward to show that the right-hand

side in Eq. (48) without the counterterms contri-
bution has a logarithmically divergent contribution
when Λ → ∞ given by

𝛼𝑒𝐵(2𝜇2 +𝑚2)

4𝜋3
√︀
𝜇2 −𝑚2

ln
Λ

𝑚
. (49)

To cancel this divergence, we should add the contri-
bution due the counterterms in Lagrangian (28). The
Fourier transform of the translational invariant part
of the counterterm contribution to the self-energy
reads

Σ̄
(0)
ct (𝑝) = 𝛿2[(𝑝0 + 𝜇)𝛾0 − p · 𝛾]− 𝛿𝑚, (50)

where 𝛿𝑚 = 𝑍2𝑚0 −𝑚 ≃ 𝑚𝛿2 − 𝛿𝑚. Using Eq. (50)
and the last term in Eq. (30), we find the following
leading order contribution to the axial current density
due to counterterms:

⟨𝑗35⟩ct = −𝛿2⟨𝑗35⟩0 − 4𝑖𝑒𝐵

∫︁
𝑑4𝑝

(2𝜋)4
𝛿2(𝑝0 + 𝜇)

(𝑃 2 −𝑚2)2
−

− 8𝑖𝑒𝐵

∫︁
𝑑4𝑝

(2𝜋)4
(𝑝0 + 𝜇)

[︀
𝛿2(𝑃

2 + 2𝑚2)− 2𝑚𝛿𝑚
]︀

(𝑃 2 −𝑚2)3
=

= −𝑒𝐵
𝜋2

√︀
𝜇2 −𝑚2𝛿2 +

𝑒𝐵𝑚 (𝑚𝛿2 − 𝛿𝑚)

2𝜋2
√︀
𝜇2 −𝑚2

. (51)

By making use of counterterms (39) and (40), we ob-
tain

⟨𝑗35⟩ct = −𝛼𝑒𝐵
2𝜋3

√︀
𝜇2 −𝑚2

(︃
1

2
ln

Λ2

𝑚2
+ ln

𝑚2
𝛾

𝑚2
+

9

4

)︃
−

− 3𝛼𝑒𝐵𝑚2

4𝜋3
√︀
𝜇2 −𝑚2

(︂
1

2
ln

Λ2

𝑚2
+

1

4

)︂
. (52)

Calculating the integrals in Eq. (48) and using
Eq. (52), we finally find the following leading ra-
diative corrections to the axial current in the case
𝑚≪ |𝜇|:

⟨𝑗35⟩𝛼 = −𝛼𝑒𝐵𝜇
2𝜋3

(︃
ln

2𝜇

𝑚
+ ln

𝑚2
𝛾

𝑚2
+

4

3

)︃
−

− 𝛼𝑒𝐵𝑚2

2𝜋3𝜇

(︂
ln

23/2𝜇

𝑚𝛾
− 11

12

)︂
. (53)

As expected, this result is independent of the ultra-
violet regulator Λ. It does, however, depends on the
fictitious photon mass 𝑚𝛾 . The origin of this depen-
dence can be easily traced back to the infrared sin-
gularity of the wave function renormalization 𝑍2 in
the Feynman gauge used. Such a singularity is typical
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of a class of QED observables obtained by perturba-
tive methods. As we discuss in the Conclusion, in the
complete physical expression for the axial current, ob-
tained by going beyond the simplest double expansion
in the coupling constant and magnetic field, the reg-
ulator 𝑚2

𝛾 will likely be replaced by a physical scale,
e.g., such as |𝑒𝐵| or 𝛼𝜇2.

4. Chiral Asymmetry
in Magnetized Relativistic Matter in QED

We showed in Sec. 2 that the chiral shift parame-
ter is generated in magnetized relativistic matter in
the NJL model and contributes to the axial current.
Since, according to the study in the previous section,
the leading radiative corrections to the chiral separa-
tion effect do not vanish in QED, this suggests that,
like in the NJL model, a nonzero chiral shift param-
eter should be generated in QED too. We investigate
this problem in this section and study the fermion
self-energy in QED.

We begin with the dispersion relations for fermion
in a weak magnetic field which can be obtained by
considering the location of the poles of the fermion
propagator. It is convenient to determine the disper-
sion relations in the limit of large pseudo-momentum
or weak magnetic field (i.e., k2

⊥ ≫ |𝑒𝐵|), where the ef-
fects of the Schwinger phase can be neglected and the
pseudo-momentum can be interpreted as an approx-
imate (or “quasiclassical”) fermion’s momentum. In
this case, the poles of the fermion propagator are de-
fined by the following equation:

det
[︁
𝑖𝑆−1(𝑝)− Σ̄(1)(𝑝)

]︁
= 0, (54)

where Σ̄(1)(𝑝) is defined in Eq. (38).
To determine the dispersion relations from Eq. (54),

we should find the inverse free propagator in the pseu-
do-momentum representation. The inverse free prop-
agator in the coordinate space equals

𝑖𝑆−1(𝑥, 𝑦) =
(︀
𝑖𝛾𝜈𝒟𝜈 + 𝜇𝛾0 −𝑚

)︀
𝛿4(𝑥− 𝑦). (55)

Representing the Dirac 𝛿-function on the right-hand
side of the above equation as the sum over the com-
plete set of Landau levels eigenfunctions 𝜓𝑁𝑝, we
rewrite the inverse free propagator (55) as follows:

𝑖𝑆−1(𝑥, 𝑦) =

∞∑︁
𝑁=0

∫︁
𝑑𝑝0𝑑𝑝

3𝑑𝑝 𝑒−𝑖𝑝0(𝑥0−𝑦0)+𝑖𝑝3(𝑥3−𝑦3)

(2𝜋)2
×

×
[︀
(𝑝0 + 𝜇)𝛾0 − 𝑝3𝛾3 − (𝜋⊥ · 𝛾⊥)−𝑚

]︀
×

×𝜓𝑁𝑝(r⊥)𝜓
*
𝑁𝑝(r

′
⊥). (56)

Integrating over 𝑝, we find that the result takes the
form of a product of the standard Schwinger phase
and a translationally invariant function, i.e.,

𝑖𝑆−1(𝑥, 𝑦) = 𝑒𝑖Φ(𝑥,𝑦)𝑖𝑆−1(𝑥− 𝑦). (57)

The translationally invariant function is given by

𝑖𝑆−1(𝑥) =
𝑒−𝜉/2

2𝜋ℓ2

∞∑︁
𝑛=0

∫︁
𝑑𝑝0𝑑𝑝

3

(2𝜋)2
𝑒−𝑖𝑝0𝑥0+𝑖𝑝3𝑥3

×

×
{︁[︀
(𝑝0+ 𝜇)𝛾0− 𝑝3𝛾3−𝑚

]︀
[𝐿𝑛(𝜉)𝒫− + 𝐿𝑛−1(𝜉)𝒫+] +

+
𝑖

ℓ2
(r⊥ · 𝛾⊥)𝐿

1
𝑛−1(𝜉)

}︁
, (58)

where 𝜉 = r2⊥/(2ℓ
2). By performing the Fourier trans-

form, we arrive at the following expansion of the
translation invariant part of the inverse free propa-
gator over Landau levels:

𝑖𝑆−1(𝑝) = 2𝑒−𝑝2
⊥ℓ2

∞∑︁
𝑛=0

(−1)𝑛
{︁[︀
(𝑝0+𝜇)𝛾

0−𝑝3𝛾3−𝑚
]︀
×

×
[︀
𝒫−𝐿𝑛(2𝑝

2
⊥ℓ

2)− 𝒫+𝐿𝑛−1(2𝑝
2
⊥ℓ

2)
]︀
+

+2(𝛾⊥ · 𝑝⊥)𝐿
1
𝑛−1(2𝑝

2
⊥ℓ

2)
}︁
. (59)

Interestingly, by performing the summation over Lan-
dau levels and using the well-known formula [49]

∞∑︁
𝑛=0

𝑧𝑛𝐿𝛼
𝑛(𝑥) =

1

(1− 𝑧)1+𝛼
exp

(︂
𝑥𝑧

𝑧 − 1

)︂
, (60)

we obtain

𝑖𝑆−1(𝑝) = (𝑝0 + 𝜇)𝛾0 − (𝛾⊥ · p⊥)− 𝑝3𝛾3 −𝑚. (61)

This is a remarkable result, because it means that the
translation invariant part of the inverse free prop-
agator in a magnetic field is identical to the in-
verse free propagator in the absence of a magnetic
field. Consequently, for the inverse free propagator,
only the Schwinger phase contains information about
the presence of a magnetic field.

For the free propagator in the weak field limit,
the dependence on the Landau level index [which
is the eigenvalue of the operator − 1

2 (𝜋⊥ · 𝛾⊥)
2ℓ2]

can be unambiguously replaced by the square of the
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transverse momentum, i.e., 2𝑛|𝑒𝐵| → p2
⊥. Therefore,

when using the pseudo-momentum representation in
Eq. (54), we can interpret p2

⊥ as a convenient short-
hand substitution for 2𝑛|𝑒𝐵|. This is natural in the
weak field limit, when the quantization of Landau
levels is largely irrelevant. Indeed, the standard dis-
persion relation 𝑝0 = −𝜇 ±

√︀
p2
⊥ + 𝑝23 +𝑚2 by sub-

stituting p2
⊥ → 2𝑛|𝑒𝐵| leads to the fermion energy

𝑝0 = −𝜇±
√︀
2𝑛|𝑒𝐵|+ 𝑝23 +𝑚2 in the Landau levels.

Calculating Σ̄(1)(𝑝) given by Eq. (38), it was found
in Ref. [41] that Σ̄(1)(𝑝) contains two Dirac struc-
tures. One of them is the chiral shift parameter Δ
and another one looks like that of the chiral chemical
potential but is an odd function of the longitudinal
momentum directed along the magnetic field. Note
that this dependence on momentum is dictated by the
parity symmetry. Since QED in a magnetic field is in-
variant under parity and the self-energy is obtained in
a perturbation theory, parity cannot be broken. The
term 𝜇5𝜓𝛾

0𝛾5𝜓 is not parity invariant unless 𝜇5 is
an odd function of the momentum along the direc-
tion of the magnetic field. Note that same argument
also ensures that there is no electric current along
the direction of the magnetic field, which would be
present due to the chiral magnetic effect if one had
𝜇5 = const.

By making use of the chiral representation of the
Dirac 𝛾-matrices, the inverse free propagator (61), the
general structure of the fermion self-energy found in
the weak magnetic field limit in Ref. [41], and calcu-
lating the determinant in Eq. (54), we obtain[︀
(𝑝0 + 𝜇− 𝜇5)

2 − p2
⊥ − (𝑝3 +Δ)2

]︀
×

×
[︀
(𝑝0 + 𝜇+ 𝜇5)

2 − p2
⊥ − (𝑝3 −Δ)2

]︀
−

− 2𝑚2
[︀
(𝑝0 + 𝜇)2 +Δ2 − p2

⊥ − 𝑝23 − 𝜇2
5

]︀
+𝑚4 = 0.

(62)

This expression can be factorized to produce two
equations for predominantly left-handed and predom-
inantly right-handed particles:

(𝑝0 + 𝜇)2 − p2
⊥ − 𝑝23 −𝑚2 −Δ2 + 𝜇2

5 −

− 2
√︁
(𝑝3Δ+ 𝜇5(𝑝0 + 𝜇))2 +𝑚2(Δ2 − 𝜇2

5) = 0, (63)

(𝑝0 + 𝜇)2 − p2
⊥ − 𝑝23 −𝑚2 −Δ2 + 𝜇2

5 +

+2
√︁
(𝑝3Δ+ 𝜇5(𝑝0 + 𝜇))2 +𝑚2(Δ2 − 𝜇2

5) = 0. (64)

Fig. 2. Asymmetry of the Fermi surface for predominantly
left-handed and right-handed particles for |𝑒𝐵| = 0.1𝜇2 and
𝛼 = 1/137

Using Δ(𝑝) and 𝜇5(𝑝) obtained in QED in the weak
magnetic field limit in Ref. [41] and the dispersion
relations that follow from Eqs. (63) and (64), we can
easily found the equations for the Fermi surfaces of
both types of particles. Namely, we take 𝑝0 = 0 and
solve for 𝑝3 as a function of 𝑝⊥. The results are shown
in the lower panel of Fig. 2 in the case of the physical
value of the fine structure constant (𝛼 = 1/137) and
the magnetic field |𝑒𝐵| = 0.1𝜇2. In order to clearly
demonstrate the magnitude of the effect, in the upper
panel of Fig. 2 we plot also the difference between the
longitudinal momenta with and without the inclusion
of the interaction-induced chiral asymmetry.

Fig. 2 implies that the Fermi surface of the predom-
inantly left-handed particles is slightly shifted in the
direction of the magnetic field, while the Fermi sur-
face of the predominantly right-handed particles is
slightly shifted in the direction opposite of the mag-
netic field. This is in qualitative agreement with the
finding in the NJL model [27]. However, in the case of
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QED with its long-range interaction, the chiral asym-
metry of the Fermi surfaces comes not only from the
chiral shift parameter, but also from the new function
𝜇5(𝑝) ≡ 𝑝3𝑓(𝑝). Also, unlike in the NJL model, both
Δ and 𝜇5 have a non-trivial dependence on the par-
ticles’ momenta. In particular, they reveal a logarith-
mic enhancement of the asymmetry near the Fermi
surface [41].

5. Conclusion

In this mini review, we studied the chiral asymmetry
and induced axial current in the relativistic matter
in a magnetic field. Our conclusion is that there are
two components in this current, the topological com-
ponent, induced only in the LLL and intimately con-
nected with the chiral anomaly, and the dynamical
one provided by the chiral shift parameter Δ gener-
ated in all Landau levels. We showed that the chi-
ral shift parameter contributes to the non-dissipative
axial current taking place in relativistic matter in a
magnetic field and checked also that the presence of
the chiral shift parameter does not affect the standard
expression for the chiral anomaly. The expression for
the chiral shift parameter, Δ ∼ 𝑔𝜇 𝑒𝐵/Λ2, obtained
in the NJL model implies that both fermion density
and magnetic field are necessary for the generation of
Δ. Therefore, the chiral shift parameter should also
be generated in renormalizable theories that we con-
firmed in the QED studies.

It has been recently suggested in Refs. [50, 51],
that a chiral magnetic spiral solution is realized
in the chirally broken phase in the presence of a
strong magnetic field. Like the solution with the chi-
ral shift parameter Δ, the chiral magnetic spiral one
is anisotropic, but beside that it is also inhomoge-
neous. It is essential, however, that the solution with
the chiral shift is realized in the normal phase of mat-
ter, in which the fermion density and the axial current
density are non-vanishing. It would be interesting to
clarify whether there is a connection between these
two solutions describing the dynamics in the two dif-
ferent phases of magnetized relativistic matter.

We calculated, too perturbatively in the coupling
constant and in linear order in the external magnetic
field, the leading radiative corrections to the chiral
separation effect in QED and found that they do not
vanish. To leading order, these corrections are shown
to be directly connected with the Fermi surface sin-

gularities in the fermion propagator at nonzero den-
sity. This interpretation is strongly supported by an-
other observation: had we ignored the corresponding
singular terms in the fermion propagator, the calcula-
tion of the two-loop radiative corrections would give
a vanishing result.

It is straightforward to trace the origin of the 𝑚𝛾

dependence in Eq. (53) to the calculation of the well
known result for the wave function renormalization
constant 𝛿2 given by Eq. (39). In fact, this infrared
problem is common for dynamics in external fields in
QED (for a thorough discussion, see Sec. 14 in book
[52]). The most famous example is provided by the
calculation of the Lamb shift, when the electron is
in the Coulomb field. The point is that even for a
light nucleus with 𝑍𝛼 ≪ 1, one cannot consider the
Coulomb field as a weak perturbation in the deep in-
frared region. The reason is that this field essentially
changes the dispersion relation for the electron at low
energy and momenta. As a result, its four-momenta
are not on the electron mass shell, where the infrared
divergence is generated in the renormalization con-
stant 𝑍2. Because of that, this infrared divergence
is fictitious. The correct approach is to consider the
Coulomb interaction perturbatively only at high en-
ergies, while to treat it nonperturbatively at low ener-
gies. The crucial point is matching those two regions
that leads to replacing the fictituous parameter 𝑚𝛾

by a physical infrared scale. This is the main sub-
tlety that makes the calculation of the Lamb shift
quite involved [52].

In the case of the Lamb shift, the infrared scale is
related to the atomic binding energy or equivalently
the inverse Bohr radius, where, obviously, the elec-
tron wave functions cannot be approximated with
plane waves, which is the tacit assumption of the
weak field approximation. Almost exactly the same
line of arguments applies in the present problem of
QED in an external magnetic field. In particular, the
fermion momenta perpendicular to the magnetic field
cannot be defined with a precision better than

√︀
|𝑒𝐵|,

or equivalently the inverse magnetic length. This im-
plies that the contribution to the axial current, which
comes from the low-energy photon exchange between
the fermion states near the Fermi surface, should be
treated nonperturbatively. Further, while doing the
expansion in 𝛼 and keeping only the leading order
corrections, we ignored all screening effects, which
formally appear to be of higher order. Since these
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effects are very important at non-zero density, they
could replace the unphysical infrared regulator 𝑚2

𝛾

with a physical screening mass, i.e., the Debye mass√
𝛼𝜇. This provides another possibility to cure the

singularity in Eq. (53).
Studying the fermion self-energy in dense QED in

a magnetic field, we confirmed that nonzero radiative
corrections to the chiral separation effect in QED are
connected with the presence of chiral asymmetry in
higher Landau levels induced by interaction. Our re-
sult for the fermion self-energy, obtained perturba-
tively in the coupling constant and in linear order in
the external magnetic field, reveals the presence of
two chirally asymmetric structures. One of them is
the chiral shift parameter, analogous to the one pre-
viously obtained in the NJL model. The other one is
a new structure that resembles the chiral chemical
potential. However, unlike the chiral chemical poten-
tial, it preserves parity because it is an odd function of
the momentum directed along the magnetic field. It
is found that, due to chiral asymmetry of the nor-
mal ground state in QED, the Fermi surfaces of the
left- and right-handed fermions are shifted relative to
each other in momentum space in the direction of the
magnetic field.
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Е.В. Горбар
КIРАЛЬНА АСИМЕТРIЯ В РЕЛЯТИВIСТСЬКIЙ
МАТЕРIЇ У ЗОВНIШНЬОМУ МАГНIТНОМУ ПОЛI
Р е з ю м е
Розглянуто кiральну асиметрiю нормального основного ста-
ну релятивiстської матерiї у зовнiшньому магнiтному полi

в Намбу–Йона-Лазiнiо моделi з локальною чотирьох фер-
мiонною взаємодiєю i квантовiй електродинамiцi. Показано,
що параметр кiрального зсуву, який пов’язаний з вiдносним
зсувом поздовжних iмпульсiв (направлених вздовж магнi-
тного поля) в законах дисперсiї фермiонiв протилежних кi-
ральностей динамiчно генерується в нормальному основно-
му станi системи. Цей внесок має мiсце для фермiонiв на
всiх рiвнях Ландау, включаючи тi, що знаходяться поблизу
поверхнi Фермi, i дає внесок у бездисипативний аксiаль-
ний струм, що має мiсце в релятивiстськiй матерiї у зов-
нiшньому магнiтному полi. Кiральна асиметрiя нормаль-
ного основного стану в квантовоелектродинамiчнiй матерiї
у зовнiшньому магнiтному полi характеризується додатко-
вою кiральною структурою. Вона формально виглядає як
кiральний хiмiчний потенцiал, однак є непарною функцiєю
поздовжної компоненти iмпульсу, яка направлена вздовж
магнiтного поля. Причина появи цiєї кiральної структури,
яка зберiгає парнiсть, прямо пов’язана з далекодiючим ха-
рактером квантовоелектродинамiчної взаємодiї. Обчислено
лiдируючi радiацiйнi поправки для кiрального ефекту роз-
дiлення в квантовiй електродинамiцi i визначено форму по-
верхнi Фермi в слабкому магнiтному полi.
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