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COMPOSITE FERMIONS
AS DEFORMED OSCILLATORS:
WAVEFUNCTIONS AND ENTANGLEMENT1

Composite structure of particles somewhat modifies their statistics, compared to the pure Bose-
or Fermi-ones. The spin-statistics theorem, so, is not valid anymore. Say, 𝜋-mesons, excitons,
Cooper pairs are not ideal bosons, and, likewise, baryons are not pure fermions. In our preced-
ing papers, we studied bipartite composite boson (i.e. quasiboson) systems via a realization by
deformed oscillators. Therein, the interconstituent entanglement characteristics such as en-
tanglement entropy and purity were found in terms of the parameter of deformation. Herein,
we perform an analogous study of composite Fermi-type particles, and explore them in two
major cases: (i) “boson + fermion” composite fermions (or cofermions, or CFs); (ii) “de-
formed boson + fermion” CFs. As we show, cofermions in both cases admit only the real-
ization by ordinary fermions. Case (i) is solved explicitly, and admissible wavefunctions are
found along with entanglement measures. Case (ii) is treated within few modes both for CFs
and constituents. The entanglement entropy and purity of CFs are obtained via the relevant
parameters and illustrated graphically.
K e yw o r d s: composite fermions (cofermions), composite bosons (cobosons, quasibosons),
realization by deformed oscillators, bipartite entanglement, entanglement entropy, purity.

1. Introduction

Composite fermions play a significant role in modern
quantum physics. Suffice it to mention a few instances
of CFs: these include quasiparticles involved in the
theory of fractional quantum Hall effect [1]; also, let
us mention baryons and pentaquarks as known in-
stances in hadron physics [2–4]. In this paper, we
will focus on the entanglement properties of compos-
ite fermions basing on their fermionic oscillator re-
alization, in two relatively simple cases: cofermion
built from a pure fermion and a pure boson, or the
cofermion as a composite made of a pure fermion and
a deformed boson (taken in general form).

In our preceding works [5–8], we studied bipartite
(two-component) composite “bosons” of two types:
“fermion + fermion” and “boson + boson” with cre-
ation and annihilation operators within the typical
ansatz

𝐴†
𝛼 =

∑︁
𝜇𝜈

Φ𝜇𝜈𝛼 𝑎†𝜇𝑏
†
𝜈 , 𝐴𝛼 =

∑︁
𝜇𝜈

Φ𝜇𝜈𝛼 𝑏𝜈𝑎𝜇, (1)
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where the creation operators 𝑎†𝜇, 𝑏†𝜈 for the (distin-
guishable) constituents taken either both fermionic
or both bosonic. In [5, 6], it was shown that com-
posite bosons of a particular form (with appropri-
ate wavefunctions Φ𝜇𝜈𝛼 ) can be realized, in the op-
erator sense, by suitable deformed bosons (deformed
oscillators).

An important concept in quantum information the-
ory, quantum communication, and teleportation [9,
10] is the notion of entanglement or quantum corre-
lation between the constituents of a composite parti-
cle or composite system. Recently, this concept was
actively studied just in the context of composite
bosons [7,11–13]. Among the measures characterizing
the degree of entanglement, best known are the entan-
glement entropy and purity (= inverse of the Schmidt
number) [9, 10]. The measures of intercomponent en-
tanglement in a quasiboson quantify to what extent
the properties of a quasiboson approach those of a
true boson [11, 12, 14, 15].

1 This work is based on the results presented at the XI Bolyai–
Gauss–Lobachevskii (BGL-2019) Conference: Non–Euclide-
an, Noncommutative Geometry and Quantum Physics.
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For composite bosons realizable by deformed quan-
tum oscillators, it is possible to directly link [7] the
relevant parameter of deformation with the entan-
glement characteristics of a composite boson. Then
the characteristics (or measures) of bipartite entan-
glement with respect to 𝑎- and 𝑏-subsystems, see (1),
can be found explicitly [7] in terms of the deformation
parameter: for a single composite boson, for multi-
quasiboson states, and for coherent states constructed
for such quasibosons.

As a very important issue, the influence of sys-
tem’s energy on quantum correlation and/or quantum
statistics properties of the system was studied, for the
quasibosons, in [8]. The energy of the quasiboson dif-
fers from the energy of a respective ideal boson, and
the difference (including the energy of bound states)
essentially depends [8] on the quasiboson’s entangle-
ment, clearly showing a deviation from the bosonic
behavior. Such entanglement-energy relation is rele-
vant to quantum information research, quantum com-
munication, entanglement production [16], quantum
dissociation processes [17], particle addition or sub-
traction [18, 19], etc.

Below, we explore the cofermions. Since the entan-
glement entropy is of primary interest, after the ap-
propriate analysis of the realization issue, we find the
entanglement entropy 𝑆ent characterizing the com-
posite fermion. Our treatment is performed for one-
CF states (to compare, the respective results for
one quasiboson states are also briefly sketched). In
some analogy with the case of composite bosons,
we take the cofermions as bipartite systems realized
by mode-independent 2 fermionic oscillators. Another
entanglement measure, purity, is considered in a spe-
cial case.

We have to emphasize that our investigation of en-
tanglement concerns not a many-cofermion system,
but the states of a single (or isolated) cofermion. Ac-
cordingly, the considered entanglement and its en-
tropy concern two constituents of the bipartite CF.
These features make our approach and analysis es-
sentially different from some recent works on the en-
tanglement entropy of a system of free or composite
fermions, see, e.g., [20, 21], where the spatial size of
a subsystem playes the basic role, and entanglement
entropy was viewed in a way different from our one.

2 This is understood in the fermionic, i.e. anticommuting,
sense.

In Sec. 2, a sketch of the realized composite
bosons is given. Sections 3–5 deal with cofermions:
we perform the analysis of operator-level realiza-
tion of cofermions by (deformed) fermionic oscilla-
tors. Then the entanglement entropy of the CF one-
particle states is explored. Modified CFs (composed
of fermion and deformed boson) are analyzed in
Sec. 5(b). The purity for a CF state is considered in
Sec. 5(a). The paper ends with conclusions.

2. Quasibosons Formed
as Two-Fermion (Two-Boson) Composites [5]

Recall the main facts about composite bosons real-
ized [5, 6] by a set of independent modes of deformed
bosons (deformed oscillators), given by the defining
deformation structure function 𝜙(𝑛) [22]. At the al-
gebraic level, the quasiboson operators 𝐴𝛼, 𝐴†

𝛼 and
the number operator 𝑁𝛼 satisfy the same relations
on the states as the corresponding deformed oscilla-
tor creation/annihilation and number operators:

𝐴†
𝛼𝐴𝛼≃𝜙(𝑁𝛼), [𝐴𝛼, 𝐴

†
𝛽 ]≃𝛿𝛼𝛽

(︀
𝜙(𝑁𝛼+1)−𝜙(𝑁𝛼)

)︀
,

[𝑁𝛼, 𝐴
†
𝛽 ] ≃ 𝛿𝛼𝛽𝐴

†
𝛽 , [𝑁𝛼, 𝐴𝛽 ] ≃ −𝛿𝛼𝛽𝐴𝛽 .

Here, ≃ denotes weak equality (i.e. on the states),
symbols 𝛿𝛼𝛽 reflect mode independence. In such real-
ization, the structure function 𝜙(𝑛) involves [5, 6] the
discrete deformation parameter 𝑓 and is quadratic in
the quasiparticles number 𝑛 (𝜅 = +1 or −1 for two
bosonic or two fermionic constituents):

𝜙(𝑛) =

(︃
1 + 𝜅

𝑓

2

)︃
𝑛− 𝜅

𝑓

2
𝑛2, 𝑓 =

2

𝑚
, (2)

𝑚 = 1, 2, ... . The matrices Φ𝛼 in (1) are [5, 6]

Φ𝛼 = 𝑈1(𝑑𝑎) diag
{︁
0..0,

√︀
𝑓/2𝑈𝛼(𝑚), 0..0

}︁
𝑈†
2 (𝑑𝑏), (3)

where 𝑈𝑗(𝑟) stands for an arbitrary unitary 𝑟×𝑟 ma-
trices, the dimension 𝑑𝑎 or 𝑑𝑏 is the total number of
modes for constituents with operators 𝑎𝜇 or 𝑏𝜈 .

Note that the state of one composite boson,

|Ψ𝛼⟩=
∑︁
𝜇𝜈

Φ𝜇𝜈𝛼 |𝜇⟩⊗ |𝜈⟩, |𝜇⟩ ≡ 𝑎†𝜇|0⟩, |𝜈⟩ ≡ 𝑏†𝜈 |0⟩,

is, in general, bipartite-entangled relative to the
states of two constituent fermions (or two bosons).
There are well-known measures of entanglement [9,
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10]: Schmidt rank 𝑠, Schmidt number 𝐾 or its in-
verse – purity, entanglement entropy 𝑆, and concur-
rence 𝐶. As proven in [7], the (internal) entanglement
entropy of one composite boson

𝑆ent = ln(𝑚) = ln(2/𝑓). (4)

For the multi-quasibosonic states, the respective ex-
tended results were also derived, see [7, 8].

The other known measure of entanglement [9, 10],
purity is inverse to the Schmidt number: 𝑃 = 1/𝐾.
Note that purity was exploited in connection with
the issue of entanglement creation using scattering
processes [16] (for other contexts, see [18, 23]). For
one-quasiboson entangled system, purity is as well
linked [7] with the deformation parameter 𝑚 = 2

𝑓 :

𝑃 =
∑︁
𝑘

𝜆4
𝑘 =

1

𝑚
(5)

and thus takes discrete values.

3. Cofermion – as Fermion
plus Deformed Boson

From now on, we consider composite fermions which
are composed of a pure (or deformed) boson and a
pure fermion, from the viewpoint of their realization
by deformed fermions. Like for composite bosons, the
realization of CFs is required to be constructed in
the way that enables to treat CFs’ creation, annihi-
lation, and number operators as the respective op-
erators of deformed fermions. In turn, this gives the
advantages compared to the standard quantum me-
chanical or macroscopic approach with explicit di-
rect consideration of a composite structure, – to per-
form calculations, in the effective or approximate de-
scription. CFs’ creation and annihilation operators
are given by the same “ansatz” as in (1), but now
𝑎†𝜇, 𝑎𝜇 are, respectively, the creation and annihila-
tion operators for the constituent bosons (deformed
or not) and 𝑏†𝜈 , 𝑏𝜈 – those for the constituent fermions,
with standard anticommutation relations for the lat-
ter. For simplicity, we suppose that different modes
of deformed bosons are independent. Then we have
the following defining commutation relations for the
operators of constituent bosons (deformed or not; 𝑛𝑎𝜇
is the particle number operator for deformed bosons
in the 𝜇-mode):

𝑎†𝜇𝑎𝜇 = 𝜒(𝑛𝑎𝜇), [𝑎𝜇, 𝑎
†
𝜇′ ] = 𝛿𝜇𝜇′

(︀
𝜒(𝑛𝑎𝜇+1)−𝜒(𝑛𝑎𝜇)

)︀
;

[𝑎†𝜇, 𝑎
†
𝜇′ ] = 0; [𝑛𝑎𝜇, 𝑎

†
𝜇] = 𝑎†𝜇.

Here, the deformation structure function 𝜒(𝑛) means
the general case of deformed constituent boson. For
a non-deformed, i.e. usual, boson, 𝜒(𝑁) ≡ 𝑁 . In
the case of deformation, 𝜒(𝑁) depends on one or
more deformation parameters which admit a “no-
deformation” limit. It is convenient to work with de-
formed boson states normalized as |𝜇⟩ = 𝑎†𝜇|0⟩. The
same concerns CF states, obeying the normalization
condition for structural matrices (wavefunctions):

Tr(Φ𝛽Φ
†
𝛼) = 𝛿𝛼𝛽 . (6)

We suppose CFs to behave themselves on the
states as deformed particles with a structure func-
tion 𝜙(𝑁). Respective deformed fermions providing
the realization are supposed to be independent (in
the fermionic sense). Defining the number operator
𝑁𝛼 for CFs as 𝜙(𝑁𝛼) ≃ 𝐴†

𝛼𝐴𝛼, we write the realiza-
tion conditions:

{𝐴𝛼, 𝐴†
𝛽} ≃ 𝛿𝛼𝛽 [𝜙(𝑁𝛼+1)+𝜙(𝑁𝛼)], (7)

{𝐴†
𝛼, 𝐴

†
𝛽} ≃ 0, 𝛼 ̸= 𝛽; [𝑁𝛼, 𝐴

†
𝛽 ] ≃ 𝛿𝛼𝛽𝐴

†
𝛽 . (8)

The first requirement in (8) holds automatically, and
moreover, in the strict sense for all 𝛼 and 𝛽,

{𝐴†
𝛼, 𝐴

†
𝛽} = 0, particularly (𝐴†

𝛼)
2 = 0. (9)

The latter, fermionic nilpotency, and (7) considered
on vacuum and one-CF states, along with the second
equation in (8), yield the usual fermionic structure
function 𝜙(𝑁):

𝜙(0) = 𝜙(2) = ... = 0, 𝜙(1) = 𝜒(1) = 1. (10)

We analyze requirement (7), proceeding like in [5],
but alternate (interchange) the commutator and anti-
commutator of the l.h.s. of (7) with 𝐴†

𝛾𝑖 . Introducing
the notation

Δ𝑘𝜒(𝑛𝑎𝜇)≡
𝑘∑︁
𝑙=0

(−1)𝑘−𝑙
(︂
𝑘

𝑙

)︂
𝜒(𝑛𝑎𝜇+𝑙), 𝑘=0, 1, ...,

with the first terms

Δ0𝜒(𝑛𝑎𝜇) = 𝜒(𝑛𝑎𝜇), Δ1𝜒(𝑛𝑎𝜇) = 𝜒(𝑛𝑎𝜇+1)− 𝜒(𝑛𝑎𝜇),

Δ2𝜒(𝑛𝑎𝜇) = 𝜒(𝑛𝑎𝜇+2)− 2𝜒(𝑛𝑎𝜇+1) + 𝜒(𝑛𝑎𝜇),

for the anticommutator {𝐴𝛼, 𝐴†
𝛽} in (7), we have

{𝐴𝛼, 𝐴†
𝛽} =

∑︁
𝜇

(Φ𝛽Φ
†
𝛼)
𝜇𝜇Δ1𝜒(𝑛𝑎𝜇)+
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+
∑︁
𝜇𝜇′

(Φ𝛽Φ
†
𝛼)
𝜇′𝜇𝑎†𝜇′𝑎𝜇 −

∑︁
𝜇𝜈𝜈′

Φ𝜇𝜈𝛼 Φ𝜇𝜈
′

𝛽 Δ1𝜒(𝑛𝑎𝜇) 𝑏
†
𝜈′𝑏𝜈 .

This will be exploited below. For a nondeformed con-
stituent boson (𝜒(𝑛) ≡ 𝑛), the latter with the use
of (6) reduces to{︀
𝐴𝛼,𝐴

†
𝛽

}︀
=𝛿𝛼𝛽+

∑︁
𝜇𝜇′

(Φ𝛽Φ
†
𝛼)
𝜇′𝜇𝑎†𝜇′𝑎𝜇−

∑︁
𝜈𝜈′

(Φ†
𝛼Φ𝛽)

𝜈𝜈′
𝑏†𝜈′𝑏𝜈 .

Next, we calculate the commutator[︀
{𝐴𝛼, 𝐴†

𝛽}, 𝐴
†
𝛾

]︀
=
∑︁
𝜇𝜇1𝜈1

[︁
(Φ𝛽Φ

†
𝛼)
𝜇1𝜇Φ𝜇𝜈1𝛾 −

− (Φ𝛾Φ
†
𝛼)
𝜇1𝜇Φ𝜇𝜈1𝛽

]︁
𝑎†𝜇1

𝑏†𝜈1 ·
(︀
Δ1𝜒(𝑛𝑎𝜇)+𝛿𝜇𝜇1Δ

2𝜒(𝑛𝑎𝜇)
)︀
+

+
∑︁
𝜇𝜈𝜈1𝜈2

Φ𝜇𝜈𝛼 Φ𝜇𝜈1𝛽 Φ𝜇𝜈2𝛾 𝑎†𝜇𝑏
†
𝜈1Δ

2𝜒(𝑛𝑎𝜇)𝑏
†
𝜈2𝑏𝜈 . (11)

A nondeformed analog (at 𝜒(𝑛) ≡ 𝑛) of the latter is

[{𝐴𝛼, 𝐴†
𝛽}, 𝐴

†
𝛾 ] =

∑︁
𝜇𝜈

(︀
Φ𝛽Φ

†
𝛼Φ𝛾 − Φ𝛾Φ

†
𝛼Φ𝛽

)︀𝜇𝜈
𝑎†𝜇𝑏

†
𝜈 .

So, the validity of (7) on one-CF states |𝛾⟩ yields the
following relation of basic importance for the wave-
functions:

(Φ𝛽Φ
†
𝛼Φ𝛾)

𝜇𝜈 − (Φ𝛾Φ
†
𝛼Φ𝛽)

𝜇𝜈 +

+
(︀
𝜒(2)− 2

)︀[︀
(Φ𝛽Φ

†
𝛼)
𝜇𝜇Φ𝜇𝜈𝛾 −(Φ𝛾Φ

†
𝛼)
𝜇𝜇Φ𝜇𝜈𝛽

]︀
= 0.(12)

Note that, in the case of non-deformed constituent
boson, this relation yields [{𝐴𝛼, 𝐴†

𝛽}, 𝐴†
𝛾 ] = 0. That

leads to a closed set of realization conditions on the
matrices Φ𝛼, see (6),(7), namely:

Φ𝛽Φ
†
𝛼Φ𝛾 − Φ𝛾Φ

†
𝛼Φ𝛽 = 0, Tr(Φ𝛽Φ

†
𝛼) = 𝛿𝛼𝛽 . (13)

However, for a nontrivial deformation, i.e. 𝜒(𝑁) ̸≡ 𝑁 ,
the double and higher commutators (or anticommu-
tators) are significant and must be taken into account
(we drop them).

4. Composite Quasifermions
with Non-Deformed Constituent Boson

Consider the realization of CFs formed of a usual
boson and a fermion. The respective wavefunctions
of CFs realized by usual fermions satisfy Eqs. (13)
which will be solved below. Let us choose a matrix
Φ𝛼 = Φ𝛼1 with maximal rank and perform the singu-
lar value (SVD- or Schmidt-) decomposition:

Φ𝛼1 = 𝑈1𝐷𝛼1𝑉
†
1 ,

𝐷𝛼1
= diag{𝜆𝛼1

𝑖 , 𝑖 = 𝜅1, ..., 𝜅𝑟, ...} =

= diag{𝜆𝛼1
𝜅1
𝐸𝑚1

, 𝜆𝛼1
𝜅2
𝐸𝑚2

, ..., 𝜆𝛼1
𝜅𝑟
𝐸𝑚𝑟

} (14)

with real non-negative 𝜆𝛼1
𝜅𝑙

put in descending order 3,
𝜆𝛼1
𝜅1

> ... > 𝜆𝛼1
𝜅𝑟

≥ 0, obeying
∑︀
𝑙𝑚𝑙(𝜆

𝛼1
𝜅𝑙
)2 = 1, and

unitary matrices 𝑈1, 𝑉1. For remaining matrices Φ𝛾 ,
𝛾 ̸= 𝛼1, we make replacement Φ𝛾 → Φ̃𝛾 :

Φ𝛾 = 𝑈1Φ̃𝛾𝑉
†
1 , 𝛾 ̸= 𝛼1. (15)

The first equation in (13) at 𝛼=𝛽=𝛼1 now reads

𝐷2
𝛼1
Φ̃𝛾−Φ̃𝛾𝐷

2
𝛼1

=0 or
(︀
(𝜆𝛼1
𝑖 )2−(𝜆𝛼1

𝑗 )2
)︀
(Φ̃𝛾)𝑖𝑗=0.

If 𝜆𝛼1
𝑖 ̸= 𝜆𝛼1

𝑗 , we have (Φ̃𝛾)𝑖𝑗 = 0. According to the
block-diagonal form of 𝐷𝛼1

, see (14), the other ma-
trices Φ̃𝛾 also take block-diagonal form:

Φ̃𝛾 = diag{Φ̃𝛾,1, Φ̃𝛾,2, ..., Φ̃𝛾,𝑟}, 𝛾 ̸= 𝛼1.

The dimensions of unit matrices 𝐸𝑚𝑘
and square ma-

trices Φ̃𝛼,𝑘 are equal to the multiplicities of singular
values 𝜆𝛼1

𝜅𝑘
. Now, the first equation in (13) reduces to

the set of 𝑟 independent systems, 𝑘 = 1, 2, .., 𝑟:

𝜆𝛼1
𝜅𝑘
(Φ̃†

𝛽,𝑘Φ̃𝛾,𝑘 − Φ̃𝛾,𝑘Φ̃
†
𝛽,𝑘) = 0, (16)

𝜆𝛼1
𝜅𝑘
(Φ̃𝛽,𝑘Φ̃𝛾,𝑘 − Φ̃𝛾,𝑘Φ̃𝛽,𝑘) = 0, (17)

Φ̃𝛽,𝑘Φ̃
†
𝛼,𝑘Φ̃𝛾,𝑘−Φ̃𝛾,𝑘Φ̃

†
𝛼,𝑘Φ̃𝛽,𝑘 = 0, 𝛼,𝛽,𝛾 ̸=𝛼1. (18)

From (16)–(17), we infer that the matrices Φ̃𝛾,𝑘, 𝛾 ̸=
̸= 𝛼1, constitute the set of commuting normal matri-
ces (commuting with their Hermitian conjugate ones)
at fixed 𝑘 = 1, 2, .., 𝑟−1 and possibly at fixed 𝑘 = 𝑟, if
𝜆𝛼1
𝜅𝑟

̸= 0. Under such premises, as known [24], there is
a fixed unitary matrix �̃�𝑘 such that Φ̃𝛾,𝑘 = �̃�𝑘�̃�𝛾,𝑘�̃�

†
𝑘

with diagonal one �̃�𝛾,𝑘, 𝛾 ̸= 𝛼1. If 𝜆𝛼1
𝜅𝑟

̸= 0, Eqs. (18)
are automatically satisfied, and we have

Φ𝛼=𝑈𝐷𝛼𝑉
†, 𝐷𝛼| =

𝛼 ̸=𝛼1

diag{�̃�𝛼,1, ..., �̃�𝛼,𝑟} (19)

with 𝑈=𝑈1 diag{�̃�𝑘}, 𝑉 =𝑉1 diag{�̃�𝑘}, 𝑘=1, 𝑟.
If 𝜆𝛼1

𝜅𝑟
= 0, Eqs. (18) at 𝑘 = 1, 𝑟−1 are satisfied,

while the remaining one, at 𝑘 = 𝑟, for Φ̃𝛼,𝑟, 𝛼 ̸= 𝛼1,
can be solved like above for Φ𝛼. Thus, by induction on
the number #𝛼 ≡ 𝑚𝐶𝐹 of matrices (modes) Φ𝛼, we

3 Physical meaning of indices 𝜅𝑙 may be the relative momen-
tum of constituents in the c.m. system plus other quantum
numbers.
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a b
Fig. 1. Entanglement entropy 𝑆

(𝛼)
ent (𝑎) and purity 𝑃 versus

the parameter 𝜃 (𝑏) for each mode 𝛼 = 1, 2

can show that (19) with arbitrary 𝑈 and 𝑉 presents
the general solution of (13) 4.

Conversely: all the matrices (19) with Tr(𝐷𝛽𝐷𝛼) =
= 𝛿𝛼𝛽 satisfy system (13) and thus give its general so-
lution. The diagonal elements of 𝐷𝛼 are components
of the orthonormal vectors 𝜆𝛼 in the complex space:

𝐷𝛼=diag{𝜆𝛼1, 𝜆𝛼2, ...}, (𝜆𝛼,𝜆𝛽)≡
∑︁
𝑖

𝜆𝛼𝑖 𝜆
𝛽
𝑖 =𝛿𝛼𝛽 . (20)

So, the “boson-fermion” entanglement entropy for re-
alized CFs in the 𝛼th mode is given along with the
orthogonality constraint as

𝑆
(𝛼)
entang=−

∑︁
𝑖

|𝜆𝛼𝑖 |2 ln |𝜆𝛼𝑖 |2, (𝜆𝛼,𝜆𝛽) = 𝛿𝛼𝛽 . (21)

Note that, for a parametrization of solution (19), the
one of suitable 𝑆𝑈(𝑛) can be used: this concerns uni-
tary matrices 𝑈 , 𝑉 and diagonal matrices 𝐷𝛼, since
their elements (𝜆𝛼𝑖 ) constitute rows (columns) of a
unitary matrix, see (20).

Remark 1. While for the realized composite bosons,
the block 𝑈𝛼(𝑚) in (3) is associated with the 𝛼th
mode, yielding 𝑚2 − 1 free real parameters in wa-
vefunctions (maximally, 𝑚2/2-dimensional complex
space of states), the realized CFs admit more gen-
eral wavefunctions. Indeed, the particular orthonor-
mal CF wavefunctions

Φ𝛼=𝑈 diag
{︁
0..0, 𝑈𝛼(𝑚)𝐷(𝛼)

𝑚 𝑉 †
𝛼 (𝑚)⏟  ⏞  

𝐺𝐿(𝑚)

, 0..0
}︁
𝑉 †

4 Indeed, if #𝛼 = 1, it is just SVD. Let (19) be valid for
(#𝛼)−1 modes. Then, at 𝜆𝛼1

𝜅𝑟 = 0, the induction assumption
is to be applied to (18).

already have avg. 𝑚2−1 free complex parameters per
mode.

5. Cofermions in Low-Mode Cases

Consider, in more details, low-mode subcases with
CFs in two modes 𝛼 = 1, 2, and constituents – upto
three modes. Recall that the general solution in the
case of nondeformed constituent boson was given in
Sec. 4.

5(a). Two or three modes
of a constituent fermion + usual boson

First, let both constituents be in two modes, i.e.
𝜇, 𝜈 = 1, 2. The solution for realized wavefunctions
reads

Φ𝛼= 𝑒−𝑖�̃�𝜓𝑈

(︂
cos(�̃�+𝜃)𝑒𝑖𝜑 0

0 sin(�̃�+𝜃)𝑒−𝑖𝜑

)︂
𝑉 †, (22)

where �̃� = 𝜋
2 (𝛼 − 𝛼𝑐) = ∓𝜋

4 , 𝛼𝑐 = 3/2. Due to a low
dimensionality of matrices, it is convenient to use the
angle parametrization of 𝑆𝑈(2). There can be other
parametrization as well.

The entanglement entropy within the CF, realized
by a usual fermion, for each of the two modes is as
follows:

𝑆
(𝛼)
ent ≡−

∑︁
𝑘
(𝜆𝛼𝑘 )

2 ln(𝜆𝛼𝑘 )
2
⃒⃒⃒
𝛼=1,2

=𝑆2

(︁𝜋
4
+𝜃
)︁
, (23)

where 𝑆2(𝑥) ≡ − sin2 𝑥 ln sin2 𝑥 − cos2 𝑥 ln cos2 𝑥.
This result is visualized in Fig. 1, 𝑎. The maximum
𝑆ent=ln 2 may correspond to the most tightly bound
state of a realized CF. Clearly, 𝑆ent = 0 means the op-
posite, i.e. the most loosely bound one. Another en-
tanglement measure of a CF state, purity 𝑃, is

𝑃 |𝛼=1,2≡
∑︁

𝑘
(𝜆𝛼𝑘 )

4=
1

4
(3− cos 4𝜃).

The purity ranges from 𝑃 = 1/2 (at 𝜃 = 0) to 𝑃 = 1
(at 𝜃 = ±𝜋

4 ), see Fig. 1 𝑏.
Remark 2. Nonseparable CF states with fixed inter-

mediate (0 < 𝑆ent < ln 2) entanglement entropy and
two respective wavefunctions Φ𝜇𝜈𝛼 are parametrized,
in total, by 6 independent real parameters.

Non-deformed constituents in three modes

In this case, we take 𝛼 = 1, 2, 𝜇, 𝜈 = 1, 3 so that Φ𝜇𝜈𝛼
are some 3 × 3-matrices. The general solution (19)
reads

Φ𝛼 = 𝑒−𝑖𝜓(𝛼) 𝑈 diag{𝜆𝛼1 , 𝜆𝛼2 , 𝜆𝛼3 }𝑉 †, 𝑈, 𝑉 ∈ 𝑆𝑈(3),
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with complex 𝜆𝛼𝑘 , 𝑘 = 1, 3, satisfying the orthonor-
mality conditions (20), and 𝑈, 𝑉 not depending on 𝛼.

A parametrization of two orthonormal vectors (𝜆1
𝑘)

and (𝜆2
𝑘) follows from the one of 𝑆𝑈(3), since the

rows/colums of matrices from 𝑆𝑈(3) separately form
orthonormal vectors. Indeed, using the parametriza-
tion from [25], we obtain (𝛼=1 ↔ 𝛼 = 2) symmetric
unified expressions:

(𝜆𝛼𝑘 ) =

=

⎛⎜⎜⎜⎜⎜⎜⎝
𝑒𝑖𝜑1
(︀
sin 𝜃1cos 𝜃2cos(�̃�+ 𝜃3)−

− sin 𝜃2sin(�̃�+ 𝜃3)𝑒
𝑖𝜑2
)︀
,

cos 𝜃1 cos(�̃�+𝜃3),

𝑒−𝑖𝜑3
(︀
sin 𝜃1sin 𝜃2cos(�̃�+ 𝜃3)+

+ cos 𝜃2sin(�̃�+𝜃3)𝑒
𝑖𝜑2
)︀

⎞⎟⎟⎟⎟⎟⎟⎠, (24)

where 0 ≤ 𝜃1, 𝜃2, 𝜃3+𝜋/4 ≤ 𝜋/2, 0 ≤ 𝜑1,2,3 ≤ 2𝜋.
The entanglement entropy 𝑆

(𝛼)
ent (𝜃1, 𝜃2, 𝜃3, 𝜑2) of a CF

in the 𝛼th mode stems from (21) with “symmetrized”
squared absolute values of Schmidt coefficients:⃒⃒
𝜆𝛼1,3

⃒⃒2
=

1

4
(1+sin2 𝜃1)±

1

4

cos4 𝜃1

1+sin2 𝜃1

sin 2(𝜃+3 −𝜃−3 )

sin 2(𝜃+3 +𝜃−3 )
−

− 1

2

sin 2𝜃±3
sin 2(𝜃+3 +𝜃−3 )

cos2 𝜃1 cos 2
(︀
𝜃3∓𝜃∓3 +�̃�

)︀
,

|𝜆𝛼2 |2 =
1

2
(1− sin2 𝜃1) +

1

2
cos2 𝜃1 cos 2(𝜃3 + �̃�), (25)

where two “shift” angles 𝜃±3 replace 𝜃2, 𝜑2, while the
upper or lower sign corresponds to the first or, re-
spectively, third Schmidt coefficient. The transition
(𝜃2, 𝜑2) → (𝜃−3 , 𝜃

+
3 ) is given by the unified formula

tg 2𝜃±3 = ±
2 sin 𝜃1 tg(𝜃2 +

𝜋
2 𝛿∓1,1) cos𝜑2

1− sin2 𝜃1 tg
2(𝜃2 +

𝜋
2 𝛿∓1,1)

.

Note that the “shift” is counted from the parameter 𝜃3
which has a special role being directly linked with the
mode number 𝛼, see (24).

Remark 3. Parametrization asymmetric under (𝛼=
= 1) ↔ (𝛼 = 2), see [25], of the modes can also play
a role. From the physics viewpoint, it is possible,
when the realization is applied to a system with ad
hoc asymmetry, for example, due to an applied exter-
nal asymmetric field or like for 𝑠- vs. 𝑝-levels/modes
of CF.

Thus, the CF entanglement entropies 𝑆(1)
ent and 𝑆

(2)
ent

are parametrized by three angles and one phase. Un-
like the constituents in the two-mode 𝜇, 𝜈 = 1, 2 case

Fig. 2. Upper: Equientropic curves (𝑆(𝛼)
ent = const) versus an-

gles 𝜃1 and 𝜃3 at fixed 𝜃∓3 = 𝜋
3
. Lower: Entanglement entropy

𝑆
(2)
ent(𝜃3, 𝜑2) for a cofermion in the 𝛼 = 2 mode at the fixed

entanglement entropy 𝑆
(1)
ent=max=ln 3 for an 𝛼 = 1 cofermion

where 𝑆
(1)
ent − 𝑆

(2)
ent = 0 and 0 ≤ 𝑆

(𝛼)
ent ≤ ln 2, now,

in the 𝜇, 𝜈 = 1, 3 case, we have |𝑆(1)
ent − 𝑆

(2)
ent| ≤ ln 2,

while 0 ≤ 𝑆
(𝛼)
ent ≤ ln 3. The limits for above differences

impose a restriction on the realizable states. To illus-
trate the dependences 𝑆

(𝛼)
ent = 𝑆

(𝛼)
ent (𝜃1, 𝜃3, 𝜃

∓
3 ) at 𝐶3-

symmetric choice 𝜃∓3 = 𝜋
3 , for both modes 𝛼 = 1, 2,

Fig. 2 (upper) shows the equientropic curves ver-
sus 𝜃1-, 𝜃3-angles. The somewhat similar behavior,
though for the entropy of mixing [26] within a three-
level system, was given in the context of the 𝑆𝑈(3)
parametrization of qutrits (see [26]).
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Observe that, at 𝜃±3 = 𝜋
3 and sin2 𝜃1 = 1

3 , the en-
tropy for the 𝛼th mode acquires a 𝐶3-cyclically sym-
metric form:

𝑆
(𝛼)
ent =

1∑︁
𝑙=−1

𝑆1

(︂
2

3
cos2

(︀
𝜃3 +

𝜋

3
𝑙 + �̃�

)︀)︂
, (26)

where 𝑆1(𝑥)≡−𝑥 ln𝑥.

5(b). CFs composed
of a fermion plus a deformed boson

Consider the two-mode case (𝛼 = 1, 2) of CF com-
posed of a usual fermion and a 𝜒-deformed boson.
The specificity of two modes implies that it is suf-
ficient to consider the realization conditions (7)–(8)
on the ground and one-CF states. Then, for the sin-
gle non-zero two-CF state 𝐴†

1𝐴
†
2|0⟩, the realization

conditions will be automatically satisfied. Denoting
𝛿𝜒2 ≡ 𝜒(2)−2, requirement (12) on respective “one-
CF states” reduces to two independent equations:

𝐿(Φ1,Φ2) ≡ Φ1Φ
†
1Φ2 − Φ2Φ

†
1Φ1 +

+ 𝛿𝜒2

[︀
diag{(Φ1Φ

†
1)
𝜇𝜇}Φ2 − diag{(Φ2Φ

†
1)
𝜇𝜇}Φ1

]︀
= 0,

(27)

−𝐿(Φ2,Φ1) = 0. (28)

Using substitution (15), restricting to 𝜇, 𝜈 = 1, 2,
taking

𝑈1=𝑈(𝑢, 𝑣)≡
(︁ 𝑢 𝑣
−𝑣 𝑢

)︁
∈𝑆𝑈(2), |𝑢|2+|𝑣|2 = 1,

and applying the identity

𝑈† diag{(𝑈𝑋𝑈†)𝜇𝜇}𝑈 =
1

2
𝑋 +

1

2
𝑅𝑋𝑅,

with the Hermitian

𝑅 =

(︂
|𝑢|2 − |𝑣|2 2𝑢𝑣

2𝑢𝑣 |𝑣|2 − |𝑢|2
)︂
,

we arrive at the matrix equations

𝜒(2)(𝐷2
1Φ̃2−Φ̃2𝐷

2
1)+𝛿𝜒2𝑅

(︀
𝐷2

1𝑅Φ̃2−Φ̃2𝐷1𝑅𝐷1

)︀
=0,

(29)

𝜒(2)(𝐷1Φ̃
†
2Φ̃2 − Φ̃2Φ̃

†
2𝐷1)+

+ 𝛿𝜒2

(︀
𝑅𝐷1Φ̃

†
2𝑅Φ̃2 −𝑅Φ̃2Φ̃

†
2𝑅𝐷1

)︀
= 0. (30)

In view of three-dimensionality of the space of Φ̃†
2

satisfying the orthogonality condition Tr(𝐷1Φ̃
†
2) = 0,

we present them as a linear combination:

Φ̃2 = 𝑥1

(︂
𝜆
(1)
2 0

0 −𝜆
(1)
1

)︂
+ 𝑥2

(︂
0 κ𝜆(1)

1

κ𝜆(1)
2 0

)︂
+

+𝑥3

(︂
0 −κ𝜆(1)

2

κ𝜆(1)
1 0

)︂
,

where κ = 𝑒𝑖(arg 𝑣−arg 𝑢). Equation (30) reduces to
three linear (in 𝑥1, 𝑥2, 𝑥3) equations, the associated
determinant should be zero:

det
(︀
...
)︀
= −𝜒(2)(𝜒(2)− 2)|𝑢|2|𝑣|2

(︀
|𝜆1

1|2− |𝜆1
2|2
)︀2

= 0.

This is possible in the following cases:
a) 𝜒(2) = 0. The solution of (27)–(28) reads

Φ𝛼= 𝑈(𝑢, (−1)𝛼−1𝑣)

(︂
cos(�̃�+ 𝜃) 0

0 sin(�̃�+ 𝜃)

)︂
𝑉 †. (31)

b) 𝜒(2) = 1. We find two classes of solutions:

Φ𝛼=diag
{︀
cos(�̃�+ 𝜃), sin(�̃�+ 𝜃)

}︀
𝑉 †, (32)

Φ𝛼≡(Φ𝜇𝜈𝛼 ) =
(︁
𝛿𝜇𝜇0𝑉𝜈𝛼

)︁
, fixed 𝜇0 = 1 or 2. (33)

c) 𝜒(2) = 2, i.e. 𝛿𝜒2 = 0 – non-deformed one,
see (22).

d) At 𝜒(2) ̸= 0, 1, 2, the solution is identical to (32).
So, the entanglement entropy of the cofermion con-

taining a deformed boson is either given by the gen-
eral parameter-dependent expression, see (23), or the
constant 𝑆ent = 0 in the special case 𝜒(2) = 1,
for (33). The deformations 𝜒(2) = 0, 1, or 2 are dis-
joint from the continuous set. How the deformation
parameter 𝜒(2) is reflected in physical quantities will
be analyzed in the subsequent paper.

6. Conclusions

After we settled the problem of realization of com-
posite fermions (CFs) by usual fermions, we explored
the bipartite entanglement (inside the CF) measured
by the entanglement entropy of CF. The analysis has
been performed in relatively simpler cases: i) CFs
with a non-deformed constituent boson, for which we
have considered the examples of two and three modes
for the both constituents, ii) CF containing a de-
formed boson, both in two modes. The resulting ex-
pressions are given in (21) in the case of non-deformed
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constituents, (23) for CFs and constituents being in
two modes, and finally by (24), (26) for two-mode
CFs with three-mode constituents.

As is found, for the entanglement entropy of re-
alized CFs of the type “fermion + deformed boson”,
the constituent boson deformation does not manifest
itself in the explicit formulas for the entanglement
entropy and purity of CF within each fixed subcase
in these one- and two-mode cases. At first sight, this
is in some contrast to the earlier studied entangle-
ment entropy of quasibosons [7], where the major is-
sue was just the dependence on the deformation pa-
rameter 𝑓 . Therein, all other parameters of the states
[like those from 𝑈1(𝑑𝑎), 𝑈2(𝑑𝑏), 𝑈𝛼(𝑚) in (3)] did not
enter the entanglement measures. In the present case
of CFs, the situation is different: the CFs are realized
by nondeformed fermions, so, the analogous defor-
mation parameter corresponding to CF as a whole is
absent. The quantity 𝜒(2), being related to the defor-
mation parameter(s), in the case of CF has different
origin, since it concerns the constituent of CF. Never-
theless, there appear additional parameters present in
the matrix Φ of ansatz (1) which, along with 𝜒(2), de-
fine the entanglement entropy of CFs. Thus, these pa-
rameters determine the form of CF states (their wave-
functions). This dependence on the involved parame-
ter is shown in Fig. 1. Also noteworthy are the prop-
erties of CF entanglement entropy shown in Fig. 2. In
that case, the behavior is apparently richer.

Let us note again that this paper presents explicit
formulas for the entanglement entropy inside an indi-
vidual composite fermion (i.e. for the interconstituent
entanglement), see also Introduction. In contrast, the
authors in [20, 21] explored the (statistical) entangle-
ment entropy of many-fermion systems that occupy
a certain space region. In particular, the efficient nu-
merical methods were applied in [21] to the system of
37 composite fermions, and the linear size of a sub-
system entered the final result for the entanglement
entropy. While the results of [20] depend explicitly on
the space region dimensionality, we operate here with
one or more modes irrespectively of a particular space
dimensionality.

What about the role of a deformation parame-
ter 𝑓 in the situation with quasibosons? In that
case, we had [7,8] quite natural feature: the entangle-
ment entropy was rising with decreasing values of 𝑓 ,
i.e. with approaching the truly bosonic behavior, ei-
ther for the Fock states at a fixed mode or for the

coherent states. In the present case of CFs, the phys-
ical meaning of the parameter(s) which the entan-
glement entropy and purity depend upon is not clear
enough, and that issue deserves the further study. Ne-
vertheless, concerning the considered cases of 2 or 3
modes for the constituents, we may remark the fol-
lowing. Since the only parameters affecting the inter-
component entanglement of CF are 𝜃 (the 2-mode
case, see (23)) or 𝜃𝑖, 𝑖 = 1, 3, and 𝜑2 (the 3-mode
case, see (24)), they should correspond to internal
quantum numbers of CF like spin, parameter(s) of
the binding energy of CF, etc.

Remark also that the above parameters (like 𝜃) of
the realized states can be related to such (rather un-
expected) parameters as CF constituents’ mass ratio
or reduced mass. That concerns, e.g., the trion CF
composed of an exciton, modeled by a deformed bo-
son, and an electron or a hole. It is motivated, say,
by Fig. 2 in [27], where the trion binding energy de-
pends on the reduced mass of the electron-hole pair,
while the extent of bipartite entanglement usually is
related to the binding energy of a composite parti-
cle. We intend to explore such entanglement-energy
relation and other implications elsewhere.

This work was partly supported by the Na-
tional Academy of Sciences of Ukraine (project
No. 0117U000237).
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СКЛАДЕНI ФЕРМIОНИ
ЯК ДЕФОРМОВАНI ОСЦИЛЯТОРИ:
ХВИЛЬОВI ФУНКЦIЇ ТА ЗАПЛУТАНIСТЬ

Р е з ю м е

Складена структура частинок дещо змiнює їх статистику
порiвняно iз класичними бозе- та фермiстатистиками. Те-
орема про зв’язок спiну зi статистикою, отже, не викону-
ється. Скажiмо, 𝜋-мезони, екситони, куперiвськi пари не є
iдеальними бозонами i, подiбним чином, барiони не є про-
стими фермiонами. У попереднiх статтях ми вивчали дво-
частинковi складенi бозони (тобто квазiбозони) за допомо-
гою реалiзацiї їх через деформованi осцилятори. Були зна-
йденi такi характеристики мiжкомпонентної заплутаностi
як ентропiя заплутаностi та чистота (purity) в термiнах
параметра деформацiї. У цiй роботi ми виконуємо анало-
гiчний розгляд складених частинок фермi-типу та дослi-
джуємо їх у двох основних випадках: (i) складенi фермiо-
ни (чи кофермiони, чи СФ-и) типу “бозон + фермiон”; (ii)
СФ-и типу “деформований бозон + фермiон”. Як ми пока-
зуємо, кофермiони, в обох випадках, допускають реалiзацiю
лише звичайними фермiонами. Випадок (i) розглянуто пов-
нiстю та знайдено хвильовi функцiї разом iз мiрами заплу-
таностi. Випадок (ii) розглянуто в межах декiлькох мод,
як для СФ-iв так i складових. Ентропiю заплутаностi та
“п’юрiтi” визначено через задiянi параметри i проiлюстро-
вано графiчно.
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