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HADRONIC SUPERSYMMETRY FROM QCD

The evolution of hadronic mass formulae with special emphasis on group theoretical descrip-
tions and supersymmetry suggested by QCD and based on quark-antidiquark symmetry is
shown, with further comments on possible applications to a Skyrme-type models that may
compete with the potential quark models in the future.
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1. Introduction

The quark model with potentials derived from
QCD, including the quark-diquark model for excited
hadrons gives mass formulae in a very good agree-
ment with experiments and goes a long way in ex-
plaining the approximate symmetries and supersym-
metries of the hadronic spectrum, including the sym-
metry breaking mechanism.

The mathematical expression of supersymmetry
arises through a generalization of Lie algebras to su-
peralgebras. When a Lie algebra is su(n) it can be
extended to a graded algebra (superalgebra) su(n/m)
with even and odd generators, the even genera-
tors being paired with commuting (bosonic) param-
eters and the odd generator with the Grassmann
(fermionic) parameters. The algebra can then be ex-
ponentiated to the supergroup SU(n/m). This was
done by Miyazawa [1] who derived the correct com-
mutation and anticommutation relations for such a
superalgebra, as well as the generalized Jacobi iden-
tity. This discovery predates the supersymmetry in
dual resonance models or supersymmetry in quan-
tum field theories invariant under the super-Poincaré
group that generalizes special relativity. Miyazawa
looked for a supergroup that would contain SU(6)
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and settled on broken SU(6,/21). He showed that an
SU(3) singlet-octet of this supergroup leads to a new
kind of mass formulae relating fermionic and bosonic
mass splittings.

2. Quark-Diquark Model

We shall first discuss the validity domain of SU(6,/21)
supersymmetry [2, 3, 6]. The diquark structure with
spins s = 0 and s = 1 emerges in inelastic inclusive
lepton-baryon collisions with high impact parameters
that excite the baryon rotationally, resulting in in-
elastic structure functions based on point-like quarks
and diquarks instead of three point-like quarks. In
this case, both mesons and baryons are bilocal with
large separation of constituents.

In addition, there is a symmetry between color an-
titriplet diquarks with s =0 and s = 1 and color an-
titriplet antiquarks with s = % This is only possible,
if the force between quark ¢ and antiquark ¢, and be-
tween ¢ and diquark D is mediated by a zero spin ob-
ject that sees no difference between the spins of § and
D. The object can be in color states that are either
singlet or octet since ¢ and D are both triplets. Such
an object is provided by scalar flux tubes of gluons
that dominate over the one gluon exchange at large
distances. Various strong coupling approximations
to QCD, like lattice gauge theory [4, 5], 't Hooft’s %
approximation [7], when N, the number of colors, is
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very large, or the elongated bag model [8] all give a
linear potential between widely separated quarks and
an effective string that approximates the gluon flux
tube. In such a theory, it is energetically favorable for
the three quarks in a baryon to form a linear structure
with a quark in the middle and two at the ends or, for
a high rotational excitation, a bilocal linear structure
(diquark) at one end and a quark at the other end. In
order to illustrate these points, we start with the sug-
gestion of Johnson and Thorn [8] that the string-like
hadrons may be pictured as the vortices of color flux
lines which terminate on the concentration of color
at the end points. The color flux connecting opposite
ends is the same for mesons and baryons giving an
explanation for the same slope of meson and baryon
trajectories [3].

To construct a solution, which yields a maximal
angular momentum for a fixed mass, we consider a
bag with elongated shape rotating about the center
of mass with an angular frequency w. Its ends have
the maximal velocity allowed, which is the speed of
light (¢ = 1). Thus, a given point inside the bag, at
a distance r from the axis of rotation moves with a
velocity

2
v:\wxr|:fr, (1)

where L is the length of the string. In this picture,
the bag surface will be fixed by balancing the gluon
field pressure against the confining vacuum pressure
B, which (in analogy to electrodynamics) can be writ-
ten in the form

3 2 (F2—B%)=B. )

Using Gauss’ law, the color electric field E through
the flux tube connecting the color charges at the ends
of the string is given by

1
/Ea 48 = Bod = g3 M. (3)

where A(r) is the cross-section of the flux tube at
distance r from the center and g%)\a is the color
electric charge, which is the source of E,. By anal-
ogy with classical electrodynamics, the color mag-
netic field B, (r) associated with the rotation of the
color electric field is

=v(r) x Ea(r), (4)
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Ba(r)

at a point moving with a velocity v(r). For the abso-
lute values, this yields

B, =v E,, (5)

because v(r) is perpendicular to E,(r). Using last
three equations together with

(56) -

a=1

for the SU(3)¢ triplet in Eq. (2), we obtain that the
cross-section of the bag

2

A(T): 3B g

1— 2, (7)

which shows the expected Lorentz contraction.
The total energy E of the bag

E=E,+ Eq+ BV (8)

is the sum of the quark energy E,, the gluon field en-
ergy E¢, and the volume energy of the bag, BV. Be-
cause the quarks at the ends move with the a speed
close to the speed of light, their energy is simply
given by

Eq = 2p7 (9)

where p is the momentum of a quark, a diquark, or
an antiquark, respectively. By analogy with electro-
dynamics, Eqgs. (3)—(5) yield

8

/d3 ZE§+B§):

\[gfL 7 \/gg\/EL?ZT (10)

for the gluon energy and

1
1+ 02

\/1 Vi—?

BV = 2B/A(r) dr =

0
1
2 L
=2B [ /= gV1—v2Zdv=
/ 3Bg v2dv
0

= \/zg\/ELZ = 7BA(E)LW (11)
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for the volume energy. It is obvious from Eq. (10) that
the gluon field energy is proportional to the length L
of the bag. The gluon field energy and the volume en-
ergy of the bag together correspond to a linear rising
potential of the form

V(L) = E¢ + BV =L, (12)
where

2B
b= — g (13)

The total angular momentum J of this classical bag
is the sum of the angular momenta of the quarks at
the two ends
Jq = pL (14)

and the angular momentum Jg of the gluon field.
From Eq. (4), we get

E, xB, = VEi, (15)

for the momentum of the gluon field. Hence,

/d3erExB)

bag

2
16
= E2 2
/ rro 3L
0

\l‘*

\[fLﬂ

(16)

where we have used Eq. (1) and Eq. (3) in the third
step. We can now express the total energy of the bag
in terms of angular momenta. Putting these results
back into the formulae for £, and Eg, we arrive at

2
Eq:i EG:%,

L’ L (17)

so that the bag energy now becomes

2B w
Lot —
V3L

L L
2J,+4Je  2(J+Jg)

L L

1 2 ™
== 12 ZgvVBL*=|.
L<J+\/gg 2)
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g, 3

(18)

Minimizing the total energy for a fixed angular mo-

mentum with respect to the length of the bag, & B—E =0
gives the relation
J 2
4 \[ gVBE =0 (19)
3 2
so that
4J
2 =2,/ =. 2
Re-inserting this into Eq. (18), we arrive at
2B\
or
— 31 E? =
2B 4mg
3 1 1
=\/=—=—= E? = o/ (0)M? 22

where M = F, and a; = % is the unrationalized
color gluon coupling constant. We can now let o/(0)
defined by the last equation, which is the slope of the

Regge trajectory, be expressed as

31 1 1
=4/ ———— = —
O =\ i e

where b was defined in Eq. (12).

The parameters B and «a have been determined
[9, 10] using the experimental information from the
low lying hadron states: Bi = 0.146 GeV and o, =
= 0.55 GeV. If we use these values in Eq. (23), we
find

(23)

a'(0) = 0.88 (GeV)™? (24)
in the remarkable agreement with the slope de-
termined from experimental data, which is about

9 (GeV)~2

Then the total phenomenological non-relativistic
potential is the well-known superposition of the
Coulomb-like and confining potentials V' (r) = ¢ +br,
where r = |r; —ro| is the distance between ¢ and g in
a meson or between ¢ and D in a baryon with high
angular momentum. This was verified in lattice QCD
to a high degree of accuracy [11] (a = =<, where
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c¢ is the color factor, and «, is the strong coupling
strength).

It is interesting to know that all this is related very
closely to the dual strings. Indeed, we can show that
the slope given in Eq. (23) is equivalent to the dual
string model formula for the slope, if we associate the
“proper tension” in the string with the proper energy
per unit length of the color flux tube and the vol-
ume. By the proper energy per unit length, we mean
the energy per unit length at a point in the bag eval-
uated in the rest system of that point. This will be

1
Ty =5 Z E2Ay + BA,. (25)

The relation % >, F2 = B in the rest system gives
To = 2B Ay, (26)

where Ay is the cross-sectional area of the bag. Let
A= Apin Eq. (7), when v = 0. Then, using

[ 2
AO = 3§g7 (27)
we find
2 21
T0:2\/;g\/§:41/3\/075\/§ (28)

for the proper tension. In the dual string, the slope
and the proper tension are related by the formula [12]

1
T(J - ﬁv (29)
so that the slope is
1 /31 1 1
== (30)

8 V2g3 Ja, VB’
which is identical to the earlier formula we produced
in Eq. (23).

It would appear from Eq. (28) that the ratio of
volume to field energy would be one-to-one in one
space dimension in contrast to the result one-to-three,
which holds for a three-dimensional bag [13]. Howe-
ver, the ratio one-to-one is true only in the rest system
at a point in the bag, and each position along the z-
axis is, of course, moving with a different velocity. In-
deed, we see from Eq. (10) and Eq. (11) that the ratio
of the total volume energy to the total field energy is
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given by one-to-three in conformity with the virial
theorem [13].

In the string model of hadrons, we have E? ~ .J
between the energy and the angular momentum of
the rotating string. If we denote, by p(r), the mass
density of a string, and, by v and w, its linear and
angular velocities, respectively, the energy and the
angular momentum of the rotating string are given by

EZZ/\/%C#:Z/\/%CM (31)
0
and
1
= 2/ \/% rdr = 3 / \/f(v—)vzu?dv.
0
Hence, the relation (32)
E? o J -

holds. If the string is loaded with mass points at its
ends, they no longer move with the speed of light. Ho-
wever, the above relation still holds approximately for
the total energy and angular momentum of the loaded
string.

We now look at various ways of the partitioning of
the total angular momentum into two subsystems. Fi-
gures a, b, and ¢ show the possible configurations of
three quarks in a baryon. If we put the proportional-
ity constant in Eq. (33) equal to unity, then the naive
evaluation of energies yield
E*=J,+Jo=E?+E3<(E,+Ey)?=E"? (34)
where E and E’ denote the energies corresponding
to Figures a or c. In the case of Figure b, J; and Js
are the angular momenta corresponding to the ener-
gies E1 and F, of the subsystems. The equality in
Eq. (34) holds, only if Fy or Ey is zero. Therefore,
for each fixed total angular momentum, its most un-
fair partition into two subsystems gives us the lowest
energy levels, and its more or less fair partition gives
rise to energy levels on daughter trajectories. Hence,
on the leading baryonic trajectory, we have a quark-
diquark structure (Fig. a) or a linear molecule struc-
ture (Fig. ¢). On the other hand, on low-lying tra-
jectories, we have more or less symmetric (J; ~ J2)
configuration of quarks.
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q3

J=J+ ]2

qre——1—9(2

J=0

qi e ° (2

q3
IJ:O
J=J1+J

c

qi e ° (2

Since the high-J hadronic states on leading Regge
trajectories tend to be bilocal with large separation
of their constituents, they fulfill all the conditions for
supersymmetry between ¢ and D. Then the only dif-
ference between the energies of (¢q) mesons and (¢D)
baryons comes from the different masses of their con-
stituents, namely, m, = mg = m, and mp ~ 2m. For
high J, this is the main source of symmetry break-
ing, which is spin-independent. We will show how we
can obtain sum rules from this breaking. The part
of the mass operator that gives rise to this split-
ting is a diagonal element of U(6/21) that commutes
with SU(6).

Let us now consider the spin-dependent breaking of
SU(6/21). For low J states, the (¢D) system becomes
trilocal(qqq), and the flux tube degenerates to a sin-
gle gluon propagator that gives spin-dependent forces
in addition to the Coulomb term <. In this case, we
have the regime studied by de Rujula, Georgi, and
Glashow, where the breaking is due to the hyperfine
splitting caused by the exchange of single gluons that
have spin 1. These mass splittings give rise to differ-
ent intercepts of the Regge trajectories given by

519 4 o),

mlmz7

Amlg =k

(35)
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both for baryons and mesons at high energies. But,
at low energies, the baryon becomes a trilocal object
(with three quarks), and the mass splitting is given

by
S3 S
4 Ss 1)7
msmq

where mq, ms, and ms are the masses of the three
different quark constituents.

The element of SU(6/21) that gives rise to such
splittings is a diagonal element of its U(21) subgroup
and gives rise to s(s + 1) terms that behave like an
element of the (405) representation of SU(6) in the
SU(6) mass formulae. The splitting of isospin multi-
plets is due to a symmetry breaking element in the
(35) representation of SU(6). Hence, all symmetry
breaking terms are in the adjoint representation of
SU(6/21). If we restrict ourselves to the non-strange
sector of hadrons with approximate SU(4) symmetry,
the effective supersymmetry will relate the splitting in
m? between A (s=2I=3) and N (s=1%,1=1)
to the splitting between w (s = 1,I = 0) and 7
(s =0,I=1), so that

S, S3
mamms

1 <Sl Sa (36)

Amygg = 576 p—

2 2 _ 2 2
ma — My = My, — My,

(37)
which is satisfied to within 5%. Our potential model
gives a more accurate symmetry breaking

9, 9 2

g(mA —my)=m

2 2
w My

(38)

to within 1%, where the § arises from %(%a,)? =

2
= %az. For a classification of supergroups including

SU(m/n), we refer to the paper by Viktor Kac [14].

3. Conclusions and Future Prospects

Effective Hamiltonians and new mass relations in-
cluding quark and diquark masses were worked out
in our previous works that included the complete
understanding of hadronic color algebras as well. In
the case of heavy quarks, one can also use the non-
relativistic approximation, so that the potential mod-
els for the spectrum of charmonium and the bb sys-
tem can be worked out. In such an approach, gluons
can be eliminated leaving quarks interacting through
potentials.

It is also possible to take an opposite approach by
eliminating quarks as well as gluons, leaving only an
effective theory that involves mesons and baryons as
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collective excitations (solitons) in a way by Skyrme. A
Skyrme model that can compete with the potential
model is not yet realized.
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TAJIPOHHA CYIIEPCUMETPIA 3 KX/T
Peszowme

3anpononoBano MoaudiKaIio MacoBux GOPMyYJI Il TaPOHIB,
3 HAroJIOCOM Ha TEOPETHKO-I'PDYIIOBUN OINC i CynepcuMmerpiio,
sika Bignosimae KX/I i 6a3yeTnbcst Ha KBapK-aHTUKBApPKOBiH Cu-
MeTpil, i3 HomAIbIINMI KOMEHTAPSAMH IO0 MOXKJIUBUX 3aCTO-
cyBaHb 10 Mogesielt Tuity CkipMma, siKi B MaiilbyTHbOMY MOXKYTb
KOHKYPYBaTH 3 INOTEHI[iaJIbHIMU KBAPKOBUMHU MOJEJISIMH.
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