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ELECTRON-PHONON SCATTERING
IN QUANTUM-SIZED FILMS WITH THE HYPERBOLIC
PÖSCHL–TELLER POTENTIAL

A quantitative theory of electron-phonon interaction in the two-dimensional electron gas in
a quantum-sized film with the hyperbolic Pöschl–Teller confining potential has been devel-
oped. Analytical expressions for the transition probability are derived in the case of electron
scattering by deformation-induced acoustic, piezoacoustic, and polar optical phonons. The re-
sults obtained for various scattering mechanisms in the film are compared with the results
obtained for bulk crystals.
K e yw o r d s: quantum-sized film, electron-phonon interaction, hyperbolic potential, transi-
tion probability.

1. Introduction

Nowadays, one of the most rapidly developing scien-
tific fields is the study of the physical and chemical
properties of low-dimensional structures. Of particu-
lar practical interest are the electronic properties of
nanostructures associated with quantum effects. In
nanostructures, the free motion of electrons is con-
fined, which results in a modification of the electron
concentration character. The size quantization effect
makes it possible to govern the physical properties
of quantum-sized films and create devices with pre-
scribed characteristics [1].

The processes of electron scattering by lattice vi-
brations in solids, phonons, substantially affect plenty
of kinetic and optical phenomena. It is rather inter-
esting to consider the features of electron scattering
in low-dimensional structures, e.g., in quantum wells,
where the size quantization effect has to be taken into
consideration [2, 3].

Electron scattering by confined interface polar op-
tical phonons in a double heterostructure was stud-
ied in works [4, 5]. The cited authors considered the
rate of scattering of an electron in the quantum well

c○ KH.A. GASANOV, J.I. GUSEINOV, I.I. ABBASOV,
D.J. ASKEROV, KH.O. SADIG, 2019

by localized polar optical and interface phonons and
showed that, by changing the semiconductor com-
position, the electron-phonon scattering rate can be
varied. The electron-phonon interaction in InAs/AlS
structures in the quantization magnetic field regime
was studied in work [6].

Nanostructured ZnO thin films with various grain
sizes were analyzed with the help of scanning elec-
tron microscopy, X-ray diffraction, and Raman spec-
troscopy. It was found that a decrease of the grain size
is accompanied by a reduction of the electron-phonon
coupling [7]. The dielectric parameters of TiO2 thin
films grown with the use of the radio-frequency mag-
netron sputtering method at various sputtering pow-
ers were studied in work [8]. In work [9], the exper-
imental data obtained by scanning tunneling spec-
troscopy and the features of tunnel processes in semi-
conductor nanostructures were described and theo-
retically explained.

Earlier, we considered the problem of the screen-
ing of a scattering potential created by charge car-
riers in a quantum-sized thin film with the mod-
ified Pöschl–Teller potential [10]. In this work, we
study the electron-phonon interaction with differ-
ent scattering mechanisms in the same electron
system.
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2. Theory

While describing the physical processes in quantum
nanostructures – in particular, in quantum wells
(QWs) – the adequate mathematical modeling of a
confining potential plays an important role. When a
QW grows, there emerges a confining potential at the
interface between the QW and the matrix (the envi-
ronment). Therefore, the choice of the confining po-
tential is very important. Potentials with rectangu-
lar or parabolic profiles are often used. However, the
parabolic-like potential is realized only for lower en-
ergy levels, and its profile deviates from the parabola,
as the quantum number increases. At the same time,
if the energy of the particle increases, it feels the
interface between the quantum well and the envi-
ronment more and more strongly. As a result, there
arises a necessity to consider the finite height of the
confining potential on the one hand and the non-
parabolic profile of the confining potential on the
other hand. The indicated difficulties can be avoided
by introducing more complicated and multiparamet-
ric potentials such as the Pöschl–Teller one. There-
fore, in this work, in order to make the approximation
of the generated confining potential more realistic, we
propose to use the modified Pöschl–Teller potential
[10, 11].

The determination of the transition probability
is known to be a problem of quantum scattering
theory. This problem is solved in the framework of
the nonstationary perturbation theory [12]. The to-
tal Hamiltonian of an electron in a real lattice can be
written in the form [13, 14]

�̂�𝑒 = �̂� +𝐻 ′. (1)

Here, the term 𝐻 ′ describes the interaction of the
electron with phonons, which is considered to be a
small perturbation to the unperturbed Hamiltonian
�̂�. The latter, in the case of phonon scattering, also
includes the Hamiltonian of an ideal phonon gas that
does not interact with the electron. Since a unit cell
remains almost undeformed at long-wave acoustic vi-
brations (only its center of mass oscillates), the inter-
action energy cannot be proportional to the cell dis-
placement itself. Instead, it has to be a linear function
of the first derivatives of the cell displacement uac (r)
along the coordinates:

�̂� ′
ac = 𝐸1 divuac(r), (2)

where r is the vector corresponding to the cell po-
sition. This function is called the deformation po-
tential, and the proportionality coefficient 𝐸1 is the
deformation potential constant. Then, according to
works [13, 14], we may write

uac (r) =
1√
𝑁

∑︁
q

3∑︁
𝑗=1

e𝑖 (q)×

×
[︀
𝑏𝑗 (q) 𝑒

𝑖qr + 𝑏*𝑗 (q) 𝑒
−𝑖qr

]︀
, (3)

where e𝑖 (q) is the unit polarization vector, 𝑏𝑗 (q)
(𝑗 = 1, 2, 3) are the complex normal coordinates, and
𝑁 is the number of unit cells that determine lattice
vibrations.

Substituting (3) into (2), we obtain

�̂� ′
ac (𝑟) =

𝑖𝐸1√
𝑁

∑︁
q

3∑︁
𝑗=1

(qe𝑖 (q))×

×
[︀
𝑏𝑗 (q) 𝑒

𝑖qr + 𝑏*𝑗 (q) 𝑒
−𝑖qr

]︀
. (4)

Let the wave function of the system “electron +
+ phonon” be represented in the form |𝛽𝑁q𝑗⟩, where
𝛽 is a set of quantum numbers that characterize the
electron state. In our case, 𝛽 = (𝜆, 𝑛,k2D, 𝜎), where
k2D is the two-dimensional wave vector, and 𝜎 is the
spin quantum number. The parameter 𝑁q𝑗 character-
izes the number of phonons with the wave vector q
and the polarization 𝑗.

Let us calculate the scattering probability for the
hyperbolic Pöschl–Teller potential. The latter looks
like [10, 11]

𝑉 (𝑧) =
}2𝛼2

2𝑚
𝜆 (𝜆+ 1) tanh2 𝛼𝑧, (5)

where 𝛼 and 𝜆 are the parameters of the potential
well, which characterize its depth and half-width, re-
spectively. For an electron in the thin film with po-
tential (5), its motion is quantized in the 𝑧-direction
(perpendicularly to the film), but it remains classical
in the film plane (𝑥, 𝑦). Accordingly, the total elec-
tron energy

𝜀 =
}2𝛼2

2𝑚

(︁
𝜆 (𝜆+ 1)− (𝜆− 𝑛)

2
)︁
+

}2𝑘2𝑥
2𝑚

+
}2𝑘2𝑦
2𝑚

(6)

consists of a discrete component and a continuous
one, with the latter being typical of bulk crystals.
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Hence, the electron energy spectra in thin films is
a set of size-quantized subbands. Within every sub-
band, the energy varies in a quasicontinuous manner.
The electron wave functions in those subbands can be
written as follows:

𝜓𝑛,𝑘𝑥,𝑘𝑦,𝜆 (𝑥, 𝑦, 𝑧) =

= 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)

(︂
𝛼 (𝜆− 𝑛) Γ (2𝜆𝑛+ 1)

Γ (𝑛+ 1)

)︂1/2
×

×𝐿𝑧
𝑛 (𝜆, 𝑛− 𝜆, tanh𝛼𝑧). (7)

Here, the integer number 𝑛 varies from 0 to a positive
integer number 𝜆, 𝑘𝑥 and 𝑘𝑦 are the projections of the
electron wave vector onto the film plane, and 𝐿𝑧

𝑛(𝑥)
is the Legendre function. In this case, the calculation
of the 𝐻 ′

ac-matrix element between the phonon func-
tions brings us to the formula [13, 14]

⟨︀
𝑁 ′

q𝑗 |𝐻 ′
ac|𝑁q𝑗

⟩︀
=

⎯⎸⎸⎸⎷~
(︂
𝑁q𝑗 +

1

2
∓ 1

2

)︂
2𝑀𝜔𝑗 (q)

𝛿𝑁 ′
q𝑗 ,𝑁q𝑗∓1.

(8)

At the same time, the calculation of the factor 𝑒𝑖𝑞𝑧𝑧
between the electron wave functions with potential
[5] gives

⟨𝜆′, 𝑛′,k′
2D, 𝜎

′| 𝑒𝑖𝑞𝑧𝑧 |𝜆, 𝑛,k2D, 𝜎⟩ =

=
⟨︀
𝜆′, 𝑛′

⃒⃒
𝑒𝑖𝑞𝑧𝑧

⃒⃒
𝜆, 𝑛

⟩︀
𝛿𝜎′,𝜎𝛿k′

2D,k2D±q2D
. (9)

For the values 𝜆 = 𝜆′ = 1 and 𝑛 = 𝑛′ = 0, this matrix
element equals⟨︀
𝜆′ = 1, 𝑛′ = 0)

⃒⃒
𝑒𝑖𝑞𝑧𝑧

⃒⃒
𝜆 = 1, 𝑛 = 0

⟩︀
=

=
𝜋𝑞𝑧 cosech

𝜋𝑞𝑧
2𝛼

2𝛼
. (10)

Then the scattering probability looks like [2]

𝑊 =
2𝜋

}
∑︁
𝑁𝑞𝑗

}
(︀
𝑁q𝑗 +

1
2 ∓ 1

2

)︀
2𝑁𝑀𝜔𝑗 (q)

(𝐸1𝑞)
2 ×

×
(︂
𝜋𝑞𝑧 cosech

𝜋𝑞𝑧
2𝛼

2𝛼

)︂2
𝛿𝑁 ′

q𝑗 ,𝑁q𝑗∓1. (11)

Using formulas (11.34) and (11.35) from work [13],
we obtain

𝑊ac =
∑︁
𝑞

𝑤1 (q)
(︀
𝐴+ +𝐴−)︀ , (12)

where

𝐴± =

(︂
𝑁q +

1

2
∓ 1

2

)︂
𝛿
(︀
𝜀𝛽,k′

2D
− 𝜀𝛽,k2D ∓ }𝜔 (q)

)︀
×

× 𝛿𝜎′,𝜎𝛿k′
2D,k2D±q2D

, (13)

𝑤1 (q) =
𝜋 (𝐸1𝑞)

𝑁
𝑀𝜔(q)2

(︂
𝜋𝑞𝑧 cosech 𝜋𝑞𝑧

2𝛼

2𝛼

)︂2
. (14)

Here, we assumed that electrons occupy the lower
subband (𝜆 = 1, 𝑛 = 0), and the spin degeneracy is
neglected. A further simplification is obtained, if we
assume the scattering to be elastic at 𝑘B𝑇 > ~𝜔 (𝑞).
Then

𝑊 =
2𝜋𝐸2

1𝑘B𝑇

𝑁𝑀~𝑉 2
𝑜

(︂
𝜋𝑞𝑧 cosech

𝜋𝑞𝑧
2𝛼

2𝛼

)︂2
𝛿
(︀
𝜀𝛽,k′

2D
− 𝜀𝛽,k2D

)︀
.

If the inverse relaxation time and the screening are
also taken into account, the final expression for
the transition probability at the deformation-acoustic
phonon scattering reads

𝑊± (k′
2D,k2D) =

2𝜋

~
∑︁
q,𝜎′

𝜋 (𝐸1𝑞)
2

2𝑁𝑀𝜔 (q)
×

×
(︂
𝑁q +

1

2
± 1

2

)︂(︂
𝜋𝑞𝑧 cosech

𝜋𝑞𝑧
2𝛼

2𝛼

)︂2
×

× 𝛿𝜎′,𝜎𝛿k′
2D,k2D±q2D

𝛿
(︀
𝜀𝛽,k′

2D
− 𝜀𝛽,k2D

∓ ~𝜔 (q)
)︀
. (15)

Expression (15) describes the scattering of electrons
by acoustic phonons with potential (5).

The scattering by acoustic lattice vibrations oc-
curs in every crystal irrespective of its unit cell com-
plexity. If a crystal has a simple lattice (one atom
per unit cell), the scattering by acoustic vibrations is
the only mechanism of lattice interaction with charge
carriers. In crystals with two or more atoms or ions
per unit cell, besides the scattering by acoustic vi-
brations, the screening by optical and piezoelectric
lattice vibrations has to be taken into account. If
there is no symmetry center in crystals, and if some
bonds have an ionic character, the propagation of
acoustic waves results not only in the appearance
of a deformation potential. In addition, a potential
of the electrical origin, a piezoelectric potential, may
also arise. This gives rise to the electron screening by
piezoelectric phonons in those crystals. In this case,
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the corresponding expression for the transition prob-
ability, which takes potential (5) into account, looks
like

𝑊± (k′
2D,k2D) =

2𝜋

~
∑︁
q,𝜎′

𝜋 (𝐸𝑝𝑧𝑞)
2

2𝑁𝜒2𝑀𝜔 (q)
×

×
(︂
𝑁q +

1

2
± 1

2

)︂(︂
𝜋𝑞𝑧 cosech

𝜋𝑞𝑧
2𝛼

2𝛼

)︂2
×

× 𝛿𝜎′,𝜎𝛿k′
2D,k2D±q2D

𝛿
(︀
𝜀𝛽,k′

2D
− 𝜀𝛽,k2D

∓ ~𝜔 (q)
)︀
. (16)

In crystals with covalent bonds – i.e. in heteropolar
ionic semiconductors – electrons are also scattered
by polar optical phonons. Making allowance for this
scattering with potential (5), we obtain

𝑊± (k′
2D,k2D) =

2𝜋

~
∑︁
q,𝜎′

4𝜋𝑒2

2𝑁𝜒*2𝑀𝜔0𝑞2
×

×
(︂
𝑁0 +

1

2
± 1

2

)︂(︂
𝜋𝑞𝑧 cosech

𝜋𝑞𝑧
2𝛼

2𝛼

)︂2
×

× 𝛿𝜎′,𝜎𝛿k′
2D,k2D±q2D

𝛿
(︀
𝜀𝛽,k′

2D
− 𝜀𝛽,k2D

∓ ~𝜔 (q)
)︀
. (17)

One can see that, in all expressions (15)–(17) that
describe the electron-phonon scattering in a quan-
tum well with potential (5), there arises a factor(︁
𝜋𝑞𝑧 cosech 𝜋𝑞𝑧

2𝛼

2𝛼

)︁2
in comparison with the case of bulk

specimen [2].

3. Conclusions

In this paper, the expressions for the electron tran-
sition probability in the case of various scatter-
ing mechanisms in a quantum-sized thin film with
the modified Pöschl–Teller potential have been ob-
tained. It is shown that those expressions differ from
their counterparts obtained for the electron screening

in bulk crystals by the factor
(︁
𝜋𝑞𝑧 cosech 𝜋𝑞𝑧

2𝛼

2𝛼

)︁2
.
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Ukr. J. Phys. 63, 12 (2018).

11. P.P. Kostrobiy, I.A. Rizha. A model for thin electron film.
Visn. Nat. Univ. Lviv. Politekh. Fiz. Mat. Sci. No. 718,
89 (2011) (in Ukrainian).

12. L.I. Schiff. Quantum Mechanics (McGraw Hill, 1968).
13. B.M. Askerov. Electronic Transport Phenomena in Semi-

conductors (World Scientific, 1985).
14. Y.Yu. Peter, M. Cardona. Fundamentals of Semiconduc-

tors. Physics and Materials Properties (Springer, 2010).

Received 03.03.19.
Translated from Ukrainian by O.I. Voitenko

X.A. Гасанов, Дж.I. Гусейнов,
I.I. Аббасов, Д.Дж. Аскеров, Х.О. Садiг

ЕЛЕКТРОН-ФОНОННЕ РОЗСIЯННЯ
КВАНТОВО-РОЗМIРНОЇ ПЛIВКИ З ГIПЕРБОЛIЧНИМ
ПОТЕНЦIАЛОМ ПЕШЛЯ–ТЕЛЛЕРА

Р е з ю м е

Розвинена кiлькiсна теорiя електрон-фононної взаємодiї
для двовимiрного електронного газу в квантовiй плiвцi з
гiперболiчним утримуючим потенцiалом Пешля–Теллера.
Отримано аналiтичнi вирази ймовiрностi переходу при роз-
сiяннi електронiв на деформацiйно-акустичних, п’єзоаку-
стичних i полярних оптичних фононах. Отриманi резуль-
тати для рiзних механiзмiв розсiювання порiвнювалися з
об’ємними кристалами.
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