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BROKEN REFLECTION SYMMETRY

AND DIAMAGNETIC COEFFICIENT OF CARRIERS
CONFINED IN SEMICONDUCTOR LATERAL
QUANTUM DOT MOLECULES

The theoretical study of the reflection asymmetry impact on the electron and hole localizations
in self-assembled InGaAs/GaAs semiconductor lateral quantum dot molecules is made. The
previously proposed mapping method is used to simulate the ground-state electron (hole) wave
function and the energy in molecules. The description is suited to clarify the important ques-
tions of the control and the stability of the wave functions and the diamagnetic coefficient of
carriers confined in molecules with broken reflection symmetry. Our simulation results demon-
strate that, in a reflection symmetric (balanced) molecule, the carrier ground-state wave func-
tion is distributed equally over two potential valleys corresponding to the actual positions of the
dots combined into the molecule. However, even a very small reflectional imbalance in the ge-
ometry of molecules destroys the symmetric distribution of the wave function. This causes the
localization of the function in the potential valley of only one of the dots and leads to a rapid
decrease of the diamagnetic coefficient. We have found that the hole wave function is more
sensitive to the imbalance in the reflection symmetry than the electron wave function, and the
localization effect is getting stronger, when the interdot distance in the molecule increases.
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1. Introduction

The recent development of semiconductor technolo-
gies allows us to fabricate semiconductor quantum
dots (and molecules combined from dots) within wide
ranges of geometrical shapes and material param-
eters, to study their properties in detail, and to
use them for various applications in quantum infor-
mation processing, nano-optics, nano-biology, nano-
medicine (see, e.g., [1-6] and references therein). The
manipulation and the reconfiguration of wave func-
tions of electrons and holes confined in quantum dot
molecules (QDMs) are regarded as “isospin” oper-
ations. The isospin is a mark to the actual local-
ization of a particle, and its properties in QDMs
can be used in quantum information processing in
a complete analogy to the properties of a particle
spin [7, 8]. Therefore, the control and the manipula-
tion of a wave function configuration of carriers con-
fined in QDMs are key targets for the application of
semiconductor quantum dots in quantum information
technology.
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In a weak external magnetic field B, the ground-
state energy of an electron (hole) confined in a QDM
can be written as Eon)(B) = Eg(h) + S{BYe(n) B +
—|—oze(h)BQ [9], where Eg(h) stands for the electron
(hole) energy at B =0 T, up is the Bohr magneton,
ge(n) is the electron (hole) Landé factor, s = +1/2
presents the particle spin value and the polariza-
tion along the magnetic field direction, and o) is
the electron (hole) diamagnetic coefficient. The dia-
magnetic coefficient is obviously connected to the
second derivative of the carrier energy with respect
to the magnetic field magnitude and, therefore, to
the single particle differential magnetic susceptibil-
ity of the QDM Xom)(B) = —d*Eom)(B)/dB? in
the weak-field limit at the absolute zero temperature
(Qe(n) = —3Xe(m(0)) [10,11].

When the magnetic field is applied along a QDM
growth direction (z axis), the coefficient can be evalu-
ated, by using the effective radius (the characteristic
lateral confinement length) of the electron — pe (hole —
pn) in the plane perpendicular to the magnetic field
(z-y plane): aem) = erg(h)/Sme(h) [9]. Here, e is the
electronic charge, and mey) stands for the electron
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Fig. 1.
(a) General shape of the QDM structure (Rp =
hp = 4 nm, d = 25 nm, §, = 0.00); (b) Cross section by
the (z,0, z) plane of the QDM structure for different values of
the parameter d; (c¢) Projection of the electron confinement
potential on the (z,0, z) plane (6, = 0.10); (d) Projection of
the hole confinement potential on the (x, 0, z) plane (J;, = 0.10)

QDM’s geometrical and potential characteristics:
10 nm,

(hole) effective mass. Therefore, the actual value of
the particle diamagnetic coefficient can be used for
a preliminary estimation of the electron (hole) lat-
eral confinement length and the actual localization in
a QDM.

In this paper, we theoretically study the impact of
the broken reflection symmetry on the actual local-
ization of the ground-state wave functions and on the
diamagnetic coefficients of electrons and holes con-
fined in an In.As;_.Ga/GaAs laterally coupled lens-
shaped double quantum dot structure (lateral QDM)
[12,13]. Deploying our mapping method [14], we re-
produce three-dimensional geometrical and material
characteristics of the QDM and simulate electronic
properties of the QDM with the reflection symmetry
and when the symmetry is broken. We demonstrate
that, for the QDM with the reflection symmetry with
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respect to the reflection in the y-z plane (see Fig. 1),
the ground-state electron and hole wave functions are
equally distributed (balanced) between two potential
valleys of the QDM. But, a very small imbalance in
the geometrical characteristics of the dots in the z
direction (see Fig. 1, a) can lead to the localization
of the wave functions in one of the potential valleys
of the QDM, which causes a significant decrease of
the diamagnetic coefficient. We have investigated the
localization effect for different distances between the
centers of the quantum dots in the QDM on the z-y
plane and have found that the localization effect is
getting stronger when the distance increases.

2. Theoretical Model
and Method of Calculation

We describe single electron and hole energy states
in In.As;_.Ga/GaAs laterally coupled semiconduc-
tor quantum dots in the presence of an external mag-
netic field B using the effective one electronic (hole)
band Hamiltonian with the position-dependent effec-
tive mass [14, 15]

A . 1
Hew) = Men 5= 703

@ ﬂe(h) + Ve (r), (1)

where r = (z,y,2) is the three-dimensional radius
vector, f[c(h) = —ihV, — qc(h)A(r) is the electron
(hole) momentum operator, V, is the spatial gra-
dient, gy = —(+)e, and A(r) is the vector po-
tential of the magnetic field B = V, x A(r). For
the QDMs with and without reflection symmetry, we
use a gauge-origin-independent definition for the vec-
tor potential (see Ref. [16] and references therein)
A(r) = B x (r—r1)/2, where T stands for the ex-
pectation value of the position of a carrier in the
ground state. Using this gauge in Hamiltonian (1),
we can write the diamagnetic coeflicient for the elec-
tron (hole) confined in a QDM (when the magnetic
field is applied along the z direction) as [16]

e? <(rL,e(h) - Fl,e(h))2>

o) = 7% Me(n)(T)

. 7 @

B=0

where r] = (x,y) is the two-dimensional radius vec-
tor on the z-y plane, (f)c(n) stands for the expectation
value of a quantity f in the electron (hole) ground
state with the wave function
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and T on) = (rﬁe(h) is the expectation value of the
electron (hole) position on the z-y plane.

To describe comprehensively all position-depen-
dent geometrical and material parameters of a QDM,
we map the realistic geometry of the QDM on the
smooth three-dimensional quantum confinement po-
tential. First, noting that a self-assembled lens-sha-
ped lateral quantum dots are grown, by starting from
a flat substrate parallel to the z-y plane, we model the
QDM shape profile by a function A(x,y). The function
reproduces the local height of the QDM (along the 2z
direction) at the actual position on the z-y plane. For
the lens-shaped circular quantum dots where the dis-
tance separating the centers of the dots along the x
direction is d (see Fig. 1), we can write this function
as [17]

h(x,y) = [h—(x’y) + h_(x,y)]F(x,y),

he(e.y) = /B3 — (e £d/2) +4?] - Ro + h,
when (z+d/2) +v* < RE;

he(z,y) =0,

when (z 4 d/2) +y* < R§;

(z—d/2)" +4?
b2

)

F(z,y) = 14 dpexp [—

R2 + hp
R, = e 4
0 QhD ’ ( )

where Rp and hp are dots’ base radius and maximal
height. The reflection asymmetry (with respect to the
reflection in the y-z plane) is described by the func-
tion F'(x,y), where the range of the reflection asym-
metry in dots’ heights is presented by a parameter
b. Therefore, deviations from the reflection symme-
try in QDM’s shape are controlled by a dimensionless
parameter J;, as [16,17]

. h(d/2>0)|5h¢o - h(d/2,0)|5h:0
h — )
h(d/2,0)]5,—0

Figure 1 shows the shape of a QDM and its cross
section by the (z,0, z) plane for different deviations
from the reflection-symmetric configuration.

The three-dimensional smooth quantum confine-
ment potential Vou)(r) for the electrons (holes) in

(5)
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the QDM can be obtained by the composition- and
geometry-dependent profile of the local conducting
band offset [14,16,17]:

Vem) () =AEm){1-T4(s — 2)T-[z — h(z,y)]}. (6)

Here, T(t) = [1 + tanh(t/a)]/2, AB,wm) = Egf)—
fEér(‘h) is the overall conducting (valence) band off-
set between the inner and outer semiconductor ma-
terials in the In.As;_.Ga/GaAs heterostructure, and
subscripts “in” and “out” denote the actual material
parameters (the conducting (valence) band bottom
(top) energy) inside and outside the dots. The effec-
tive substrate-dot interface is assigned to be at the
plane z = s. The slope and the range (the degree
of smoothness) of a potential change at the bound-
aries of the dots are controlled by a parameter a. The
three-dimensional confinement potential (6) reflects,
in a very obvious and natural way, smooth variations
of the material parameters across the boundaries of
the dots (see Fig. 1, ¢ and d). Using (6), we define the
dimensionless mapping function [14, 17]

Ve (r)

M(r)=1- .
(r) A-Ee(h)

(7)

This function accumulates information about the
shape and the local material content of a QDM. Using
the mapping, we can derive all position-dependent
geometrical and material parameters of the struc-
ture. For instance, the position-dependent effective
mass Mmep)(r) of the electron (hole) is defined as
Me(ny = My M (r) +mei [1 — M (r)].

The confinement potentials and the position-
dependent effective masses are used to obtain solu-
tions of the Schrodinger equation corresponding to
Hamiltonian (1). The solutions give us the electron
(hole) ground-state energy E.), wave functions, ex-
pectation values of particles’ positions, mean (effec-
tive) lateral electron (hole) radius

Pe(h) = \/<(rL,e(h) - I_'L,e(h))2>a

and diamagnetic coefficients (2) in QDMs with vari-
ous deviations from the reflection symmetry.

3. Simulation Results and Discussion

In our simulation of the electron (hole) ground-
state energy and wave function for the QDMs, we
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Fig. 2. Electron and hole ground-state wave functions for
different d;, and d: (a) 25 nm; (b) 20 nm; (¢) 15 nm

use a realistic geometry and material parameters
for In.As;_.Ga/GaAs nano-structures [11, 16, 18,
19]. The geometrical characteristics are chosen as
R = 10 nm, hp = 4 nm, b = R, a = 0.4 nm,
and s = 0.0 nm.

We take material parameters from [18,19] and ad-
just them according to the actual composition and
strain inside the dots [11, 16]: m*s = 0.044 my,
mitAS = 0.074 mo, mSG*AS = 0.067 mgy, mE*AS =
= 0.5mg, B = 0.842 eV, EG*A = 1.52 eV,
(mg is the free-electron mass). A material param-
eter D) for the In.Ga;_.As compound is ob-
tained according to the linear interpolation D" =
= eDRY 4+ (1= DGRy
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Fig. 3. Expectation value of the position of the electron (a)
and the hole (b) in the ground state on the z axis in the QDMs
with different geometrical parameters

The In concentration inside dots is taken to be
¢ = 0.6, and we take 70% of the heterostructure
gap difference to be the conducting band offset and
30% to be the valence band offset in the dot. The
energy and the wave function of the electron (hole)
confined in QDMs are obtained numerically by the
iterative method with the use of the COMSOL MUL-
TIPHYSICS package [20,21]. We use the wave func-
tion to simulate the expectation values of particles’
positions, effective lateral radii, and diamagnetic co-
efficients for QDMs with the reflection symmetry and
when the symmetry is broken. We consider the QDMs
with various interdot distances.

In Fig. 2, we present the ground-state wave func-
tions of the electron and the hole for QDMs with
various interdot distances. When the parameter dy
changes from 0 (reflectional symmetric QDM) to 0.10,
the wave functions change from the reflectional sym-
metric profile (equally distributed in two dots) to re-
flection non-symmetric profiles: the wave function is
localized in the potential valley of only one dot near
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Fig. 4. Effective lateral radius of the electron (a) and the hole
(b) in the ground state in the QDMs with different geometrical
parameters

(x = +d/2,y = 0) on the x — y plane. The wave
functions are localized in one of the potential valleys,
when the imbalance in the QDM potential profile is
really small. The hole wave function is more sensitive
to the imbalance in the reflection symmetry: as the
hole has a larger effective mass, the effect of the imbal-
ance is stronger. Only when the dots overlap (d = 15
nm), some distribution of the wave functions between
two dots remains up to dy ~ 0.10. But, as the dis-
tance between dots increases, the wave functions are
localized in one of the dots already for §, ~ 0.01.
Accordingly, as it is shown in Fig. 3, the expectation
value of particles’ position in the ground state (when
the parameter J;, increases) rapidly moves from the
center of the structure toward the imbalanced po-
tential valley at (x = +d/2,y = 0) on the z — y
plane. The mean position of the hole is almost sta-
bilized in the valley, when the parameter 9, ~ 0.10
even for the overlapping dot configurations. We note
that, for all configurations, the expectation value of
the electron (hole) position on the y axis remains un-
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Fig. 5. Electron diamagnetic coefficient (a) and ground-sta-
te energy (b) for the QDMs with different geometrical para-
meters

changed: @epy = 0. From Fig. 4, we see that the
effective lateral radii of the electron and the hole fol-
low the same tendency: electron’s radius decreases
gradually and hole’s radius shrinks rapidly. The “one-
valley” localization occurs in the reflection asymmet-
ric configurations almost immediately, as the interdot
distance reaches 25 nm.

In Fig. 5, a and Fig. 6, a, we show the dependence
of the electron and hole diamagnetic coefficients on
the parameter ¢, for various interdot distances. It
is clear that the above-described sensitivity of the
electron and hole wave functions’ localizations and
distributions to the imbalance in the reflection sym-
metry leads to a rapid decrease of the diamagnetic
coefficients (a few times) already for small values of
0n. For relatively large interdot distance (d = 25 nm),
the diamagnetic coefficient drops by a factor of 10,
when d, ~ 0.01. However, for the “overlapping dots”
molecules with d < 2Rp (e.g., d = 15 nm), the same
change in the diamagnetic coefficient magnitude can
be achieved only when d;, ~ 0.05. The coefficients de-
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Fig. 6. Hole diamagnetic coefficient (a) and ground-state en-
ergy (b) for the QDMs with different geometrical parameters

crease only gradually, when the QDM geometry be-
comes more imbalanced along the z direction.
Contrary to the diamagnetic coefficient, the elec-
tron (hole) ground-state energy decreases slowly
(about 10 ~ 15%) within the whole range of the
imbalance growth (as it is shown in Fig. 5, b and
Fig. 6, b). Therefore, we can conclude that the
monitoring of the carrier energy characteristics can
give very limited hints about the actual wave func-
tion configurations of the electron (hole) confined in
QDMs. At the same time, the actual value of the dia-
magnetic coefficient can provide us with clear and di-
rect information about the electron (hole) localization
in the lateral QDMs with broken reflection symmetry.

4. Conclusions

Using the effective one-band Hamiltonian and the
mapping method, we have simulated the localiza-
tions of electrons and holes in the semiconductor lat-
eral QDMs with and without reflection symmetry. We
have found that a small imbalance in the geometry
of the QDM (small deviations in the dots height)
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leads to the collapse of the electron (hole) ground-
state function into one of the dots. This generates a
rapid decrease of the diamagnetic coefficient of carri-
ers. We stress that the actual magnitude of the dia-
magnetic coefficient obtained from experiments can
give an important insight on the wave function con-
figurations for the carriers confined in the QDMs with
uncertain symmetry.

Our approach can be useful for the realistic model-
ing of the magnetic response of semiconductor nano-
objects with realistic and non-symmetric geometry.
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O. Bockobotinixos

IIOPYHIEHA CUMETPIA A3EPKAJIBHOI'O
BIIOBPAYKEHHSA TA JIAMATHITHUI KOE®ILIEHT
HOCIIB, 3AXOIIJIEHUX JIATEPAJIbHUMU
HAIIBITPOBIJHMKOBUMN MOJIEKYJIAMI

3 KBAHTOBUMUI TOYKAMMU

Peszowme

V wiit poGOTI TEOPETUYHO JOCIII/IXKEHO BIIUB acUMeTpil a3ep-
KaJILHOT'O BiJIOOparkeHHs Ha JIOKAJI3aIliio eJIEKTPOHA 1 AipKU B
CaMOOPraHi30BaHMUX JlaTepajbHUX Moslekynax 3 InGaAs/GaAs
KBAHTOBUMHU TOYKAMH. BUKOPHUCTOBYETBHCS 3AIPONOHOBAHUMI
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pamie MeToJ BiZOOparKeHHs [Jisi MOJIEIIOBAHHS XBUJIbOBOI
dyHKI{T OCHOBHOrO craHy ejeKTpoHa (aipku) Ta IX eHepril
B Mostekyiax. [lomibmmit minxin e 3pydHuM Iy 3’siCyBaHHS
BaXKJIMBUX IHTaHb, IIOB'S3aHUX 3 KOHTPOJIEM Ta CTabiibHi-
CTIO XBUJILOBUX (DYHKINH i giamarHiTHOrO Koedimienra HoCIiB,
0OMEXKEHUX B JlaTepaJbHUX HAIIBIPOBIJHUKOBUX MOJIEKYJIAaX
3 KBAHTOBMMHU TOYKAMHU 3 IOPYIIEHOK CUMETPIE BiAOUTTS.
Hami pesysbratu MoOjestoBaHHs MTOKa3yIOTb, [0 B CUMETPHU-
qHiii (36asancoBaHiil) MoseKyl XBuaboBa MYHKIlisl OCHOBHOTO
CTaHy HOCisl pO3IIOjijieHa IOPIBHY MiXK JBOMa HOTEHI[iaJIbHU-
MU SIMaMU BiJIIOBIIHO IO MiCI[b JIOKaJIi3allil KBAHTOBUX TOYOK,
[0 YTBOPIOIOTH MOJIEKY/Ly. THM He MEHII, HaBITh Jy»Ke HeBe-
siukuii nucbasanc (acuMerpis) J3epKaJbHOrO Bi0OpaskKeHHs B
reoMeTpil MOJIEKYJI PYWHYE CUMETPUYHUI PO3MOJIJ XBUIBOBOL
dyuxunil. HacaigkoM mporo € jokasizariisi XBHIb0BOI yHKINT
y HOTEHIaJIbHINM siMi TIJIBKH O/HIET 3 TOYOK, 1110 IPUBOIUTD IO
IIBUJIKOTO 3MEHIIeHHsI JiiaMarHiTHOro koedimienra. Mu BusiBu-
JI, 10 XBUJIbOBa (DYHKIIIA JIPOK € OiIbIIN 1y TJIMBOIO /10 aucbha-
JIAHCY B J3€PKAJILHOMY BiOOparkKeHHi, Hi>K XBUJIbOBa (DYHKIIISA
eJIEKTPOHA, 1 edeKT Jsokasizanil 3pocTae, KOIU BiACTaHb Mixk
KBaHTOBUMHU TOYKaMU B MOJIEKYJI 301/IbIIYyETHCH.
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