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OF AN ELECTRON IN A QUANTUM DOT

The Buimistrov—Pekar method has been applied to calculate the polaronic shift of the electron
energy level in a quantum dot. In the framework of the parabolic confinement approzimation,
the differential equation for the phonon amplitude is exactly solved, by using the Green’s func-
tion method. The results of various approximations have been compared.
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1. Introduction

In recent years, new physical properties of semicon-
ductor nanostructures have been a subject of intense
researches. Owing to the localization of charge car-
riers in nano-sized objects, the energy is quantized.
In this connection, a particular attention is paid to
studying the influence of phonons on the electron
spectrum in low-dimensional semiconductor struc-
tures (i.e. nanostructures) [1-3]. In polar crystals,
the interaction between charge carriers and polar op-
tical phonons is strong. Therefore, the study of po-
laron effects typical of low-dimensional systems is of
considerable interest. To calculate the polaronic ef-
fects in nanostructure materials, researchers take ad-
vantage of various approximations [4-9]. In so doing,
along with the Feynman method of path integration,
the methods of canonical transformations (CTs) are
also applied [8-10].

In the method of parametrized CTs [8,9], the Lee—
Low—Pines transformation and the transformation of
a phonon amplitude displacement are applied con-
secutively by introducing certain variational parame-
ters. In the Buimistrov—Pekar method [10], the dif-
ferential equation for the phonon displacement am-
plitude was obtained with the use of the CT method.
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However, since the solution of this equation is cum-
bersome, the phonon displacement amplitudes were
chosen as linear combinations of the limiting expres-
sions corresponding to the cases of weak and strong
couplings.

In this work, the polaronic shift of the electron
level in a quantum dot is calculated with the use
of the method developed in works [10, 11]. The dif-
ferential equation for the phonon displacement am-
plitude is solved exactly, by using the Green’s func-
tion (GF) method. To simplify the problem, the con-
finement potential is considered to be parabolic. The
results obtained in various approximations are com-
pared with one another.

2. Model

The Hamiltonian of an interacting electron-phonon
system in nanostructures can be written in the form

h2
+ 3 [vabge’™ +vible ™ ]+ " hwobfbg, (1)
a q

where m is the band mass of an electron, b and bq
are the creation and annihilation, respectively, op-
erators of a phonon with the momentum q, wg is
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the frequency of optical phonons, vq the form factor
of the electron-phonon interaction, V(r) the confine-
ment potential, and

|’U |2 4o lo(hwo) l() _ h
a Qq2 ’ QTTL(.AJO7
0 o (2)

Averaging Hamiltonian (1) in the basis

U = ®,pp(r) = U |0) ¢(r),
U=exp | (Fo(r)bd — Fy <r>bq)] ) )

UtU =1,{0]0) =1,

we obtain the functional

I [Fa(r), E()+Z/d1‘¢2 L VEP +

T o | Fyl? + v Fae™™ + UZFéeiqr], (4)

o = hQ/dr(qu)z—i—/drV( g2 (5)
0= o r .

By varying functional (4) with respect to F,, we ob-
tain the inhomogeneous differential equation

n_, h? Vo
—%V Fy(r )—2% 5 VEy(r)+
+ hwo Fy(r) 4 vie "9 = 0. (6)

Now, the extreme value of functional (4) looks like
T[p(r)] = Eo+ Y _ vq / drg?® (r) F (r)e'™. (7)
q

The solution of Eq. (6) describes the dependences of
the phonon field displacement amplitudes on the elec-
tron coordinate. In the weak-coupling limit, o — 0,
i.e. when the electron cloud size is rather big, we may
neglect the gradient of the electron function (the sec-
ond term in Eq.(6)). Then, assuming ¢?(r) ~ 1 in
Eq. (7) (in the absence of a confinement), we obtain
the known result

U*e—zqr
Fq(’l”) = —m, J = —OéhUJO. (8)
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Buimistrov and Pekar [10] used the linear combina-
tion Fy(r) = fq + gqe "%. When determining the
parameters fq and gq by minimizing functional (4),
they obtained a result that approximates the polaron
energy at an arbitrary coupling strength a.

Following Gross [11], let us introduce the notation
Fy = V§®q/¢ and rewrite Egs. (6) and (7) in the
form

12 B2 A
f%Aq)q(r) + %?gbq)q(r) +
+ hwo®q(r) + ¢(r)e ™" =0, 9)

J [ E0+Z\V|2/dr¢ 1) ®g(r)e' ™. (10)

Introducing the GF for Eq. (9),

Qq(r) = —/dr’ G(r, r/)qb(r')e_iqr/ (11)
and considering the relation
e 2
r—x/|
we obtain from Egs. (9) and (10) that
h? h? Ag
— A+ —— "y =6(r—r’ 1
[ o +2m " —|—7iwo}G(r,7‘) o(r—1'), (13)
!/ !
T[6(r)] = Eo — alo(hw)® / drdr’(b(r)i(?:i,M(r )
(14)
The equation for the amplitude @, in Eq. (13) and

the functional of the polaron state (14) depend only
on the electron trial function. It is hard to find ana-
lytical solutions of the inhomogeneous equation (13)
for an arbitrary given trial function ¢(r). However, if
the ground-state function of a three-dimensional os-
cillator,

1 1 2 5 Kk
¢(r) = w374 32 xP (_ 2a§>’ YT
’ (15)
h
as = , En = hws (n1 +na+ns + 3/2),
MW,

with the variational parameter ag is taken as a trial
function, Eq. (13) can be solved by expanding the GF
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in a series of oscillator eigenfunctions,

UL ()P (r
T (r)¥an(r) _

En+W
- Z Uy ()W (r')
- s - n1+n2+n3+WO’
3 w
Wo =2 .
"= Ty

Here, Uy, (r) is the basis set of functions for a three-
dimensional oscillator,

Un(r) = ¥n, (2)¥,, ()Y, (2),

G(r,r') =

(16)

1 1 1 1
v, (z)=
( ) /4 1/2 n')1/2( n1)1/2 (17)
<or () ()
Using the relation
- = /dtexp(—tc) (18)
0

and the Mehler formula for the summation of Hermite
polynomials [12],

i (e;)nl H,, (x/aszlfnl (z'/as) _

nle

1 92 ;) —t - 2 12\ —2t
_ exp xa'e (2" 4+ 2')e ()
1—e 2 a2(1—e=2)

we obtain
1 r2 4 p'?
no_ _ _
G(r,r') = Foun 2 exp( 202 X
oo

><O/dt[1

Substituting this expression into functional (14) and
integrating over r and 7/, we obtain the final formula
for the polaron energy (in Awg units),

3
Ep:§ 2 8l \/7/dt 5
1 — exp( 2ut (21)

lo
w=— 7= 77 =
as wo m

e tWo orr’e ! (7“ +r 2) —2t
o372 XP 2 21 :
— e ] as(l —e€ )

(20)
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Here, the coefficient v characterizes the dimension-
less confinement strength. In the adiabatic strong-
coupling limit, holding only one term in Eq.(16)
or expanding the integrand in Eq.(21) in the limit
1 — 00, we obtain

3 \F
2 _— —
+ 8,7 « ﬂ_ﬂ.

3. Discussion of Results

3
Ep = 5” (22)

The obtained functional (21) differs from other known
results [8-10] in that the exact solution of Eq. (13) was
used in its derivation. In the absence of a confinement
(v = 0, the free polaron), the critical point a, =~ 5.8
can be obtained for functional (21) in the meaning
that, for a < a, the electron becomes delocalized. To
compare the results, we consider a functional, which
is obtained with the help of the CT parametrization
method [9] (see formula (8) in work [9]),

3w a
4p?  24/972

e T

Here, p is the variational parameter of the elec-
tron trial function, and « is the variational param-
eter introduced in the CTs. Note that the denom-
inator of the integrand in formula (8) in work [9]
is wrong: 1 + aq?/2. Functional (23) can also be
obtained from Eq. (4), by using the approximation
Fy(r) = gqexp(—ia qr), where the factor gq is deter-
mined, by minimizing the total energy.

Making the substitutions E, — €p, p — V2p, and
w — Qin Eq. (23) and integrating over the angles,
we obtain

3., 392 V2

&‘pzflu/ - — —a X

2 8u2 w

I dg (1—a)q?
></1+a2q2/2€xp |:— 2 .
0

For a free polaron (v = 0), functional (24) yields o, ~
~ 8.5. Hence, for a > 5.8, the energy of a free polaron
21) is always lower than energy (24). Since the wave
function of an electron is usually localized within the
quantum dot, the critical point a. is suppressed.
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Polaron energy ¢,
ot
g (21) (22) (24)
0.1 1 1.39 1.44 1.40
26 38.70 38.71 38.71
46 68.61 68.62 68.61
2 1 —0.78 0.24 —0.50
26 32.85 33.14 33.03
46 61.02 61.24 61.16
5.0 1 —4.39 —2.45 —3.49
26 23.21 23.89 23.64
46 48.63 49.16 48.97

In Table, the results of calculations by formula (21)
are compared with the adiabatic result (22) and func-
tional (24). One can see that formula (21) provides
the most accurate estimations of the energy. The re-
sults obtained with the use of formula (22) become
more adequate at large v, because the electron beco-
mes “hotter” under the strong confinement condition,
and the adiabatic approximation is satisfied better.

The obtained polaron functional (14) depends only
on the trial electron function, with the phonon coor-
dinates being completely excluded. For the trial oscil-
lator function, there is a critical point . ~ 5.8. Ac-
cording to Gross [11], this fact results from a strong
localization of this function. For other choices of the
trial electron function, e.g., (1 + ~r)exp(—dr), the
solution of Eq. (13) becomes more complicated.

The authors are grateful to V.D. Lakhno for a use-
ful discussion of this work.
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BIIJIVB TIOJIIPU3ALIIT
CEPEJIOBUIIIA HA EJIEKTPOHHY EHEPI'IIO
B KBAHTOBIN TOYILII

Pezmowme

Meton ByitmicrpoBa—Ilekapa 3acToCOBaHO 10 PO3PaxyHKY IIO-
JISSPOHHOTO 3CyBY €JIEKTPOHHOIO PiBHSI B KBaHTOBiil Toumi. 3
BUKOPHUCTAHHAM HapaboiyHol anporcuMariil KoHdaiiHMeHTa,
mudepeHIiagbHe PIBHAHHS JJjIsl aMIUITYU 3MillieHb (pOHOHIB
TO4YHO BHpimeno MeromoM dyukiiit I'pina. [TopiBasano pesymn-
TaTH PI3HUX HAOJIMXKEHD.
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