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KINETIC MODEL
OF COMPACTION IN GRANULAR MATERIALS

A simple kinetic equation describing the process of compaction relaxation to the asymptotic
quasistationary state and satisfying the Carnahan—Starling equation of state has been formu-
lated for the hard sphere model. In the framework of the Landau approach, we obtain the
corresponding analytical solutions, which describe the homogeneous relaxation of the relevant
order parameter in a sequential piecewise continuous series of intervals for the packing pa-
rameter. The characteristic relaxation time of the order parameter is found as a function of
the model parameters. It is shown that the compaction can be satisfactorily described using the
model of fractional kinetics, which reproduces the well-known asymptotic dependences in the
corresponding limits. The results obtained agree well with the data of measurements concerning

the compaction in granular materials under the action of external perturbations.
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1. Introduction

Granular materials are conglomerates of a large num-
ber of microparticles repulsively interacting with one
another. As a result, they lose some energy. Physical
properties that characterize such systems under the
influence of external perturbations create an appre-
ciable domain of modern theoretical and experimen-
tal researches [1-4].

For instance, the compaction in granular mate-
rials under the action of external impacts, which
has the efficient direct practical application, was
studied in a number of works (see, e.g., works [5—
12]) in detail. It was found experimentally that the
kinetic phase diagram describing the compaction
demonstrates an asymptotic saturation to quasiequi-
librium states, which correspond to the maximum
packing density or close to it. In the general case
of the simplest systems (hard spheres), the relax-
ation law reproduces, with a sufficient accuracy, the
known homogeneous Kolmogorov—Vogel-Fulcher sce-
nario [6,7]. Theoretical approaches to the packing ki-
netics — among them, it is enough to mention the ki-
netic model of free volume [7-9,11,12] — satisfactorily
describe the asymptotic behavior of the correspond-
ing order parameter in general. At the same time,
a deficiency in approaches that would involve ma-
terial relations between the physical properties and
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the structure peculiarities of examined systems im-
pedes the parametrization of experimental data. In
this work, we focus attention to the study of some
relevant aspects.

As was shown in work [5], even the minimum spec-
ification in the description of the structure of sys-
tems with a complicated internal morphology (with
granular materials belonging to this class) results
in the formulation of an equation of state in the
form of the Abel differential equation, which is
not integrated by quadratures and allows solutions
only in certain intervals of the values of packing
parameter.

In this work, we consider a system of hard spheres
satisfying the Carnahan—Starling equation of state
[13], which is formulated in terms of compaction pa-
rameters. A simple kinetic equation for the corre-
spondingly defined order parameter will be analyzed
in the framework of the Landau approach [14,15]. In
the context of the proposed approach, the influence
of parameters governing the state and the kinetics
of the system — in particular, the compaction — on
the characteristic times of the relaxation of the sys-
tem to an asymptotic quasistationary state [8, 16]
will be analyzed. The corresponding scenario of ap-
proaching the quasistationary state consists of piece-
wise continuous homogeneous relaxation cycles that
cover the whole interval of the values of packing
fraction.
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2. Free Energy
in the Carnahan—Starling
Model of Hard Spheres

The Carnahan—Starling equation of state for hard
spheres looks like [13]

L+n+n°—n°
(I—=n)32

where P is the pressure, V the volume, N the number
of particles, the product k7T defines the particle en-
ergy scale, n = %ﬂo?’g is the compaction parameter,
and o the particle diameter. Using the defining rela-
tion for the pressure, P = — (%)T, the expression
for the energy F' in terms of the parameter n can be

obtained from formula (1) in the following form:

PV = NkT (1)

F = NkT < S
(1—mn)?
Here, 7 is the current value of compaction parameter,
and 7; is the initial one. In the limiting case where
the particle dimensions tend to zero, Eq. (2) results
in the known relationship for the energy of ideal gas,
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Experimental observations |7] show that the system
asymptotically saturates (by packing) to a certain
limiting quasistationary state (see Figure). In order
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Experimental dependence (o) of the packing n—n1 in a granular
system on the number of taps n [7], and the inverse-logarithmic
(the dash-dotted curve) and piecewise continuous (the solid
curves) approximations of experimental data making use of the
simple exponential law of relaxation (12). The experimental
data [7]: m1 = 0.56 and 1oc = 0.591
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to study the process of relaxation near the saturated
state, let us introduce the order parameter ¢ using
the rule

Moo — 1(t)

oty = 1, (3)
where ¢(0) = 1 corresponds to the initial state, and
¢(00) = 0 to the asymptotic quasistationary state of
the system. This definition of order parameter allows
us, in what follows, to apply the Landau approach
[14], while describing the relaxation of the ordering
field in a vicinity of the asymptotic stationary state.

The free energy F, which is given by relation (2)
and does not involve fluctuation effects, can be rewrit-
ten as a function of the parameter 7 in the form

F(¢) _ 3—2m +2(nc —m)d  3—2m
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Expanding F'(¢) in a power series,

F(¢)
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Nip = Ao+ Ad+ BE +Co° + Dt (5)
and using Egs. (4) and (5), we obtain the equation
F(¢) o k
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It can be shown that the sum in expression (6) is
directly independent of the initial value of the hard
sphere packing parameter 7;. The aforesaid testifies
that the system can transform, by packing, from dif-
ferent initial states to the same asymptotic quasista-
tionary one.

3. Kinetic Equation

Let us express the kinetic equation for the order pa-

rameter ¢ in the form
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where I is a kinetic coefficient. The analysis of the ex-
pression obtained for F' demonstrates that the func-
tions, which were obtained by confining series (6) to
the quadratic terms inclusive, have one extreme point
(namely, a minimum) in the physical region of the
values of packing parameter 7. In a vicinity of those
states, we may expect a deceleration of the relaxation
processes in the model system.

As an example, let us consider Eq. (7) with regard
for series (6) confined to the quadratic contribution
inclusive. The corresponding kinetic equation in the
approximation described above reads
0¢
5, =~ B, (8)
where a = —A, 8 = 2B, and 7 = t (CNkT). Equation
(8) has the trivial solution

SN

The substitution of Eq. (3) into formula (9) gives

n(r) = m+ (e —m) (1 e~/ (10)
where 79 = 87! is the characteristic relaxation time,
and

nc:noo_(noo_nl)%- (11)
Note that, in the framework of the model concerned,
the quantity 7. has to be determined self-consistently.

Equation (10) testifies that the relaxation process
described by the simplified model constructed above
satisfies the Kolmogorov—Vogel-Fulcher homogeneous
scenario [7].

4. General Features
of Compaction Parameter Relaxation

From the definition of the parameter 7y (see Egs. (8)—
(10)) in view of expressions (8), (5), and (6), it follows
that 79 «~ (70 — 1m1) 2. Hence, if the packing degree
of the initial system increases (71 — 7)), the char-
acteristic relaxation time 79 grows and considerably
slows down the packing process.

From relation (10), one can see that the pack-
ing parameter n(7) asymptotically tends to the value
Ne =~ 0.647. The deviation of 7. from 7., = 0.74 is as-
sociated with restrictions imposed on the function F),
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when the series expansion was confined to the square-
law term. The account for terms in the F-expansion
up to the 4-th order inclusive gives rise to a nonlin-
ear equation. The solution of the latter in the first-
order approximation, similarly to the case of the lin-
ear equation, demonstrates an asymptotic approach
to the packing value 7. =~ 0.62. The account for terms
up to the third-order one inclusive in Eq. (7) results
in a differential kinetic equation with the square-law
nonlinearity.

The nonlinear equations mentioned above can be
solved in the linear approximation. The latter proce-
dure gives rise to the appearance of corrections in the
expressions for «, 3, and 7.

The results obtained demonstrate that, in the
framework of the proposed model, the packing evolves
following a nonmonotonic scenario. The applications
of polynomials with even power exponents in the ki-
netic equation (7) testify that there are the certain
values of packing parameter 7., in whose vicinities the
system comes closer to the asymptotic quasistation-
ary state. At the same time, the application of odd-
order polynomials in the kinetic equation (7) gives
no solutions corresponding to the packing saturation
at asymptotic states. Instead, they are well approxi-
mated by linear functions. This fact is associated with
the presence of a minimum for even-order polynomi-
als and its absence for odd-order ones in the physical
(for the hard sphere packing) region. The positions of
the minimum depending on the polynomial order are
shown in Table.

The value 1. = 0.647, which was calculated by
formula (11) with the use of the maximum possi-
ble packing value 7, = 0.74, falls within the limits
of nrep-values (random close packing) from 0.63 to
0.65 known for the hard sphere model. Note that the
Carnahan—Starling equation of state, which was used
to obtain this result, does not make allowance for
some factors actual in real granular systems, such as
the energy dissipation, deviation of particles from the
spherical form, state of their surface, size dispersion,
intensity and type of a perturbation of the system,

Minimum position
for various orders of polynomial F(n)

N 2 4 6 8 10 12 — 00
ne | 0.647 | 0.620 | 0.602 | 0.589 | 0.579 | 0.570 | 0.48
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and presence of external fields (e.g., gravitation). In
many experiments, the asymptotic values of pack-
ing in granular materials have different magnitudes
[7,17-22].

Therefore, in order to apply the obtained result
(10) to the parametrization of experimental data,
we may approximately change the calculated criti-
cal value of packing, 7., by the asymptotic one, 7o,
which is observed, e.g., experimentally. Taking the re-
marks made above into account, a simple exponen-
tial law of relaxation can be given in the following
form [1]:

n(r) =m + (e = m) (1= e7/™). (12)

From Figure, one can see that the piecewise con-
tinuous approximation of experimental data by the
exponential laws for the packing parameter n relax-
ation with characteristic times 7y that differ by almost
an order of magnitude between the neighbor sections
in the kinetic packing function allows the experiment
to be satisfactorily described with the help of char-
acteristic sections [23]. The latter result testifies to
a nonmonotonic (nonlinear) character of the relax-
ation. Among the solutions of nonlinear kinetic equa-
tions that describe the relaxation of the packing pa-
rameter, we may specify, e.g., the so-called stretched
exponential solution [7]

(1) =m + (oo — m) (1 - e‘[T/T"]a) (13)
or the inverse logarithm [1]

Nloo — 17
1(7) = Noc — == (14)

1+ Bln(1+47/71)

(see Figure). As a rule, those expressions are used
for the parametrization of corresponding experi-
ments. One of the adequate methods is the applica-
tion of the fractional kinetic model to the description
of the process of relaxation to the asymptotic quasis-
tationary state. In the framework of this approach,

the solution of the corresponding kinetic equation for
the packing field looks like [22]

t (&7
N =N — ANk, (_ () >a
T
where An = 1. — M1, E, is the Mittag—Leffler func-

tion of the order a (0 < @ < 1), 7 is the packing
256

(15)

parameter in the asymptotic quasistationary state (in
a vicinity of which, the free energy functional was ex-
panded), 77 is the packing parameter in the initial
state, 7 = kI', I" is the excitation parameter, and k
the material constant. Asymptotically, as o — 1, the
solution of Eq. (15) transforms into a simple expo-
nential relaxation law (12):

o () ()

which corresponds to the Landau—Ginzburg kinetic
scenario of the relaxation in the linear approximation
described above. In the case where the power expo-
nent « tends to zero, the asymptotic of the Mittag—
Leffler function transforms into the logarithmic one
and describes, as was already remembered, the relax-
ation law for a slow compaction, which is observed
in experiments on the packing in granular materials
[1]. The results obtained testify that the packing and
the mobility properties in granular materials are com-
pletely described in the framework of the fractional
kinetic scenario. The process itself is inhomogeneous,
by substantially depending on the interval of packing
fraction values, in which it occurs.

(16)

5. Conclusions

The obtained results testify to a possibility of the
formal application of the statistical physics methods
to the description of certain phenomena in micro-
mechanical many-particle systems (in particular, the
compaction of granular materials, which are essen-
tially dynamic dissipative systems) in a vicinity of
their asymptotic quasistationary states. We also an-
alyzed a possibility of using the model of fractional
kinetics to describe the relaxation of the compaction
parameter, which is more general in the case of the
inhomogeneous density distribution.
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tional Academy of Sciences of Ukraine A.G. Zagorod-
ny for a fruitful discussion of the results obtained
and to the participants of the Conference “Problems
of theoretical physics” (the M.M. Bogolyubov Institute
for Theoretical Physics of the NAS of Ukraine, Kyiv,
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KIHETMYHA MOJEJIb
KOMITAKTUSAILIIT T'PAHY/IbOBAHUX
MATEPIAJIIB

Peszmowme

st mozesi TBepaux cdep, sKa 3aJ0BOJIbHSIE DIBHSIHHS CTa-
ny Kapnaxana—CrapJiinra, chopMyIbOBAHO IPOCTE KIHETUIHE
PIBHSIHHS, siIK€ OIUCY€E peJlakcalliro pakKTopa KOMIAKTU3AI! 10
aCUMIITOTUYHOIO KBazicranjonapuoro crany. Kopucryouncs
migxonom Jlangay 3HaiigeHi aHaIiTHYHI PO3B’A3KH MOJEJI, sIKi
OIMCYIOTh OJIHOPIJIHY PeJIaKCallifo BiIIOBITHO BU3HAYEHOIO Ia-
paMeTpa BIIOPSIAKYyBaHHS y IOC/IIJOBHIM KyCKOBO-0e311€pepBHii
HU3I] IHTepBaJIiB 3HaYEHb TapaMeTpa BIAaKyBaHHs. XapaKTep-
HUIl 9ac pejlakcallil CTyleHsi BHOPSIIKYBaHHsI BU3HAYEHO B TEP-
minax mapamerpiB Mmojesni. ITokazano, 1o 3aJ0BiIbHUI OmuC
KOMITAKTHU3aIlil MOyKe OyTu 3iHCHEHHUI 3a JIOIIOMOIOK MOIEJi
dpakiifHol KiHETHKH, fKa y BIIINOBIAHUX TIDAHMIEX BiATBO-
proe BijioMi acuMITOTHYHI 3akoHM pejakcanil. Orpumani pe-
3yabTaTh J00pe Y3rOoMKYyIOThCS i3 JaHUMM €KCIEPUMEHTIB, B
SKUX Oe3I10Cepe/IHbO BUMIPIOETHCH KOMITAKTHU3AIS T'DAHYIIbO-
BaHMX MaTepiasiB IiJ BINIMBOM 30BHIIIHIX 30ypeHb.
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