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The hydrodynamics of a completely ionized two-component electron-ion plasma is investigated
at the end of the component temperature and velocity relaxation. The problem of accounting for
the peculiarities of the Coulomb interaction in the plasma kinetics is discussed. The investiga-
tion is based on the Landau kinetic equation and the Chapman–Enskog method generalized on
the basis of the Bogolyubov idea of the functional hypothesis. Nonlinear hydrodynamic equa-
tions are obtained. Linearized hydrodynamic equations are built, and the hydrodynamic and
kinetic modes of the Landau kinetic equation are investigated in the hydrodynamic approxima-
tion. The effect of the relaxation processes on the evolution of the system is investigated. On
the basis of the Vlasov–Landau equation, the plasma modes are investigated in the main hydro-
dynamic approximation. Some of them describe the relaxation damping of plasma oscillations,
which is much more important than the Landau damping at small wave vectors 𝑘 → 0.
K e yw o r d s: completely ionized plasma, Landau kinetic equation, Vlasov–Landau kinetic
equation, Chapman–Enskog method, functional hypothesis, hydrodynamic modes, kinetic
modes, relaxation damping of plasma oscillations.

1. Introduction

In his known paper [1], L.D. Landau obtained a
kinetic equation for a completely ionized two-com-
ponent electron-ion plasma. This equation is widely
used in the investigation of the plasma kinetics (see,
e.g., [2–4]). Of course, it describes the situation in
plasma approximately. The Landau equation involves
only the short-range part of the Coulomb interacti-
on, because the Coulomb potential is artificially cut in
the collision integral at the Debye radius. This can be
done exactly by the Balescu–Lenard equation. In the
Landau collision integral, the Coulomb potential is
also cut-off at small distances, where this potential is
big, and the situation needs a special attention. This
was done in the exact consideration by A.A. Rukhad-
ze and V.P. Silin. A comparison of the mentioned
theories shows that the Landau kinetic equation de-
scribes effects of the short-range part of the Coulomb
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interaction in plasma with a logarithmic accuracy (see
the discussion of the mentioned results in [2]).

The present paper is devoted to the investigation of
hydrodynamic states of a two-component completely
ionized electron-ion plasma on the basis of the Lan-
dau kinetic equation and the consistent application of
the Chapman–Enskog method [5,6]. Special attention
is paid to accounting for relaxation processes in the
system. The term “relaxation process” is understood
here in a narrow sense as a process that is possible in
spatially homogeneous states. The obtained equations
are applied to the investigation of the hydrodynamic
and kinetic modes of the Landau kinetic equation in
the hydrodynamic approximation. The corresponding
results cannot be found in the literature.

In this connection, we note that, in the hydrody-
namic approximation, the complex frequencies 𝜆𝑖(𝑘)
of modes are calculated only for small wave vectors
𝑘 (𝜆𝑖(𝑘 = 0) = 0 for hydrodynamic modes, and
𝜆𝑖(𝑘 = 0) ̸= 0 for kinetic modes). The Landau kinetic
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equation has six hydrodynamic modes and an infinite
number of kinetic ones (see, e.g., [7]). The number of
hydrodynamic modes is equal to the number of param-
eters defining the equilibrium distribution functions
(DFs) (in our case, they are: the component particle
densities 𝑛𝑒 and 𝑛𝑖, temperature 𝑇, and velocity 𝑣𝑛).

However, the Landau collision integral does not
involve the long-range part of the Coulomb interac-
tion. Therefore, these effects should be described by
some corrections to the Landau kinetic equation. An
important idea in this direction is connected with the
Vlasov term, which describes the one-particle effects
of a self-consistent field. However, the investigation
of the Vlasov–Landau kinetic equation on the ba-
sis of the Chapman–Enskog method meets difficul-
ties. Probably, one could overcome these difficulties,
by considering the intrinsic degrees of freedom of the
electromagnetic field in plasma. This idea is suggested
by the results of D. Bohm and D. Pines [8], which were
developed further in our paper [9]. It is better to in-
vestigate the interacting systems (in our case: an elec-
tromagnetic field and a system of charged particles
with an effective short-range interaction) in terms of
their modes to avoid the high dimensionality prob-
lem. In such a theory, one needs the modes of the
Landau kinetic equation. Therefore, the problem con-
sidered in the present paper is an important part of
this program, which will be elaborated elsewhere.

Hydrodynamic states of plasma are investigated in
the present paper with regard for the relaxation pro-
cesses. The pioneering investigation of the relaxation
of the component temperature 𝑇𝑎(𝑡) (𝑎 = 𝑒, 𝑖) for a
spatially uniform quasiequilibrium plasma was con-
ducted by L.D. Landau [1] on the basis of his ki-
netic equation and gave the corresponding relaxation
time 𝜏𝑇 . According to his assumption, the plasma
components are described in this situation by the
Maxwell DF with time-dependent component tem-
peratures 𝑤𝑎𝑝(𝑇𝑎(𝑡))

𝑤𝑎𝑝(𝑇 ) ≡
𝑛𝑎

(2𝜋𝑚𝑎𝑇 )3/2
𝑒−𝜀𝑎𝑝/𝑇 (1)

(𝜀𝑎𝑝 ≡ 𝑝2/2𝑚𝑎 is the energy of a particle, 𝑛𝑎 is the
component particle density). In this approach, the
component velocity 𝑣𝑎(𝑡) relaxation can be investi-
gated too, and the corresponding relaxation time 𝜏𝑢
can also be obtained [10], by using 𝑤𝑎,𝑝−𝑚𝑎𝑣𝑎(𝑡)(𝑇 )
as the nonequilibrium DF.

A hydrodynamic theory for a completely ionized
plasma on the basis of the Landau kinetic equation
was built by S.I. Braginsky [11, 12]. In his theory,
the plasma is completely described by the compo-
nent variables 𝑛𝑎(𝑥, 𝑡), 𝑇𝑎(𝑥, 𝑡), 𝑣𝑎𝑛(𝑥, 𝑡). In [11, 12],
as usually in hydrodynamics, the gradients of these
reduced description parameters (RDPs) are assumed
to be small (let 𝑔 be the corresponding small pa-
rameter). The difference of the component veloci-
ties 𝑣en(𝑥, 𝑡) − 𝑣𝑖𝑛(𝑥, 𝑡) was considered as a small
quantity of the same order 𝑔. From the begin-
ning, the Landau kinetic equation was simplified by
S.I. Braginsky, by using the smallness of the electron-
to-ion mass ratio 𝑚𝑒/𝑚𝑖 ≡ 𝜎2 with some discussion
of the significance of contributions to the nonequi-
librium DFs. However, this was done without a sys-
tematic perturbation theory in the small parame-
ter 𝜎 and corresponding estimates of the calculation
accuracy.

Braginsky’s investigation of the plasma hydrody-
namics is based on a modification of the Chapman–
Enskog method. He assumed that the main contri-
butions to the nonequilibrium DFs of the plasma
components 𝑓 (0)𝑎𝑝 (𝑥, 𝑡) are given by the Maxwell dis-
tributions 𝑤𝐿

𝑎𝑝(𝑥, 𝑡) ≡ 𝑤𝑎,𝑝−𝑚𝑎𝑣𝑎(𝑥,𝑡)(𝑇𝑎(𝑥, 𝑡)) (this
statement can be called the Landau assumption or
the local equilibrium assumption). However, these
DFs are not an exact solution of the kinetic equa-
tion in the zero-order approximation in gradients
(even for a small difference 𝑣𝑒𝑛(𝑥, 𝑡) − 𝑣𝑖𝑛(𝑥, 𝑡)). So,
this is a deviation from the standard formulation
of the Chapman–Enskog method (see, e.g., [5, 6]),
and the DF 𝑤𝐿

𝑎𝑝(𝑥, 𝑡) cannot describe the sys-
tem adequately. The Braginsky modification of the
Chapman–Enskog method can be formulated as fol-
lows: to find a solution of the Landau kinetic equa-
tion near the states described by the DF 𝑤𝐿

𝑎𝑝(𝑥, 𝑡). It
is also necessary to note that his investigation of the
transport phenomena omits a discussion of the diffu-
sion processes.

In the present paper, plasma hydrodynamics is in-
vestigated near the end of the component tempera-
ture and velocity relaxation processes. In this situa-
tion, the DFs of the plasma components 𝑓 (0)𝑎𝑝 (𝑥, 𝑡) can
be calculated in an additional perturbation theory in
small differences of the component temperatures and
velocities 𝑣𝑒𝑛(𝑥, 𝑡) − 𝑣𝑖𝑛(𝑥, 𝑡), 𝑇𝑒(𝑥, 𝑡) − 𝑇𝑖(𝑥, 𝑡) (the
exact definition of the corresponding small parameter
𝜇 is given below).
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The theory proposed in the present paper is a ge-
neralization of the Chapman–Enskog method based
on the Bogolyubov idea of the functional hypothesis
(see about this hypothesis in [6]). This idea is a basis
of the Bogolyubov formulation of the standard Chap-
man–Enskog method [5, 6]. However, it allows us to
use a new RDP in the theory and new small param-
eters for the construction of a perturbation theory.

The generalization is made to account for the tem-
perature and velocity relaxation processes in plasma
hydrodynamics consistently and to understand them
in terms of the kinetic modes of the system. In
the solution of the obtained general integral equa-
tions, we restrict ourselves to the study of relax-
ation processes in the one-polynomial approxima-
tion, which is equivalent to the linear formulation
of the Landau assumption. The two-polynomial ap-
proximation will be discussed in a subsequent pa-
per. Note that a general nonlinear theory which
describes relaxation processes in a vicinity of the
standard hydrodynamic states was discussed in our
paper [13].

Our previous results devoted to accounting for re-
laxation phenomena in plasma hydrodynamics were
published in [14–17]. The present paper gives a cor-
rected formulation of these results and proposes the
investigation of plasma modes in the hydrodynamic
approximation with regard for relaxation phenomena.
The method, by which modes are obtained in the hy-
drodynamic approximation, is rather known [7, 18],
but the investigation of plasma modes on the basis of
the Landau equation taking the relaxation phenom-
ena into account cannot be found in the literature. In
this paper, not only the eigenvalues 𝜆𝑖(𝑘) of the gen-
eralized hydrodynamic matrix (the complex frequen-
cies of the system) are investigated, but also the cor-
responding eigenfunctions are calculated in order to
show the coherent movement of the system related to
each mode.

As noted above, the investigation of the Vlasov–
Landau kinetic equation on the basis of the Chap-
man–Enskog method meets difficulties. However, in
the last section of this paper, it will be shown that
the Vlasov–Landau kinetic equation can be applied
to the analysis of plasma modes taking the DF of the
system in the approximation of zero order in gradients
(i.e., neglecting the hydrodynamic dissipative proces-
ses: heat conductivity, viscosity, and diffusion). The
necessary DF can be found from the Landau equa-

tion, because a self-consistent field in uniform states
is absent.

The plan of this paper is as follows: in Section 2,
the basic equations and definitions of the theory are
given; in Section 3, the hydrodynamic equations for
the parameters that describe the system are obtained;
in Section 4, the plasma component DFs are derived;
in Section 5, a linearized theory is built, and the dis-
persion laws for the modes of the Landau equation
and the corresponding coherent movements are inves-
tigated; and, in Section 6, the modes of the Vlasov–
Landau kinetic equation are discussed, by neglecting
the hydrodynamic dissipative processes.

2. Basic Equations of the Theory

The Landau kinetic equation can be written in the
standard form
𝜕𝑓𝑎𝑝 (𝑥, 𝑡)

𝜕𝑡
= −𝑝𝑎𝑛

𝑚𝑎

𝜕𝑓𝑎𝑝 (𝑥, 𝑡)

𝜕𝑥𝑛
+ 𝐼𝑎𝑝 (𝑓(𝑥, 𝑡)) , (2)

where 𝑓𝑎𝑝(𝑥, 𝑡) is the component DF (𝑎, 𝑏, 𝑐, ... = 𝑒, 𝑖).
The Landau collision integral 𝐼𝑎𝑝 is given by the for-
mulas [1]

𝐼𝑎𝑝 (𝑓) =
∑︁
𝑐

2𝜋(𝑒𝑎𝑒𝑐)
2
𝐿𝐽𝑎𝑐(𝑝),

𝐽𝑎𝑐(𝑝) = − 𝜕

𝜕𝑝𝑛

∫︁
𝑑3𝑝′

{︂
𝑓𝑎𝑝

𝜕𝑓𝑐𝑝′

𝜕𝑝′𝑙
− 𝑓𝑐𝑝′

𝜕𝑓𝑎𝑝
𝜕𝑝𝑙

}︂
×

×𝐷𝑛𝑙

(︂
𝑝

𝑚𝑎
− 𝑝′

𝑚𝑐

)︂
. (3)

Here, 𝑒𝑎 is the component charge (𝑒𝑒 = −𝑒, 𝑒𝑖 = 𝑧𝑒;
𝑒 is the elementary electric charge, 𝑧 is the ion charge
number), 𝐿 is the Coulomb logarithm, and

𝐷𝑛𝑙(𝑞) ≡ (𝑞2𝛿𝑛𝑙 − 𝑞𝑛𝑞𝑙)/𝑞
3. (4)

The component temperature 𝑇𝑎, velocity 𝜐𝑎𝑛, and
particle density 𝑛𝑎 are introduced by the standard
definition [3, 6] in terms of the DF

𝑛𝑎 =

∫︁
𝑑3𝑝𝑓𝑎𝑝, 𝜋𝑎𝑛 = 𝑚𝑎𝑛𝑎𝜐𝑎𝑛 =

∫︁
𝑑3𝑝𝑓𝑎𝑝𝑝𝑛,

𝜀𝑎 =
3

2
𝑛𝑎𝑇𝑎 +

𝑚𝑎𝑛𝑎𝜐𝑎
2

2
=

∫︁
𝑑3𝑝𝑓𝑎𝑝𝜀𝑎𝑝,

(5)

where 𝜋𝑎𝑛 and 𝜀𝑎 are the component momentum and
energy densities. The total particle and mass densi-
ties of the system are given by the formulas

𝑛 =
∑︁
𝑎

𝑛𝑎, 𝜌 =
∑︁
𝑎

𝑚𝑎𝑛𝑎. (6)
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From (2) and (5), the following equations can be
obtained:

𝜕𝑛𝑎
𝜕𝑡

= − 1

𝑚𝑎

𝜕𝜋𝑎𝑛
𝜕𝑥𝑛

,
𝜕𝜋𝑎𝑛
𝜕𝑡

= −𝜕𝑡𝑎𝑛𝑙
𝜕𝑥𝑙

+𝑅𝑎𝑛,

𝜕𝜀𝑎
𝜕𝑡

= −𝜕𝑞𝑎𝑛
𝜕𝑥𝑛

+𝑄𝑎,

(7)

which express the conservation laws. Here,

𝑞𝑎𝑛 ≡
∫︁
𝑑3𝑝 𝜀𝑎𝑝

𝑝𝑛
𝑚𝑎

𝑓𝑎𝑝, 𝑡𝑎𝑙𝑛 ≡
∫︁
𝑑3𝑝 𝑝𝑙

𝑝𝑛
𝑚𝑎

𝑓𝑎𝑝 (8)

are the energy and momentum component fluxes, and

𝑄𝑎 ≡
∫︁
𝑑3𝑝 𝜀𝑎𝑝𝐼𝑎𝑝 (𝑓), 𝑅𝑎𝑛 ≡

∫︁
𝑑3𝑝 𝑝𝑛𝐼𝑎𝑝 (𝑓) (9)

are the energy and momentum component sources.
The total fluxes are given by the relations

𝑡𝑛𝑙 =
∑︁
𝑎

𝑡𝑎𝑛𝑙, 𝑞𝑛 =
∑︁
𝑎

𝑞𝑎𝑛. (10)

It can be shown from the expression for the Landau
collision integral that the total sources are equal to
zero:

𝑄 ≡
∑︁
𝑎

𝑄𝑎 = 0, 𝑅𝑛 ≡
∑︁
𝑎

𝑅𝑎𝑛 = 0. (11)

The system is considered here at the end of the tem-
perature and velocity relaxation. It is evident that, af-
ter the end of those processes, the temperature 𝑇 and
the velocity 𝜐𝑛 of the system are given by the rela-
tions

𝜋𝑛 =
∑︁
𝑎

𝜋𝑎𝑛 = 𝜌𝜐𝑛, 𝜀 =
∑︁
𝑎

𝜀𝑎 =
3

2
𝑇𝑛+

1

2
𝜌𝜐2, (12)

where 𝜋𝑛 and 𝜀 are the total momentum and energy
densities of the system. Therefore, in what follows,
we use the deviations of the electron temperature and
velocity from their standard hydrodynamic values,

𝜏 ≡ 𝑇𝑒 − 𝑇, 𝑢𝑛 ≡ 𝜐𝑒𝑛 − 𝜐ℎ𝑒𝑛, (13)

which are estimated by the expressions

𝑢𝑛 ∼ 𝜇
√︀
𝑇/𝑚𝑒, 𝜏 ∼ 𝜇𝑇 ; 𝜇≪ 1. (14)

In the standard hydrodynamics of two-component
fluids [6], the component particle densities 𝑛𝑎, tem-
perature 𝑇, and velocity 𝜐𝑛 are used as the RDPs,

and it is assumed that the relaxation is finished. Note
that 𝜐ℎ𝑒𝑛 is expressed in terms of the diffusive flux,
which, in turn, is expressed in terms of 𝑛𝑎, 𝑇, 𝜐𝑛. For
the hydrodynamic processes in the presence of relax-
ation, the component particle densities 𝑛𝑎, tempera-
tures 𝑇𝑎, and velocities 𝜐𝑎𝑛 play the role of the RDPs
[11, 12]. Relations (5), (12), and (13) show that the
deviations of the ion temperature 𝑇𝑖 and the velocity
𝑣𝑖𝑛 from their standard hydrodynamic values are ex-
pressed in terms of the variables 𝜏 and 𝑢𝑛. Thus, the
RDPs of the theory with account for the relaxation
𝜉𝛼(𝑥, 𝑡) can be chosen as

𝑛𝑒(𝑥, 𝑡) ≡ 𝜉1(𝑥, 𝑡), 𝑛𝑖(𝑥, 𝑡) ≡ 𝜉2(𝑥, 𝑡),

𝜐𝑛(𝑥, 𝑡) ≡ 𝜉2+𝑛(𝑥, 𝑡), 𝑇 (𝑥, 𝑡) ≡ 𝜉6(𝑥, 𝑡),

𝑢𝑛(𝑥, 𝑡) ≡ 𝜉6+𝑛(𝑥, 𝑡), 𝜏(𝑥, 𝑡) ≡ 𝜉10(𝑥, 𝑡).

(15)

The construction of a reduced description of the
plasma by the parameters (15) is based here on a
functional hypothesis [6] of the form

𝑓𝑎𝑝 (𝑥, 𝑡) −−−→
𝑡≫𝜏0

𝑓𝑎𝑝 (𝑥, 𝜉 (𝑡)) , (16)

where 𝑓𝑎𝑝(𝑥, 𝜉) is a functional of the variables 𝜉𝛼(𝑥′)
as functions of 𝑥′, and 𝜏0 is a time which is much
shorter than the subsystem velocity and temperature
relaxation times 𝜏𝑢, 𝜏𝑇 . The dependence of the RDP
on the coordinates is supposed to be weak. Thus, be-
sides the small parameter of our theory 𝜇, the gradi-
ents of the RDPs are small as well:

𝜕𝑠𝜉𝛼
𝜕𝑥𝑛1

... 𝜕𝑥𝑛𝑠

∼ 𝑔𝑠, 𝛼 = 1, ..., 6,

𝜕𝑠𝜉𝛼
𝜕𝑥𝑛1

... 𝜕𝑥𝑛𝑠

∼ 𝜇𝑔𝑠, 𝛼 = 7, ..., 10, 𝑔 ≪ 1.
(17)

The parameter 𝑔 is estimated as the ratio of the
mean free path to the characteristic length of inho-
mogeneities in the system.

All the results of the theory are calculated finally
in an additional perturbation theory in the small
electron-to-ion mass ratio

𝜎 = (𝑚𝑒/𝑚𝑖)
1/2. (18)

3. Hydrodynamic Equations

According to the functional hypothesis (16), the hy-
drodynamic equations have the structure

𝜕𝜉𝛼(𝑥, 𝑡)

𝜕𝑡
≡ 𝐿𝛼(𝑥, 𝑓(𝜉(𝑡))). (19)
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Here, the functionals 𝐿𝛼(𝑥, 𝑓) can be calculated from
(5)–(11) and (15), which gives the relations

𝜕𝑛𝑎
𝜕𝑡

= − 1

𝑚𝑎

𝜕𝜋𝑎𝑛
𝜕𝑥𝑛

,
𝜕𝜐𝑛
𝜕𝑡

=
1

𝜌

[︂
𝜐𝑛
𝜕𝜋𝑙
𝜕𝑥𝑙

− 𝜕𝑡𝑛𝑙
𝜕𝑥𝑙

]︂
,

𝜕𝑇

𝜕𝑡
=
𝑇

𝑛

∑︁
𝑎

1

𝑚𝑎

𝜕𝜋𝑎𝑛
𝜕𝑥𝑛

− 1

3𝑛
𝜐2
𝜕𝜋𝑛
𝜕𝑥𝑛

+

+
2

3𝑛
𝜐𝑛
𝜕𝑡𝑛𝑙
𝜕𝑥𝑙

− 2

3𝑛

𝜕𝑞𝑛
𝜕𝑥𝑛

,

𝜕𝑢𝑛
𝜕𝑡

=
1

𝑚𝑒𝑛𝑒
𝜐𝑒𝑛

𝜕𝜋𝑒𝑙
𝜕𝑥𝑙

+
1

𝑚𝑒𝑛𝑒
𝑅𝑒𝑛 −

− 1

𝑚𝑒𝑛𝑒

𝜕𝑡𝑒𝑛𝑙
𝜕𝑥𝑙

− 𝜕𝜐ℎ𝑒𝑛
𝜕𝑡

,

𝜕𝜏

𝜕𝑡
=

𝑇𝑒
𝑛𝑒𝑚𝑒

𝜕𝜋en
𝜕𝑥𝑛

− 1

3𝑛𝑒

𝜕𝜋𝑒𝑛
𝜕𝑥𝑛

𝜐2𝑒 +
2

3𝑛𝑒
𝜐𝑒𝑛

𝜕𝑡𝑒𝑛𝑙
𝜕𝑥𝑙

−

− 2

3𝑛𝑒

𝜕𝑞en
𝜕𝑥𝑛

+
2

3𝑛𝑒
(𝑄𝑒 − 𝜐en𝑅𝑒𝑛)−

𝜕𝑇

𝜕𝑡
.

(20)

To obtain the hydrodynamic equations with regard
for relaxation processes, one has to calculate fluxes
(8) and sources (9) appearing in (20). These hydro-
dynamic equations are general and are nonlinear.

The necessary DFs 𝑓𝑎𝑝(𝑥, 𝜉) can be found from the
kinetic equation (2), which can be rewritten in view
of the functional hypothesis (16) and formulas (19) in
the form∑︁
𝛼

∫︁
𝑑3𝑥′

𝛿𝑓𝑎𝑝 (𝑥, 𝜉)

𝛿𝜉𝛼 (𝑥′)
𝐿𝛼 (𝑥′, 𝑓 (𝜉)) =

= − 𝑝𝑛
𝑚𝑎

𝜕𝑓𝑎𝑝 (𝑥, 𝜉)

𝜕𝑥𝑛
+ 𝐼𝑎𝑝(𝑓(𝑥, 𝜉)). (21)

This equation is solved in a double perturbation the-
ory in the above-introduced small parameters 𝜇 and 𝑔

𝑓𝑎𝑝=

2∑︁
𝑚=0

1∑︁
𝑛=0

𝑓 (𝑛,𝑚)
𝑎𝑝 +𝑂

(︀
𝜇2𝑔0, 𝜇2𝑔1, 𝜇2𝑔2, 𝑔3

)︀
, (22)

where 𝑓 (𝑛,𝑚)
𝑎𝑝 ∼ 𝜇𝑛𝑔𝑚. The contributions 𝑓 (0,𝑚)

𝑎𝑝 (𝑚 =

= 0, 1) are necessary to obtain fluxes (20), and 𝑓 (1,𝑚)
𝑎𝑝

(𝑚 = 0, 1) are necessary to obtain both the fluxes and
the sources in (20), and 𝑓

(1,2)
𝑎𝑝 is necessary to obtain

only the sources.

4. Component
Distribution Functions and Fluxes

The generalization of the Chapman–Enskog method
presented here is based on the functional hypothesis

(16), the corresponding definition of the RDP, and a
special perturbation theory. In this section, the solu-
tion of the kinetic equation (21) with additional con-
ditions following from the definition of RDP is dis-
cussed.

In the leading approximation, the nonequilibrium
DFs are obviously the Maxwellian ones (1)

𝑓 (0,0)𝑎𝑝 = 𝑤𝑎,𝑝−𝑚𝑎𝜐, 𝑤𝑎𝑝 ≡ 𝑤𝑎𝑝(𝑇 ). (23)

The DFs 𝑓
(0,1)
𝑎𝑝 describe the dissipative terms of

standard hydrodynamics and are found in the form

𝑓 (0,1)𝑎𝑝 = 𝑤𝑎𝑝

{︂∑︁
𝑏

𝜕𝑛𝑏
𝜕𝑥𝑛

𝐴𝑁𝑏
𝑎𝑛 (𝑝) +

𝜕𝑇

𝜕𝑥𝑛
𝐴𝑇

𝑎𝑛 (𝑝)+

+
𝜕𝜐𝑛
𝜕𝑥𝑙

𝐴𝜐
𝑎𝑛𝑙 (𝑝)

}︂
𝑝→𝑝−𝑚𝜐

, (24)

which leads, according to Eq. (21) to the following
integral equations for the functions 𝐴𝑁𝑏

𝑎𝑛 (𝑝), 𝐴𝑇
𝑎𝑛(𝑝),

and 𝐴𝜐
𝑎𝑛𝑙(𝑝):

�̂�𝐴𝑁𝑏
𝑎𝑛 (𝑝) = 𝑝𝑛

[︂
1

𝜌
− 1

𝑛𝑎𝑚𝑎
𝛿𝑎𝑏

]︂
,

�̂�𝐴𝑇
𝑎𝑛(𝑝) = 𝑝𝑛

𝛽

𝑚𝑎

[︂
3

2
+
𝑛𝑚𝑎

𝜌
− 𝛽𝜀𝑎𝑝

]︂
,

�̂�𝐴𝜐
𝑎𝑛𝑙(𝑝) = − 𝛽

𝑚𝑎
ℎ𝑛𝑙(𝑝)

(25)

(𝛽 ≡ 𝑇−1, ℎ𝑛𝑙(𝑝) = 𝑝𝑛𝑝𝑙−𝛿𝑛𝑙𝑝2/3). Here, the integral
operator �̂� is defined for an arbitrary function ℎ𝑎(𝑝)
by the relations

�̂�ℎ𝑎(𝑝) =
∑︁
𝑏

∫︁
𝑑3𝑝′𝐾𝑎𝑏(𝑝, 𝑝

′)ℎ𝑏(𝑝
′),

𝑤𝑎𝑝𝐾𝑎𝑏(𝑝, 𝑝
′) = −𝑤𝑏𝑝′𝑀𝑎𝑏(𝑝, 𝑝

′),

𝑀𝑎𝑏(𝑝, 𝑝
′)=

𝛿𝐼𝑎𝑝(𝑓)

𝛿𝑓𝑏𝑝′

⃒⃒⃒⃒
𝑝→𝑝+𝑚𝜐, 𝑝′→𝑝′+𝑚𝜐, 𝑓𝑐→𝑤𝑐

.

(26)

Equations (25) show that the functions 𝐴𝑇
𝑎𝑛(𝑝),

𝐴𝑁𝑏
𝑎𝑛 (𝑝), and 𝐴𝜐

𝑎𝑛𝑙(𝑝) have the structure

𝐴𝑇
𝑎𝑛(𝑝) = 𝑝𝑛𝐴

𝑇
𝑎 (𝛽𝜀𝑎𝑝),

𝐴𝑁𝑏
𝑎𝑛 (𝑝) = 𝑝𝑛𝐴

𝑁𝑏
𝑎 (𝛽𝜀𝑎𝑝),

𝐴𝜐
𝑎𝑛𝑙(𝑝) = ℎ𝑛𝑙(𝑝)𝐴

𝜐
𝑎 (𝛽𝜀𝑎𝑝).

(27)
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The definitions of 𝜐𝑛 and 𝑇 (12) in terms of the DFs
𝑓
(0,1)
𝑎𝑝 give the following additional conditions for the

solutions of the integral equations (25):∑︁
𝑎

⟨𝑝2𝐴𝑇
𝑎 (𝛽𝜀𝑎𝑝)⟩𝑎 = 0,

∑︁
𝑎

⟨𝑝2𝐴𝑁𝑏
𝑎 (𝛽𝜀𝑎𝑝)⟩𝑎 = 0. (28)

Here, for an arbitrary function ℎ(𝑝),

⟨ℎ(𝑝)⟩𝑎 ≡
∫︁
𝑑3𝑝𝑤𝑎𝑝ℎ(𝑝).

The functions 𝐴𝑇
𝑎 , 𝐴𝑁𝑏

𝑎 , and 𝐴𝜐
𝑎 are sought in the

form of Sonine polynomial series

𝐴𝑁𝑏
𝑎 (𝛽𝜀𝑎𝑝) =

∞∑︁
𝑛=0

𝑔𝑁𝑏
𝑎𝑛𝑆

3/2
𝑛 (𝛽𝜀𝑎𝑝),

𝐴𝑇
𝑎 (𝛽𝜀𝑎𝑝) =

∞∑︁
𝑛=0

𝑔𝑇𝑎𝑛𝑆
3/2
𝑛 (𝛽𝜀𝑎𝑝),

𝐴𝜐
𝑎 (𝛽𝜀𝑎𝑝) =

∞∑︁
𝑛=0

𝑔𝜐𝑎𝑛𝑆
5/2
𝑛 (𝛽𝜀𝑎𝑝).

(29)

The Sonine polynomials are defined by the formula

𝑆𝛼
𝑛 (𝑥) ≡ 1

𝑛!
𝑒𝑥𝑥−𝛼 𝑑𝑛

𝑑𝑥𝑛
(︀
𝑒−𝑥𝑥𝛼+𝑛

)︀
, (30)

and they are orthogonal

∞∫︁
0

𝑒−𝑥𝑥𝛼𝑆𝛼
𝑛 (𝑥)𝑆𝛼

𝑛′ (𝑥) 𝑑𝑥 =
Γ (𝑛+ 𝛼+ 1)

𝑛!
𝛿𝑛𝑛′ . (31)

With the help of (31), the additional conditions
(28) can be rewritten in terms of the coefficients 𝑔𝑇𝑎𝑛
and 𝑔𝑁𝑏

𝑎𝑛 as∑︁
𝑎

𝑚𝑎𝑛𝑎𝑔
𝑇
𝑎0 = 0,

∑︁
𝑎

𝑚𝑎𝑛𝑎𝑔
𝑁𝑏
𝑎0 = 0. (32)

The integral equations (25) can be reduced to a lin-
ear set of equations for the coefficients 𝑔𝑇𝑎𝑛, 𝑔𝑁𝑏

𝑎𝑛 ,
and 𝑔𝜐𝑎𝑛. It contains the infinite number of equations,
and the number of polynomials in the expansions
(29) should be artificially truncated in order to solve
them. The DFs 𝑓 (0,1)𝑎𝑝 are necessary for obtaining the
fluxes of the order (𝜇0𝑔1) in (20). According to (24)
and (31), the expressions for fluxes (8) in the accom-
panying reference frame in terms of the coefficients

𝑔𝑇𝑎𝑛, 𝑔𝑁𝑏
𝑎𝑛 , and 𝑔𝜐𝑎𝑛 are given by the formulas

𝜋(0,1)
𝑎𝑛 = 𝑛𝑎𝑚𝑎𝑇

[︃∑︁
𝑏

𝜕𝑛𝑏
𝜕𝑥𝑛

𝑔𝑁𝑏
𝑎0 +

𝜕𝑇

𝜕𝑥𝑛
𝑔𝑇𝑎0

]︃
,

𝑞(0,1)𝑎𝑛 =
5

2
𝑛𝑎𝑇

2
∑︁
𝑏

[𝑔𝑁𝑏
𝑎0 − 𝑔𝑁𝑏

𝑎1 ]
𝜕𝑛𝑏
𝜕𝑥𝑛

+

+
5

2
𝑛𝑎𝑇

2[𝑔𝑇𝑎0 − 𝑔𝑇𝑎1]
𝜕𝑇

𝜕𝑥𝑛
,

𝑡
(0,1)
𝑎𝑛𝑙 =𝑛𝑎𝑔

𝜐
𝑎0𝑚𝑎𝑇

2

[︂
𝜕𝜐𝑛
𝜕𝑥𝑙

+
𝜕𝜐𝑙
𝜕𝑥𝑛

− 2

3

𝜕𝜐𝑚
𝜕𝑥𝑚

𝛿𝑛𝑙

]︂
.

(33)

As is seen, the fluxes are expressed in terms of only
two coefficients from 𝐴𝑇

𝑎 and 𝐴𝑁𝑏
𝑎 and only one coeffi-

cient from 𝐴𝜐
𝑎 . That is why these functions are sought

in the two- and one-polynomial approximations, re-
spectively.

By multiplying two first equations in (25) by
𝑤𝑎𝑝𝑝𝑛𝑆

3/2
𝑘 (𝑘 = 0, 1), summing over the subscript

𝑛, and integrating over 𝑑3𝑝, we obtain the following
linear set of equations for the coefficients 𝑔𝑁𝑏

𝑎𝑘 and 𝑔𝑇𝑎𝑘:∑︁
𝑛=0,1

∑︁
𝑏

𝑔𝑇𝑏𝑛𝐺𝑎𝑘,𝑏𝑛 = −𝑌𝑎𝑘,∑︁
𝑛=0,1

∑︁
𝑏

𝑔𝑁𝑒

𝑏𝑛 𝐺𝑒𝑘,𝑏𝑛 = −3𝑛𝑖𝑚𝑖𝑇

𝜌
𝛿𝑘0,∑︁

𝑛=0,1

∑︁
𝑏

𝑔𝑁𝑒

𝑏𝑛 𝐺𝑖𝑘,𝑏𝑛 =
3𝑛𝑖𝑚𝑖𝑇

𝜌
𝛿𝑘0,∑︁

𝑛=0,1

∑︁
𝑏

𝑔𝑁𝑖

𝑏𝑛𝐺𝑒𝑘,𝑏𝑛 =
3𝑛𝑒𝑚𝑒𝑇

𝜌
𝛿𝑘0,∑︁

𝑛=0,1

∑︁
𝑏

𝑔𝑁𝑖

𝑏𝑛𝐺𝑖𝑘,𝑏𝑛 = −3𝑛𝑒𝑚𝑒𝑇

𝜌
𝛿𝑘0.

(34)

Here,

𝑌𝑎0 = 3𝑟𝑎𝑛𝑒𝑛𝑖
𝑚𝑖 −𝑚𝑒

𝜌
, 𝑌𝑎1 = −15

2
𝑛𝑎 (35)

(𝑟𝑒 ≡ 1, 𝑟𝑖 ≡ −1), and𝐺𝑎𝑘,𝑏𝑛 are the integral brackets

𝐺𝑎𝑘,𝑏𝑛 ≡ {𝑝𝑙𝑆3/2
𝑘 (𝛽𝜀𝑎𝑝) , 𝑝𝑙𝑆

3/2
𝑛 (𝛽𝜀𝑏𝑝)}𝑎𝑏, (36)

where

{𝑔, ℎ}𝑎𝑏 ≡
∫︁
𝑑3𝑝𝑑3𝑝′𝑔 (𝑝)𝑤𝑎𝑝𝐾𝑎𝑏 (𝑝, 𝑝

′)ℎ (𝑝′). (37)

The coefficients 𝑔𝑁𝑏

𝑎𝑘 and 𝑔𝑇𝑎𝑘 are calculated from (32)
and (34) in a 𝜎 perturbation theory.
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By multiplying the third equation in (25) by
𝑤𝑎𝑝 ℎ𝑛𝑙(𝑝), summing over the subscripts 𝑛, 𝑙, and in-
tegrating over 𝑑3𝑝, we obtain the following linear set
of equations for the coefficients 𝑔𝜐𝑎0:∑︁
𝑏

𝑔𝜐𝑏0𝐻𝑎0,𝑏0 = −10𝑛𝑎𝑚𝑎𝑇, (38)

where

𝐻𝑎𝑘,𝑏𝑛 =

= {ℎ𝑙𝑚(𝑝)𝑆5/2
𝑛 (𝛽𝜀𝑎𝑝), ℎ𝑙𝑚(𝑝)𝑆

5/2
𝑘 (𝛽𝜀𝑏𝑝)}𝑎𝑏. (39)

The coefficients 𝑔𝜐𝑎0 are calculated from this set of
equations in a 𝜎 perturbation theory with account for
(32). The expressions for 𝑔𝜐𝑎0, 𝑔𝑇𝑎𝑘, and 𝑔𝑁𝑏

𝑎𝑘 (𝑘 = 0, 1)
are rather lengthy. That is why they are not given
here and can be found in [16, 17].

The DFs 𝑓 (1,0)𝑎𝑝 describe relaxation processes in a
spatially homogeneous system and are sought in the
form

𝑓 (1,0)𝑎𝑝 = 𝑤𝑎𝑝 {𝐴𝑎 (𝛽𝜀𝑎𝑝) 𝜏 +𝐵𝑎𝑛(𝑝)𝑢𝑛}𝑝→𝑝−𝑚𝜐, (40)

where

𝐵𝑎𝑛(𝑝) = 𝑝𝑛𝐵𝑎 (𝛽𝜀𝑎𝑝). (41)

The integral equations for the functions 𝐴𝑎 and
𝐵𝑎𝑛 can be obtained from Eq. (21):

�̂�𝐴𝑎(𝛽𝜀𝑎𝑝) = 𝜆𝑇𝐴𝑎 (𝛽𝜀𝑎𝑝),

�̂�𝐵𝑎𝑛(𝑝) = 𝜆𝑢𝐵𝑎𝑛(𝑝),
(42)

where 𝜆𝑢 and 𝜆𝑇 are the relaxation rates for the vari-
ables 𝑢𝑛 and 𝜏 , respectively (see Eqs. (61)). Equations
(42) are eigenvalue problems for the operator �̂� of the
linearized collision integral and describe the kinetic
modes of the system. These equations follow from our
generalization of the Chapman–Enskog method.

The definitions of 𝑢𝑛 and 𝜏 (13) in terms of the
DFs 𝑓 (1,0)𝑎𝑝 give the following additional conditions for
the solutions of the integral equations (42):

⟨𝐴𝑎(𝛽𝜀𝑎𝑝)⟩𝑎 = 0, ⟨𝐴𝑎(𝛽𝜀𝑎𝑝)𝜀𝑎𝑝⟩𝑎 =
3

2
𝑟𝑎𝑛𝑒,

⟨𝐵𝑎(𝛽𝜀𝑎𝑝)𝜀𝑎𝑝⟩𝑎 =
3

2
𝑠𝑎𝑛𝑒

(𝑠𝑒 ≡ 1, 𝑠𝑖 ≡ −𝜎2).

(43)

The functions 𝐴𝑎 and 𝐵𝑎 are sought in the form of
Sonine polynomial series:

𝐴𝑎 (𝛽𝜀𝑎𝑝) =

∞∑︁
𝑛=0

𝑔𝑎𝑛𝑆
1/2
𝑛 (𝛽𝜀𝑎𝑝),

𝐵𝑎 (𝛽𝜀𝑎𝑝) =

∞∑︁
𝑛=0

ℎ𝑎𝑛𝑆
3/2
𝑛 (𝛽𝜀𝑎𝑝).

(44)

By multiplying the first equation in (42) by 𝑆1/2
𝑘 and

integrating over 𝑑3𝑝, we obtain the following set of
equations for 𝑔𝑎𝑘 and 𝜆𝑇 :
∞∑︁

𝑛=0

∑︁
𝑏

𝑔𝑏𝑛𝑉𝑎𝑘,𝑏𝑛 = 𝜆𝑇 𝑔𝑎𝑘
2𝑛𝑎
𝑘!
√
𝜋
Γ (𝑘 + 3/2), (45)

where

𝑉𝑎𝑘,𝑏𝑛 = {𝑆1/2
𝑘 (𝛽𝜀𝑎𝑝) , 𝑆

1/2
𝑛 (𝛽𝜀𝑏𝑝)}𝑎𝑏. (46)

By multiplying the second equation in (42) by 𝑝𝑛𝑆
3/2
𝑘 ,

summing over the subscript 𝑛, and integrating over
𝑑3𝑝, we obtain the following set of equations for ℎ𝑎𝑘
and 𝜆𝑢:
∞∑︁

𝑛=0

∑︁
𝑏

ℎ𝑏𝑛𝐺𝑎𝑘,𝑏𝑛 = 𝜆𝑢ℎ𝑎𝑘
4𝑇𝑚𝑎𝑛𝑎
𝑘!
√
𝜋

Γ (𝑘 + 5/2) (47)

with the coefficients 𝐺𝑎𝑘,𝑏𝑛 defined in (36).
The additional conditions (43) lead to the following

expressions for the coefficients 𝑔𝑎0, 𝑔𝑎1, and ℎ𝑎0:

𝑔𝑎0 = 0, ℎ𝑒0 = 𝛽, ℎ𝑖0 = −𝑛𝑒
𝑛𝑖
𝛽𝜎2,

𝑔𝑒1 = −𝛽, 𝑔𝑒1 = −𝑛𝑒
𝑛𝑖
𝛽.

(48)

These coefficients define the DFs 𝑓 (1,0)𝑎𝑝 in the one-
polynomial approximation, which coincide with the
DFs given by the above-mentioned Landau assump-
tion [1]. In this approximation, the relaxation rates
calculated from (45) and (47) are given by the ex-
pressions

𝜆𝑇 =
27/2𝜋1/2

3
(𝑛𝑖 + 𝑛𝑒)𝜆𝜎

2 +𝑂(𝜎4),

𝜆𝑢 =
25/2𝜋1/2

3
𝑛𝑖𝜆+𝑂

(︀
𝜎2

)︀
,

(49)

where

𝜆 ≡ 𝑧2𝑒4𝐿

(𝑚𝑒𝑇 3)
1/2

. (50)
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These results coincide with those obtained in [1,
10, 11, 19]. It can be shown that the expressions for
the Landau distribution functions and for the relax-
ation rates (49) are the principal-order solutions of
(42) in a 𝜎 perturbation theory (see [15]). That is
why we restrict ourselves to the DFs 𝑓 (1,0)𝑎𝑝 , and the
rates 𝜆𝑇 , 𝜆𝑢 are taken in the one-polynomial approxi-
mation. The two-polynomial approximation for these
quantities will be discussed elsewhere.

The DFs 𝑓 (1,1)𝑎𝑝 describe the relaxation processes in
spatially non-uniform states and are sought in the
form:

𝑓 (1,1)𝑎𝑝 = 𝑤𝑎𝑝

{︂
𝐴𝜏

𝑎𝑛 (𝑝)
𝜕𝜏

𝜕𝑥𝑛
+𝐴𝑢

𝑎𝑛𝑙 (𝑝)
𝜕𝑢𝑛
𝜕𝑥𝑙

+

+𝐴𝜏𝑇
𝑎𝑛 (𝑝) 𝜏

𝜕𝑇

𝜕𝑥𝑛
+𝐴𝑢𝑇

𝑎𝑛𝑙 (𝑝)𝑢𝑙
𝜕𝑇

𝜕𝑥𝑛
+

+𝐴𝜏𝜐
𝑎𝑛𝑙 (𝑝) 𝜏

𝜕𝜐𝑛
𝜕𝑥𝑙

+𝐴𝑢𝜐
𝑎𝑚𝑛𝑙 (𝑝)𝑢𝑚

𝜕𝜐𝑛
𝜕𝑥𝑙

+

+
∑︁
𝑏

𝐴𝜏𝑁𝑏
𝑎𝑛 (𝑝) 𝜏

𝜕𝑛𝑏
𝜕𝑥𝑛

+

+
∑︁
𝑏

𝐴𝑢𝑁𝑏

𝑎𝑛𝑙 (𝑝)𝑢𝑙
𝜕𝑛𝑏
𝜕𝑥𝑛

}︂
𝑝→𝑝−𝑚𝑎𝜐

. (51)

The integral equations for the functions 𝐴𝜏
𝑎𝑛, 𝐴𝑢

𝑎𝑛𝑙,
𝐴𝜏𝑇

𝑎𝑛 , 𝐴𝜏𝑁𝑏
𝑎𝑛 , 𝐴𝜏𝜐

𝑎𝑛𝑙, 𝐴
𝑢𝑇
𝑎𝑛𝑙, 𝐴

𝑢𝑁𝑏

𝑎𝑛𝑙 , and 𝐴𝑢𝜐
𝑎𝑚𝑛𝑙 are ob-

tained from the kinetic equation (21) with regard for
the results for the DFs 𝑓 (1,0)𝑎𝑝 and the relaxation rates
𝜆𝑢, 𝜆𝑇 .

The integral equations for 𝐴𝜏
𝑎𝑛 and 𝐴𝑢

𝑎𝑛𝑙 have the
form

�̂�𝐴𝜏
𝑎𝑚(𝑝) =

𝑛𝑒𝑠𝑎
𝑚𝑒𝑛𝑎𝑇

𝑝𝑚 − 𝑠𝑎
𝑛𝑎𝑚𝑒𝑇

𝑝𝑛𝐺
𝜏
𝑛𝑚 +

+
𝑛𝑒𝑟𝑎
𝑚𝑎𝑛𝑎𝑇

𝑝𝑚

(︂
3

2
− 𝜀𝑎𝑝

𝑇

)︂
+

+𝐴𝜏
𝑎𝑚 (𝑝)𝜆𝑇 ,

�̂�𝐴𝑢
𝑎𝑛𝑙(𝑝) = 𝛿𝑛𝑙

(︂
𝜀𝑎𝑝
𝑇

− 3

2

)︂
×

×

[︃
2
(︀
1− 𝜎2

)︀
𝑛𝑒

3 (𝑛𝑒 + 𝑛𝑖)

(︂
1− 𝑛𝑒𝑟𝑎

𝑛𝑎

)︂
+

2

3

𝑛𝑒𝑟𝑎
𝑛𝑎

]︂
+

+ 𝛿𝑛𝑙
𝑛𝑒𝑠𝑎
𝑛𝑎

+
2

3

𝑟𝑎
𝑛𝑎𝑇

(︂
3

2
− 𝜀𝑎𝑝

𝑇

)︂
𝐺𝑢

𝑛𝑙 −

− 𝑝𝑛𝑝𝑙
𝑛𝑒𝑠𝑎
𝑚𝑎𝑛𝑎𝑇

+𝐴𝑢
𝑎𝑛𝑙 (𝑝)𝜆𝑢,

(52)

where

𝐺𝑢
𝑛𝑚 ≡

∑︁
𝑏

{𝜀𝑒𝑝, 𝐴𝑢
𝑏𝑛𝑚}𝑒𝑏,

𝐺𝜏
𝑛𝑚 =

∑︁
𝑏

{𝑝𝑛, 𝐴𝜏
𝑏𝑚}𝑒𝑏.

(53)

Other integral equations of the order 𝜇1𝑔1 are not
given here because of their complexity. However, the
corresponding terms in the DF 𝑓

(1,1)
𝑎𝑝 do not con-

tribute to the linearized theory, which is discussed
in the next section.

Equations (52) show that the functions 𝐴𝜏
𝑎𝑛 and

𝐴𝑢
𝑎𝑛𝑙 have the structure

𝐴𝜏
𝑎𝑛 (𝑝) = 𝑝𝑛𝐴

𝜏
𝑎 (𝛽𝜀𝑎𝑝),

𝐴𝑢
𝑎𝑛𝑙 (𝑝) = ℎ𝑛𝑙(𝑝)𝐴

𝑢
𝑎 (𝛽𝜀𝑎𝑝)

(54)

(the contraction of the second equation in (52) with
respect to the subscripts 𝑛 and 𝑙 vanishes in the terms
with known functions). The functions 𝐴𝜏

𝑎 and 𝐴𝑢
𝑎 are

sought in the form of Sonine polynomial series

𝐴𝜏
𝑎 (𝛽𝜀𝑎𝑝) =

∞∑︁
𝑛=0

𝑔𝜏𝑎𝑛𝑆
3/2
𝑛 (𝛽𝜀𝑎𝑝),

𝐴𝑢
𝑎 (𝛽𝜀𝑎𝑝) =

∞∑︁
𝑛=0

𝑔𝑢𝑎𝑛𝑆
5/2
𝑛 (𝛽𝜀𝑎𝑝).

(55)

The additional conditions for the solutions of
Eqs. (52), which follow from definition (5) of the
RDPs 𝑢𝑛, 𝜏 , give the restriction only on 𝐴𝜏

𝑎:

⟨𝐴𝜏
𝑎(𝛽𝜀𝑎𝑝)𝜀𝑎𝑝⟩𝑎 = 0. (56)

This condition in terms of the coefficients 𝑔𝜏𝑎𝑛 takes
the form

𝑔𝜏𝑎0 = 0. (57)

The contributions of two first terms from (51) to the
fluxes in the accompanying reference frame are given
by the formulas

�̃�(1,1)
𝑎𝑛 = 𝑛𝑎𝑚𝑎𝑇𝑔

𝜏
𝑎0

𝜕𝜏

𝜕𝑥𝑛
,

𝑞(1,1)𝑎𝑛 =
5

2
𝑛𝑎𝑇

2 [𝑔𝜏𝑎0 − 𝑔𝜏𝑎1]
𝜕𝜏

𝜕𝑥𝑛
,

𝑡
(1,1)
𝑎𝑛𝑙 = 𝑚𝑎𝑛𝑎𝑇

2𝑔𝑢𝑎0

[︂
𝜕𝑢𝑛
𝜕𝑥𝑙

+
𝜕𝑢𝑙
𝜕𝑥𝑛

− 2

3

𝜕𝑢𝑚
𝜕𝑥𝑚

𝛿𝑛𝑙

]︂ (58)
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(a tilde in these expressions indicates that they give
only the parts of the fluxes that contribute to the lin-
earized hydrodynamic theory). Condition (57) shows
that one can restrict oneself to the one-polynomial
approximation in the calculation of these fluxes.

By multiplying the first equation in (52) by
𝑤𝑎𝑝𝑝𝑚𝑆

3/2
1 , summing over the subscript 𝑚, and in-

tegrating over 𝑑3𝑝, we obtain a linear set of equa-
tions for the coefficients 𝑔𝜏𝑎1. By multiplying the sec-
ond equation in (52) by 𝑤𝑎𝑝 ℎ𝑛𝑙(𝑝), summing over the
subscripts 𝑛, 𝑙, and integrating over 𝑑3𝑝, we obtain a
linear set of equations for the coefficients 𝑔𝜐𝑎0. The co-
efficients from these sets of equations are calculated
in a 𝜎 perturbation theory (see the results in [16]).

The DFs 𝑓 (1,2)𝑎𝑝 describe the effect of the Burnett
terms on the relaxation processes and are necessary
only for the calculation of the sources in the hy-
drodynamic equations. The method of obtaining the
DF 𝑓

(1,2)
𝑎𝑝 is the same as for obtaining the DFs 𝑓 (0,1)𝑎𝑝

and 𝑓
(1,1)
𝑎𝑝 , but the corresponding equations are very

lengthy, and that is why their derivation is omitted
here. We restrict ourselves in the calculations of the
DF 𝑓

(1,2)
𝑎𝑝 to the one-polynomial approximation.

5. Linearized Hydrodynamic
Equations and Modes of the System

The component DF and the fluxes are calculated
above in the general nonlinear case. In this section,
the linearized hydrodynamic equations are investi-
gated in order to obtain the dispersion laws for the
plasma modes (see an example of such investigation
in [7]).

In the linearized theory, the RDPs 𝜉𝛼(𝑥, 𝑡) are
taken in a vicinity of their equilibrium values

𝑛𝑎 = 𝑛eq𝑎 + 𝛿𝑛𝑎 (𝑥, 𝑡), 𝜐𝑛 = 𝛿𝜐𝑛 (𝑥, 𝑡),

𝑇 = 𝑇 eq + 𝛿𝑇 (𝑥, 𝑡), 𝑢𝑛 = 𝛿𝑢𝑛 (x, 𝑡),

𝜏 = 𝛿𝜏 (𝑥, 𝑡),

(59)

and the deviations 𝛿𝜉𝛼(𝑥, 𝑡) from their equilibrium
values 𝜉eq𝛼 are small (in the reference frame under con-
sideration, 𝜐eq𝑛 = 0). The equilibrium values of the
RDPs 𝜉eq𝛼 are constants, and the condition of elec-
troneutrality

𝑛eq𝑒 = 𝑧𝑛eq𝑖 (60)

is satisfied.

The linearized hydrodynamic equations must be ro-
tationally invariant and, therefore, have the structure

𝜕𝑡𝛿𝑛𝑒 = 𝛾𝑒𝑒Δ𝛿𝑛𝑒 + 𝛾𝑒𝑖Δ𝛿𝑛𝑖 + 𝛾𝑒𝜐div𝛿𝜐 + 𝛾𝑒𝑇Δ𝛿𝑇 +

+ 𝛾𝑒𝑢div𝛿𝑢+ 𝛾𝑒𝜏Δ𝛿𝜏,

𝜕𝑡𝛿𝑛𝑖 = 𝛾𝑖𝑒Δ𝛿𝑛𝑒 + 𝛾𝑖𝑖Δ𝛿𝑛𝑖 + 𝛾𝑖𝜐div𝛿𝜐 + 𝛾𝑖𝑇Δ𝛿𝑇 +

+ 𝛾𝑖𝑢div𝛿𝑢+ 𝛾𝑖𝜏Δ𝛿𝜏,

𝜕𝑡𝛿𝜐𝑙 = 𝛽𝑒grad𝑙𝛿𝑛𝑒 + 𝛽𝑖grad𝑙𝛿𝑛𝑖 + 𝜂𝜐Δ𝛿𝜐𝑙 +

+ 𝜂𝜐grad𝑙div𝛿𝜐 + 𝛽𝑇 grad𝑙𝛿𝑇 +

+ 𝜂𝑢Δ𝛿𝑢𝑙 + 𝜂𝑢grad𝑙div𝛿𝑢+ 𝛽𝜏grad𝑙𝛿𝜏,

𝜕𝑡𝛿𝑇 = 𝛼𝑒Δ𝛿𝑛𝑒 + 𝛼𝑖Δ𝛿𝑛𝑖 + 𝛼𝜐div𝛿𝜐 + 𝛼𝑇Δ𝛿𝑇 +

+𝛼𝑢div𝛿𝑢+ 𝛼𝜏Δ𝛿𝜏,

𝜕𝑡𝛿𝑢𝑙 = −𝜆𝑢𝛿𝑢𝑙 + 𝜒𝑢Δ𝛿𝑢𝑙 + �̃�𝑢grad𝑙div𝛿𝑢+

+𝜒𝜏grad𝑙𝛿𝜏,

𝜕𝑡𝛿𝜏 = −𝜆𝑇 𝛿𝜏 + 𝜃𝑢div𝛿𝑢+ 𝜃𝜏Δ𝛿𝜏.

(61)

Four first equations here (three scalar ones and a vec-
tor one) describe the evolution of the standard hy-
drodynamic variables, and the last two equations de-
scribe the evolution of the relaxation RDPs 𝑢𝑛 and
𝜏 . The coefficients appearing in (61) are constants
and should be calculated. Comparing (61) with (20),
using (60), and calculating the fluxes and the sources
in the linearized theory with the help of the obtained
DFs, we get these coefficients in a 𝜎 perturbation
theory:

𝛼𝑇 =

√
2 + 17𝑧

2𝑧(1 + 𝑧)(
√
2 + 𝑧)

Λ +𝑂 (𝜎),

𝛼𝑒 =

√
2 + 7𝑧

2(1 + 𝑧)(
√
2 + 𝑧)

𝑇

𝑛𝑖
Λ +𝑂 (𝜎),

𝛼𝜐 = −2𝑇

3
,

𝛼𝜏 =
25

2(1 + 𝑧)(4
√
2 + 13𝑧)

Λ +𝑂(𝜎),

𝛼𝑢 = − 2𝑇𝑧

3(1 + 𝑧)
+𝑂(𝜎2), 𝛼𝑖 = 𝑂(𝜎2);

𝛽𝑖 = 𝛽𝑒 ≡ 𝛽, 𝛽 = − 𝑇

𝑛𝑖𝑚𝑒
+𝑂(𝜎2),

𝛽𝑇 = −1 + 𝑧

𝑚𝑒
+𝑂(𝜎2);

𝛾𝑖𝑒 = 𝑂(𝜎2), 𝛾𝑖𝑖 = 𝑂(𝜎4), 𝛾𝑖𝜐 = −𝑛𝑖,
𝛾𝑖𝑢 = 𝑛𝑖𝑧𝜎

2, 𝛾𝑖𝑇 = 𝑂(𝜎2), 𝛾𝑖𝜏 = 0,
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𝛾𝑒𝑖 = 𝑂(𝜎2), 𝛾𝑒𝜐 = −𝑛𝑖𝑧, 𝛾𝑒𝑢 = −𝑛𝑖𝑧,

𝛾𝑒𝜏 = 0, 𝛾𝑒𝑒 =
3

16

4
√
2 + 13𝑧

𝑧2(
√
2 + 𝑧)

Λ +𝑂 (𝜎),

𝛾𝑒𝑇 =
3

4

√
2 + 7𝑧

𝑧(
√
2 + 𝑧)

𝑛𝑖
𝑇
Λ +𝑂 (𝜎);

𝜂𝑢 = 𝑂(𝜎2), 𝜂𝑢 = 𝜂𝑢/3,

𝜂𝜐 =
5

4
√
2𝑧4

Λ𝜎 +𝑂(𝜎2), 𝜂𝜐 = 𝜂𝜐/3;

𝜃𝜏 =
25

2𝑧(1 + 𝑧)
(︀
4
√
2 + 13𝑧

)︀Λ +𝑂 (𝜎),

𝜃𝑢 = −2𝑇

3

1

𝑧 + 1
+𝑂(𝜎2);

𝜒𝑢 =
15

4𝑧
(︀
3
√
2 + 𝑧

)︀Λ− 4𝑧2𝑇 3𝑔
(0)
𝐴

1

Λ
+𝑂(𝜎),

�̃�𝑢 =
5

4𝑧
(︀
3
√
2 + 𝑧

)︀Λ− 8𝑧2𝑇 3(𝑔
(0)
𝐴 + 𝑔

(0)
𝐵 )

1

Λ
+𝑂(𝜎),

𝜒𝜏 = −4(
√
2 + 7𝑧)

4
√
2 + 13𝑧

1

𝑚𝑒
+𝑂 (𝜎), (62)

where the notations

𝑔𝐵 =
5𝑛𝑖𝑧

4𝐺𝑒1,𝑒1 − 30𝜆𝑢𝑛𝑖𝑧𝑚𝑒𝑇

[︂
𝑇 (𝑧𝑔𝑇𝑒1 + 𝑔𝜏𝑒1)

𝑧 + 1
+

+
3

2
𝑔𝑁𝑒
𝑒1 𝑛𝑖𝑧 − 𝑔𝑢𝑒0𝑇

]︂
,

𝑔𝐴 =
42𝑔𝑢𝑒0𝑛𝑖𝑧𝑚

2
𝑒𝑇

3

2𝐺− 1155𝜆𝑢𝑛𝑖𝑧𝑚3
𝑒𝑇

3
;

𝐺 = {𝑆5/2
1 (𝛽𝜀𝑒𝑝)𝑝𝑛𝑝𝑚𝑝𝑙;𝑆

5/2
1 (𝛽𝜀𝑒𝑝)𝑝𝑛𝑝𝑚𝑝𝑙}𝑒𝑒;

Λ =
𝑇 5/2

𝑛𝑖𝑒4𝐿
√
2𝜋𝑚𝑒

(63)

are introduced. In (62) and in what follows, the su-
perscript “eq” is omitted in 𝑇 eq and 𝑛eq𝑎 ; and 𝑔

(0)
𝐴

and 𝑔
(0)
𝐵 are the contributions of the order 𝜎0 to 𝑔𝐴

and 𝑔𝐵 . The explicit expressions for 𝜒𝑢 and �̃�𝑢 as
functions of 𝑧 are not given here, because they are
too lengthy. The second terms on the right-hand sides
of expressions (62) for them are given by the source
𝑅

(1,2)
𝑒𝑛 (but 𝑄(1,2)

𝑒 = 𝑂(𝜎)).
Performing the Fourier transformation in Eqs. (61),

𝛿𝜉𝑎(𝑘, 𝑡) =

∫︁
𝑒−𝑖𝑘𝑛𝑥𝑛𝛿𝜉𝑎 (𝑥, 𝑡)𝑑

3𝑥, (64)

and choosing the 𝑥-axis of the coordinates along the
wave vector 𝑘, we obtain the following linearized hy-
drodynamic equations:

𝜕𝑡𝛿𝑛𝑒 = −𝑘2(𝛾𝑒𝑒𝛿𝑛𝑒 + 𝛾𝑒𝑖𝛿𝑛𝑖) + 𝑖𝛾𝑒𝜐𝑘𝛿𝜐𝑥 −

− 𝛾𝑒𝑇 𝑘
2𝛿𝑇 + 𝑖𝛾𝑒𝑢𝑘𝛿𝑢𝑥 − 𝛾𝑒𝜏𝑘

2𝛿𝜏,

𝜕𝑡𝛿𝑛𝑖 = −𝑘2(𝛾𝑖𝑒𝛿𝑛𝑒 + 𝛾𝑖𝑖𝛿𝑛𝑖) + 𝑖𝛾𝑖𝜐𝑘𝛿𝜐𝑥 −

− 𝛾𝑖𝑇 𝑘
2𝛿𝑇 + 𝑖𝛾𝑖𝑢𝑘𝛿𝑢𝑥 − 𝛾𝑖𝜏𝑘

2𝛿𝜏,

𝜕𝑡𝛿𝜐𝑥 = 𝑖𝑘(𝛽𝑒𝛿𝑛𝑒 + 𝛽𝑖𝛿𝑛𝑖)− (𝜂𝜐 + 𝜂𝜐)𝑘
2𝛿𝜐𝑥 +

+ 𝑖𝑘𝛽𝑇 𝛿𝑇 − (𝜂𝑢 + 𝜂𝑢)𝑘
2𝛿𝑢𝑥 + 𝑖𝑘𝛽𝜏𝛿𝜏,

𝜕𝑡𝛿𝜐𝑦,𝑧 = −𝑘2𝜂𝜐𝛿𝜐𝑦,𝑧 − 𝑘2𝜂𝑢𝛿𝑢𝑦,𝑧,

𝜕𝑡𝛿𝑇 = −𝑘2(𝛼𝑒𝛿𝑛𝑒 + 𝛼𝑖𝛿𝑛𝑖) + 𝑖𝛼𝜐𝑘𝛿𝜐𝑥 − 𝑘2𝛼𝑇 𝛿𝑇+

𝜕𝑡𝛿𝜏 = −(𝜆𝑇 + 𝜃𝜏𝑘
2)𝛿𝜏 + 𝑖𝑘𝜃𝑢𝛿𝑢𝑥,

+ 𝑖𝑘𝛼𝑢𝛿𝑢𝑥 − 𝑘2𝛼𝜏𝛿𝜏,

𝜕𝑡𝛿𝑢𝑥 = −(𝜆𝑢 + 𝑘2𝜒𝑢 + 𝑘2�̃�𝑢)𝛿𝑢𝑥 + 𝑖𝑘𝜒𝜏𝛿𝜏,

𝜕𝑡𝛿𝑢𝑦,𝑧 = −(𝜆𝑢 + 𝜒𝑢𝑘
2)𝛿𝑢𝑦,𝑧.

(65)

Equations (65) can be written in the form

𝜕𝑡𝛿𝜉𝛼(𝑘, 𝑡) =
∑︁
𝛼′

𝑀𝛼𝛼′(𝑘)𝛿𝜉𝛼′(𝑘, 𝑡) (66)

that defines the generalized hydrodynamic matrix
𝑀𝛼𝛼′(𝑘). In order to solve them, let us consider the
eigenvalues 𝜆𝑖(𝑘), left and right eigenvectors 𝜓𝑖𝛼(𝑘)
and 𝜙𝑖𝛼(𝑘) of the matrix 𝑀𝛼𝛼′(𝑘) given by the rela-
tions∑︁
𝛼′

𝑀𝛼𝛼′(𝑘)𝜙𝑖𝛼′(𝑘) = 𝜆𝑖(𝑘)𝜙𝑖𝛼(𝑘),∑︁
𝛼

𝜓𝑖𝛼(𝑘)𝑀𝛼𝛼′(𝑘) = 𝜆𝑖(𝑘)𝜓𝑖𝛼′(𝑘)
(67)

with the normalization condition∑︁
𝛼

𝜓𝑖𝛼(𝑘)𝜙𝑖′𝛼(𝑘) = 𝛿𝑖𝑖′ . (68)

Now, the solution of Eq. (66) is given by the formulas

𝜉𝛼(𝑘, 𝑡) =
∑︁
𝑖

𝑐𝑖(𝑘, 𝑡)𝜙𝑖𝛼(𝑘),

𝑐𝑖(𝑘, 𝑡) ≡ 𝑐𝑖(𝑘, 0)𝑒
𝜆𝑖(𝑘)𝑡.

(69)
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Eigenvalues 𝜆𝑖(𝑘) are complex frequencies for modes
of the system, 𝛿𝜃𝑖(𝑘, 𝑡), that are given by the expres-
sion

𝛿𝜃𝑖(𝑘, 𝑡) ≡
∑︁
𝛼

𝜓𝑖𝛼(𝑘)𝛿𝜉𝛼(𝑘, 𝑡) = 𝛿𝜃𝑖(𝑘, 0)𝑒
𝜆𝑖(𝑘)𝑡. (70)

The eigenvalues 𝜆𝑖(𝑘) of the matrix 𝑀𝛼𝛼′(𝑘) should
be calculated from the equation

det |𝑀(𝑘)− 𝜆𝐼| = 0 (71)

in the 𝑘-perturbation theory, because the magnitude
of the wave vector according to (17) is small (𝐼 is
the identity matrix). Then the eigenfunctions 𝜙𝑖𝛼(𝑘)
and 𝜓𝑖𝛼(𝑘) can be calculated from definitions (67)
and (68) in the same perturbation theory. Further,
the obtained results should be investigated in a 𝜎-
perturbation theory.

As a result, we obtain the eigenvalues (complex fre-
quencies)

𝜆1,2 = ±𝑖𝑘𝑐𝑠 −𝐷𝑠𝑘
2 +𝑂(𝑘3),

𝑐𝑠 = 𝜎

√︂
5𝑇

3𝑚𝑒
(𝑧 + 1) +𝑂(𝜎2),

𝐷𝑠 = Λ
5(29𝑧 + 4

√
2)

25𝑧(𝑧 +
√
2)(𝑧 + 1)

+𝑂(𝜎);

𝜆3 = −𝐷3𝑘
2 +𝑂(𝑘3),

𝐷3 = Λ
3
[︁
𝑎(𝑧) +

√︀
𝑎(𝑧)2 − 𝑏(𝑧)

]︁
10(𝑧 +

√
2)(𝑧 + 1)

+𝑂(𝜎);

𝜆4 = −𝐷4𝑘
2 +𝑂(𝑘3),

𝐷4 = Λ
3
[︁
𝑎(𝑧)−

√︀
𝑎(𝑧)2 − 𝑏(𝑧)

]︁
10(𝑧 +

√
2)(𝑧 + 1)

+𝑂(𝜎);

𝜆5,6 = −𝜂𝜐𝑘2 +𝑂(𝑘4),

𝜆7 = −𝜆𝑇 −
[︂
𝜃𝜏 +

𝜃𝑢𝜒𝜏

𝜆𝑢 − 𝜆𝑇

]︂
𝑘2 +𝑂

(︀
𝑘3

)︀
,

𝜆8 = −𝜆𝑢 +

[︂
𝜃𝑢𝜒𝜏

𝜆𝑢 − 𝜆𝑇
− 𝜒𝑢 − �̃�𝑢

]︂
𝑘2 +𝑂

(︀
𝑘3

)︀
,

𝜆9,10 = −𝜆𝑢 − 𝜒𝑢𝑘
2 +𝑂(𝑘4),

(72)

where the functions 𝑎 (𝑧) and 𝑏 (𝑧) are

𝑎 (𝑧) =
25

8
+

5

16𝑧2
(4
√
2+13𝑧), 𝑏 (𝑧) =

125

8𝑧2
(
√
2 + 𝑧).

The corresponding modes are given in the zero or-
der in 𝑘 by the relations

𝛿𝜃1,2 ∼ 𝛽𝑒(𝛿𝑛𝑒 + 𝛿𝑛𝑖)± 𝑐𝑠𝛿𝜐𝑥 + 𝛽𝑇 𝛿𝑇,

𝛿𝜃3,4 ∼ 𝛿𝑇 + 𝑎3,4𝛿𝑛𝑒 + 𝑏3,4𝛿𝑛𝑖,

𝛿𝜃5 ∼ 𝛿𝜐𝑦, 𝛿𝜃6 ∼ 𝛿𝜐𝑧, 𝛿𝜃7 ∼ 𝛿𝜏,

𝛿𝜃8 ∼ 𝛿𝑢𝑥, 𝛿𝜃9 ∼ 𝛿𝑢𝑦, 𝛿𝜃10 ∼ 𝛿𝑢𝑧,

(73)

where 𝑎3, 𝑎4, 𝑏3, and 𝑏4 are some lengthy coefficients
not given here.

Here, 𝛿𝜃1, ..., 𝛿𝜃6 are the hydrodynamic modes of
the system; 𝛿𝜃7, ..., 𝛿𝜃10 are the kinetic modes of the
system, which are related to the relaxation; 𝛿𝜃1,2 are
the sound modes, 𝛿𝜃3,4 are the heat and diffusion
modes; 𝛿𝜃5,6 are the velocity 𝜐 shear modes. The
mode 𝛿𝜃7 describes the evolution of the component
temperature difference 𝜏 , and the modes 𝛿𝜃8, ..., 𝛿𝜃10
describe the evolution of the component velocity dif-
ference 𝑢𝑛.

6. Relaxation
Damping of Plasma Oscillations

In Introduction, it was noted that the problem of in-
vestigation of the modes of the Landau equation can be
considered as an important part of the investigation of
plasma modes. In the mentioned approach suggested
by D.Bohm and D.Pines in [8], the long-range part of
the Coulomb interaction is described by the degrees
of freedom of the plasma electromagnetic field and
the short-range part is accounted for by the Landau
kinetic equation.

In another approach, the effects of the long-range
part of the Coulomb interaction can be investigated
by adding the Vlasov term to the Landau kinetic
equation, which gives the Vlasov–Landau kinetic
equation [6, 20]

𝜕𝑓𝑎𝑝
𝜕𝑡

+
𝑝𝑛
𝑚𝑎

𝜕𝑓𝑎𝑝
𝜕𝑥𝑛

+ 𝑒𝑎𝐸𝑛 (𝑓)
𝜕𝑓𝑎𝑝
𝜕𝑝𝑛

= 𝐼𝑎𝑝 (𝑓). (74)

Here, 𝐸𝑛(𝑓) is the self-consistent electric field that
satisfies the Poisson equation

𝜕𝐸𝑛

𝜕𝑥𝑛
= 4𝜋

∑︁
𝑎

𝑒𝑎𝑛𝑎. (75)

Unfortunately, the generalized Chapman–Enskog
method developed in the present paper, which is
based on the RDPs 𝜉𝛼(𝑥, 𝑡) (15) and a perturbation
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theory in the parameters 𝜇 and 𝑔 (17), cannot be
rigorously applied to Eq. (74). We note that there are
no attempts of a similar investigation in the literature
(see, e.g., [6, 20]).

However, we can propose to study the problem in
an approximation based on the DF taken in the zero
order in the gradients of the RDPs 𝜉𝛼(𝑥). The Vla-
sov–Landau equation (74) in the spatially homoge-
neous case does not contain the self-consistent field,
and, thus, the necessary component DF is given by re-
lations (40)–(42). For simplicity, we restrict ourselves
here to the one-polynomial approximation for the so-
lution of Eqs. (42). In this approximation, the DFs are
given by formulas (23) and (40), in which the func-
tions 𝐴𝑎 and 𝐵𝑎 have the form

𝐴𝑒 = −𝛽
[︂
3

2
− 𝛽𝜀𝑒𝑝

]︂
, 𝐴𝑖 = 𝛽

𝑛𝑒
𝑛𝑖

[︂
3

2
− 𝛽𝜀𝑖𝑝

]︂
;

𝐵𝑒 = 𝛽, 𝐵𝑖 = −𝛽𝜎2𝑛𝑒
𝑛𝑖

(76)

(see (44), (48)). As was noted above, such DFs 𝑓 (1,0)𝑎𝑝

coincide with the DFs given by the Landau assump-
tion discussed in Introduction.

The time equations for parameters (15) with regard
for the self-consistent field are obtained from defini-
tions (5), (7), (12), and the kinetic equation (74).
They coincide with (20), except for the equations for
𝜐𝑛 and 𝑢𝑛, which take the form

𝜕𝜐𝑛
𝜕𝑡

=
1

𝜌

[︃
𝜐𝑛
𝜕𝜋𝑙
𝜕𝑥𝑙

− 𝜕𝑡𝑛𝑙
𝜕𝑥𝑙

+ 𝐸𝑛

∑︁
𝑎

𝑒𝑎𝑛𝑎

]︃
,

𝜕𝑢𝑛
𝜕𝑡

=
1

𝑚𝑒𝑛𝑒
𝜐𝑒𝑛

𝜕𝜋𝑒𝑙
𝜕𝑥𝑙

+
1

𝑚𝑒𝑛𝑒
𝑅𝑒𝑛 −

− 𝑒

𝑚𝑒
𝐸𝑛 − 1

𝑚𝑒𝑛𝑒

𝜕𝑡𝑒𝑛𝑙
𝜕𝑥𝑙

− 𝜕𝜐𝑛
𝜕𝑡

.

(77)

Substituting DFs (23) and (40) with (76) into the
fluxes and the sources in the time equations (20) and
(77) gives hydrodynamic equations in the nondissi-
pative approximation (they do not contain terms de-
scribing hydrodynamic dissipative processes: viscos-
ity, heat conductivity, and diffusion) with account for
the self-consistent field and relaxation.

Applying the method developed in Section 5 to the
obtained hydrodynamic equations and (75) gives the
modes of the Vlasov–Landau kinetic equation calcu-
lated in a 𝑘, 𝜎-perturbation theory. It is necessary to

emphasize that this gives the complex frequencies of
modes (72) without hydrodynamic damping rates of
the form 𝛾𝛼 = 𝐷𝛼𝑘

2, but with some modification re-
lated to the Vlasov self-consistent field.

As a result, we obtain the sound modes

𝜆1,2 = ±𝑖𝑐𝑠𝑘 +𝑂(𝑘𝜎2, 𝑘2) (78)

with 𝑐𝑠 from (72); the heat mode

𝜆3 = 𝑂(𝑘2); (79)

the plasma (Langmuir) modes

𝜆4,8 = −𝜆𝑢
2

± 𝑖

√︂
𝜔2
𝑝 −

𝜆2𝑢
4

+𝑂(𝑘0𝜎2, 𝑘2); (80)

the shear modes

𝜆5,6 = 𝑂(𝑘2); (81)

the mode related to 𝜏

𝜆7 = −𝜆𝑇 +𝑂(𝑘2); (82)

the transversal modes related to 𝑢𝑛

𝜆9,10 = −𝜆𝑢 +𝑂(𝑘2). (83)

Formula (80) contains the electron plasma frequency
defined by 𝜔𝑝 = (4𝜋𝑒2𝑛𝑧/𝑚𝑒)

1/2.
The estimates 𝑂(𝑘2) are written in (79) and (81),

because, as usual, the hydrodynamic dissipation pro-
cesses give such estimates. The estimates in the ex-
pressions for the complex frequencies (78), (80), (82),
and (83) are obtained directly from Eq. (71) taken in
the approximation considered in this section.

In the framework of the used accuracy, all obtained
frequencies except for modes 4 and 8 coincide with ex-
pressions (72). Neglecting the self-consistent field can
be performed formally by the transition 𝜔𝑝 → 0. Af-
ter that, the plasma frequencies (80) coincide with
the expressions for modes 4 and 8 from (72) obtained
on the basis of the Landau kinetic equation. In the
opposite case where the collision integral is omitted,
i.e. the Vlasov equation is investigated, the substitu-
tion 𝜆𝑇 = 𝜆𝑢 = 0 into (80) give the known plasma
oscillations 𝜆 = ±𝑖𝜔𝑝. Thus, the obtained results are
true in the borderline cases of the Landau and Vlasov
kinetic equations, which justifies results (78)–(83).
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The modes corresponding to frequencies (78), (80),
(82), and (83) are given in the zero order in 𝑘 by the
relations

𝛿𝜃1,2 ∼ 𝛽(𝛿𝑛𝑒 + 𝛿𝑛𝑖)± 𝑐𝑠𝛿𝜐𝑥 + 𝛽𝑇 𝛿𝑇,

𝛿𝜃4,8 ∼ 𝑒(𝑧𝛿𝑛𝑖 − 𝛿𝑛𝑒), 𝛿𝜃7 ∼ 𝛿𝜏,

𝛿𝜃9 ∼ 𝛿𝑢𝑦, 𝛿𝜃10 ∼ 𝛿𝑢𝑧.

(84)

The results for 𝛿𝜃5,6 and 𝛿𝜃3 can be obtained only
after obtaining the explicit expressions for 𝜆5,6 and
𝜆3, so they cannot be found in the nondissipative hy-
drodynamic approximation. Expressions (84) except
for the expressions for the plasma modes coincide
with the analogous ones from (73). The expression for
the plasma modes 𝛿𝜃4,8 corresponds to their common
physical understanding as related to the deviation of
the charge density from zero.

The modes 𝛿𝜃4,8 with the frequencies 𝜆4,8 describe
the plasma oscillations with damping related to the
relative velocity relaxation rate 𝜆𝑢. The frequency of
these oscillations is shifted similarly to the influence
of the friction on oscillations

𝜔 =
√︁
𝜔2
𝑝 − 𝜆2𝑢/4, (85)

and the damping rate

𝛾𝑅 = 𝜆𝑢/2 (86)

does not vanish at 𝑘 = 0. In a different approach,
which is based on the calculation of the dielectric
permittivity taking the collisions into account, the
damping rate of plasma oscillations was found, for ex-
ample, in [2]. The above result (86) coincides with the

Table 1. Density and temperature for some plasmas

Plasma 𝑛e, cm−3 𝑇,𝐾

Tokamak 1014÷1015 108

Interplanetary plasma 10−2÷101 104

Solar corona 104÷108 106÷108

Table 2. Damping coefficients for some plasmas

Plasma 𝛾𝑅/𝜔𝑝 𝛿

Tokamak (0.3÷1.5)× 10−8 0.146÷0.152

Interplanetary plasma (0.03÷1.5)× 10−9 0.133÷0.144

Solar corona 3× 10−14÷ 5×10−9 0.119÷0.148

mentioned one if the relaxation rate 𝜆𝑢 is taken from
(49). However, our theory of the collisional plasma
oscillation damping is more general than the theory
developed in [2]. We note that the theory developed
in [2] is devoted only to the “jelly” model, where the
ion subsystem is an equilibrium one.

As is known, not only the relaxation, but also the
Landau damping take place in plasma. If 𝑘𝑟D ≪ 1,
the rate of the Landau damping is given by the for-
mula [2]

𝛾L =

√︂
𝜋

8

𝜔𝑝

(𝑘𝑟D)
3 exp

(︂
− 1

2𝑘2𝑟2D
− 3

2

)︂
, (87)

where 𝑟D ≡ (𝑇/4𝜋𝑛𝑒𝑒
2)1/2 is the Debye length. As is

seen, 𝛾L vanishes if 𝑘 = 0, that is why the obtained
relaxation damping is much more important than the
Landau damping, if 𝑘 is small.

To illustrate this fact, let us give numerical data
for some completely ionized plasmas, considering the
case 𝑧 = 1. As is known [10], the Coulomb logarithm
is estimated as 𝐿 ∼ 10÷15. The approximate values
of the quantities 𝑛𝑒 and 𝑇 for some plasmas are taken
from [10] and given in Table 1. The results which are
related to the relaxation damping and the Landau
damping coefficients are given in Table 2.

As is seen from the tables, for the widely known
cases of a completely ionized plasma, 𝜆𝑢 ≪ 𝜔𝑝, and
the frequency shift of the plasma oscillation from
𝜔𝑝 in (85) due to the relaxation damping is neg-
ligible. However, the relaxation damping rate 𝛾𝑅 is
higher than the Landau damping rate 𝛾L if 𝑘 → 0.
The range of the 𝑘𝑟D values, where the relaxation
damping is more important than the Landau one, is
given for the considered cases in Table 2 and rela-
tions (49), (86), and (87) (the quantity 𝛿 is defined as
follows: if 𝑘𝑟D < 𝛿, then 𝛾L < 𝛾𝑅).

7. Conclusion

The hydrodynamics of a completely ionized two-
component plasma is studied on the basis of the Lan-
dau kinetic equation. The Landau equation is solved
by a generalized Chapman–Enskog method, which in-
volves the component temperature and velocity re-
laxation at their end and is based on the Bogolyubov
idea of the functional hypothesis.

The obtained component fluxes of the particle num-
ber, energy, and momentum in the first order in gra-
dients (33) describe the heat conductivity, viscosity,
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and diffusion in the system. These fluxes can be writ-
ten in the form that introduces the kinetic coefficients
of the system. In the literature, there are several def-
initions of kinetic coefficients for many-component
systems, but in the absence of relaxation (see, for ex-
ample, [5,6,22]). It is planned to discuss the transport
phenomena in the system in detail in a subsequent pa-
per, considering the definitions of kinetic coefficients
and the results of their calculation.

The hydrodynamic and kinetic modes (72) of the
Landau kinetic equation are obtained in the hydrody-
namic approximation with additional account for the
small electron-to-ion mass ratio. It is shown that six
modes of the system are the standard hydrodynamic
modes of a two-component plasma. Four other modes
of the system are relaxation ones, and they are due
to the component temperature and the velocity re-
laxation. The calculation is restricted to the solution
of the integral equations that describe kinetic modes
in the one-polynomial approximation. The other in-
tegral equations of the theory are solved in the one-
or two-polynomial approximation.

Since the Landau kinetic equation describes only
the short-range part of the Coulomb interaction with
a logarithmic accuracy, we discuss two approaches
taking the long-range part of the Coulomb interac-
tion into account.

The first approach proposes a description of the
long-range effects by the intrinsic degrees of freedom
of the electromagnetic field in plasma following the
ideas of D. Bohm and D. Pines. To overcome the high
dimensionality of the system, it is proposed to de-
scribe the subsystems of the electromagnetic field and
the charged particles by their modes. In doing so, one
needs the modes of the Landau kinetic equation inves-
tigated in the present paper. An example of the use
of subsystem modes in an investigation of the modes
of a complex system is given in our paper [21].

The second approach describes the long-range ef-
fects by adding the Vlasov term to the Landau ki-
netic equation. This gives the Vlasov–Landau kinetic
equation. At the moment, we cannot construct a com-
plete theory of hydrodynamic states of this equation
based on the generalized Chapman–Enskog method.
Probably, a physically adequate consideration of the
problem should justify an understanding of plasma
quasineutrality, assuming that the charge density of
a nonequilibrium plasma is small. Here, we have in-
vestigated the modes of the Vlasov–Landau kinetic

equation only in the nondissipative hydrodynamic ap-
proximation (i.e., without consideration of dissipative
hydrodynamic processes: heat conductivity, viscosity,
and diffusion). The possibility to solve this problem
is related to the following statement: in spatially uni-
form states, a self-consistent field is absent, and one
can calculate the plasma distribution functions only
on the basis of the Landau kinetic equation. The dis-
tribution functions in the zero order in the gradients
of the hydrodynamic variables are calculated above
and the plasma modes in the nondissipative hydro-
dynamic approximation are investigated with regard
for the long-range properties of the Coulomb interac-
tion. In this process, the relaxation rate, related to
the component relative velocity, plays the role of a
friction constant, which leads to the relaxation dump-
ing of plasma oscillations and a shift of the plasma
frequency. These phenomena are related to the short-
range part of the Coulomb interaction. The famous
Landau damping of plasma oscillations is related to
the long-range part of the Coulomb interaction. This
follows from the possibility to obtain the Landau
damping by considering the attenuation of long longi-
tudinal electromagnetic waves in plasma. Our inves-
tigation shows that, at small wave vectors, the atten-
uation of plasma oscillations is governed by the relax-
ation damping, while the Landau damping is negligi-
bly small.

The authors are grateful to Dr. Anton Stupka for
a fruitful discussion of the problem.
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ГIДРОДИНАМIЧНI, КIНЕТИЧНI
МОДИ ПЛАЗМИ I РЕЛАКСАЦIЙНЕ
ЗГАСАННЯ ПЛАЗМОВИХ КОЛИВАНЬ

Р е з ю м е

Гiдродинамiку повнiстю iонiзованої двокомпонентної елект-
рон-iонної плазми дослiджено у випадку, коли релаксацiя
температури та швидкостi компонент близька до заверше-
ння. Обговорено проблему врахування в кiнетицi плазми
особливостей кулонiвської взаємодiї. Дослiдження ґрунту-
ється на кiнетичному рiвняннi Ландау та методi Чемпена–
Енскога, узагальненому на основi iдеї функцiональної гiпо-
тези Боголюбова. Отримано нелiнiйнi гiдродинамiчнi рiв-
няння. Побудовано лiнеаризованi гiдродинамiчнi рiвняння
i дослiджено гiдродинамiчнi та кiнетичнi моди кiнетично-
го рiвняння Ландау у гiдродинамiчному наближеннi. Ви-
вчено вплив релаксацiйних процесiв на еволюцiю системи.
На основi кiнетичного рiвняння Власова–Ландау дослiдже-
но моди плазми в недисипативному гiдродинамiчному на-
ближеннi. Деякi з них описують релаксацiйне згасання пла-
змових коливань, яке при малих хвильових векторах 𝑘 → 0

є набагато бiльш вагоме за згасання Ландау.
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