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ANALYTICAL DESCRIPTION OF THE CRITICAL
BEHAVIOR OF A THREE-DIMENSIONAL UNIAXIAL
MAGNET IN AN EXTERNAL FIELD BY SINGLING
OUT A REFERENCE SYSTEM

The critical behavior of systems belonging to the universality class of the three-dimensional
Ising model has been studied theoretically. A three-dimensional Ising-like system with expo-
nentially decreasing interaction potential and in the presence of a homogeneous external field
was considered in the framework of the collective variables method. A specific feature in the cal-
culation of the partition function and the free energy of a uniazial magnet consists in singling
out a reference system. The role of the latter is played by the molecular-field Hamiltonian. A
method to describe the critical behavior with the use of a singled out reference system is de-
veloped on the basis of a non-Gaussian (quartic) distribution of order-parameter fluctuations
(the p* model).
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1. Introduction

In this paper, we study the behavior of a three-
dimensional Ising-like system in a vicinity of its crit-
ical point. Similarly to what is done while studying
the critical behavior of fluid systems [1], we select a
reference system in calculations of the partition func-
tion of the Ising model. This reference system is a
somewhat idealized physical one describing the most
common features of the analyzed system, being rather
simple at the same time. It does not pretend to give a
complete description of the phenomenon, but makes
it possible to obtain an exact or sufficiently general
solution of the problem. An example of such systems
for fluids is an ensemble of hard spheres. In the case
of the Ising model, a model system with the mean-
field Hamiltonian is proposed to be used as a ref-
erence one. The idea of this approach was proposed
in [2], where a complicated equation for the self-
consistent field was obtained up to the fourth virial
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coefficient. However, in the critical region, each of the
virial coefficients contains diverging integrals result-
ing from the application of a Gaussian basis distribu-
tion.

This work aims at constructing a method to de-
scribe the critical behavior, in which the Hamiltonian
of a self-consistent field is used as a reference system,
whereas the partition function is calculated with the
use of the non-Gaussian distributions of fluctuations
of the order parameter. The microscopic description
of the critical behavior of Ising-like systems built in
this work can be applied to develop the theory of
critical phenomena in various three-dimensional sys-
tems. The theoretical description of the critical be-
havior of real systems at a certain stage of calcula-
tions is reduced to the description of a phase transi-
tion in the framework of a definite model [3]. The
development of the method for the calculation of
main thermodynamic and structural characteristics
for one of the basic phase transition models, namely,
the three-dimensional Ising model, opens a way to
the description of more complicated physical sys-
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tems. Therefore, the solution, as complete as possible,
obtained for the three-dimensional Ising-like system
is a key to the description of the critical behavior of
many physical objects.

The research procedure proposed in this work can
be applied, e.g., while studying crystals with strongly
anisotropic interactions, in which the magnetic mo-
ments of molecules can be considered as directed
only “upward” or “downward”; for example, FeCly
and FeCOs [4]. Other examples of Ising (anisotro-
pic) ferromagnets include some rare-earth hydroxides
R(OH)3 — e.g., Tb(OH)3, Dy(OH)3, and Ho(OH)3 —
and rare-earth lithium fluorides LiRF4 (LiTbF, and
LiHoFy,) [5]. Rare-earth ortho-aluminates DyAlOg
and TbAlOg3, as well as rare-earth aluminate garnets
Dy3Al;015 and Tb3Al5012, are also the examples
of Ising antiferromagnets. The Ising model and real
magnetic materials provide a convenient opportunity
for the theory and the experiment to profitably inter-
act with each other [6].

2. Reference System

Let us calculate the partition function of a system
with the Hamiltonian

1
H = —iz@(rij)UiO'j — ’Hzl:dl. (1)
1)

Here, o3 = =1 is the spin variable, ®(ry;) =
= Aexp(—rj;/b) is the exponentially decreasing in-
teraction potential characterized by the constants A
and b, ry; is the distance between the particles, and
H is the external field. The summation in Eq. (1) is
performed over the sites of a simple cubic lattice with
period c. The task consists in calculating the partition
function

Z =Spe PH (2)
and the free energy

F(T,H)=—kTInZ(T,H). (3)
Here, 3 = (kKT)~! is the inverse temperature. For-

mula (2) will be calculated in the space of collective
variables (CVs) constructed on the operators

Px= N 20167“‘1, po = TIN 2130’1,
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(po)*= % (Z 01) ;
1

where N is the number of particles in the system. In
the CV representation, expression (2) is written in
the form

« L ot o} (1)

keB

Here, h = BH, px is a collective variable defined
in work [2], ®(k) is the Fourier transform of the in-
teraction potential, and the product contains delta-
functions. The summation is carried out over the
wave vectors belonging to the first Brillouin zone,

m ™ Ny

k: g 2 = —_—

B{ (kauky)kz”kl c + CNi’
n;=1,2,...,2N;, i= amy,z}, (5)

where the quantities N; determine the total number
of particles, N = NN, N..

Let us substitute the term $3®(0)p3 in Eq. (4) by
the expression

2
1 1
5520) <¥ 01) .

This operation is valid, because the integrand in
Eq. (4) contains the delta-function 6 (pg—pp) enabling
the mutual exchange of the variable py and the oper-
ator pg to be done. As a result, expression (4) reads

N 3 > BE(k)prp—k
7= / (dp)Ne” i Trs (o), (6)
where ,
ﬁg(o) ZUI +h20'1 .
Tusp) = Spfe ™ () T 5=} (1)
keB

In order to calculate the explicit form of expression
(7), let us take advantage of the integral representa-
tion

H 5(pc — px) = /(dW)N exp [QW Z(Pk - ﬁk)wk]7

keB keB
(8)

363



M.P. Kozlovskii, 1.V. Pylyuk

where the variables wy are conjugate to the CVs
Pk. Substituting Eq. (8) into Eq. (7), we obtain

Jrs(p) = /(dW)NG
£2(0) o : oy —2mi Wk p
X Sp{e 2 (zl: 1) +h21: le 2 k;B kpk}_ (9)

Now, let us put ®(k) = 0 for £ # 0 in expres-
sion (6) and let us designate the partition function
corresponding to this condition as Zrs. We come to
the known relation for the partition function in the
molecular field approximation,

Zps = Sp{exp [ﬂ;g?) > owov+hy 01}}. (10)

LV 1

270 Y wkpPk
keB X

The free energy corresponding to formula (10) looks
like [4]

1 4 1
F=—-kTN<{Z1 Zd(0)M2.
g {2“1—M2}+2 ©)

(1)

In this approximation, the magnetization M per one
site is given by the expression

M = tanh [(®(0)M + H) j], (12)

which was obtained in work [7] for the first time. It
is easy to see that, for H = 0, we obtain different so-
lutions for M at T' > Teym and T < Teowm, where Toum
is the phase transition temperature in the molecular
field approximation, Tey = ®(0)/k. The non-zero or-
der parameter exists only at T' < Tcm. According to

Eq. (12), the known relation can be written down as
H = —P(0)M + kT arctanh M. (13)

Let us return to expression (6), where the refer-
ence system is singled out, but no approximations
are made. We intend to use the known identity

eémw)}v(;ol)z:< N )1/2><

N 2 2788 (0)
X / exp (— 22\;’?0) + cpEl:m) do, (14)

which is valid at ®(0) > 0. Then the partition func-
tion of the system can be expressed in the form

N O\ T _ Ne?
o O I el CCACERS

— 00
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1 .
X exp (2 Z BP(k)pxp—x + 2mi Z wkpk> X

k0 keB

N )
{ (h+p) > o1—2mi wleﬁ > O'le[kl}
e 1 keB 1=1 .

X Sp (15)

Executing the Sp operation, we obtain the sought ex-

pression for the partition function in the CV repre-
sentation with the singled out reference system,

N 1/2 ® N2
Z=(——_) oV [ dpe @
(%6@(0)) / e .

LS BO(k)pkp—k 27 Y wip
. / (dp)V (dw)Ne™ 7o TS Joy ().
(16)
Here, we introduced the notation
Jem(w) = exp {Z Incosh (¢ + h — 2miw) |, (17)
1
where
1 kI
w = — wge™ " 18
-y (18)

Expression (17) can be written in the form of a cu-
mulant series expansion

Jom(w) = exp (Z D(w)), (19)
n>0
where
(=2mi)" Mo(h, )
D”(w): n! Nn/2—1
X Z Wiy - Wk, Ok 4.4k, » (20)
T

and Jk, +. +k, is the Kronecker symbol. For the cu-
mulants M., (h, ), the following expressions are ap-
plicable:

Mo=Incosh(p +h), My =rtanh(p + h),
Mo=1- M3 Msz=-2M;Ms,,

My= —2Msy + 4M%M2,

Ms= 16 M1 M3 — SM3F Mo,

Meg= 16 M3 — 88M3M3 + 16 M Ma,

Expression (16), in which Jeoy is given by formulas
(19)—(21), forms a basis for further calculations. The
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cumulants M,, in Egs. (21) depend on the exter-
nal field magnitude H and a certain internal field
. To elucidate the nature of the latter, let us put
BP®(k) = 0 for all k& # 0, which takes place, when
we neglect the contributions of many-particle inter-
actions. Then, with the use of Eq. (16) and

Jom(w) = Jom(0) = e meoshite), (22)

we find the corresponding expression for the partition
function,

N 1/2 o0 o
o= [ —— 2N *Q[T(o)wLNlncosh(hﬁwp)d .
’ Qm%wﬂ /e ?

— 00

(23)

Applying the saddle-point method, we obtain the free
energy

-2
Fy=—kTN {

@
23%(0)

+ Incosh(h + @)] , (24)

where the quantity @ is determined from the equation

& = B(0) tanh(h + 3). (25)

Comparing Eqs. (25) and (12) with each other, we
find

7 = BB(0)M. (26)

Hence, the average value of internal field @ is con-
nected with the order parameter. However, unlike the
“introduction” of an internal field in the molecular
field method, the proposed approach gives rise to ex-
pression (23), which implies the integration over all
possible fields ¢ with a certain distribution function.

In the general case, the quantity S®(k) differs from
zero, and just this circumstance is responsible for
the influence of many-particle interactions on the for-
mation of physical quantities near the second-order
phase transition point. For the partition function, we
have representation (16), where the quantity Jen(w)
is given by expression (19) containing both even and
odd cumulants, which, in turn, are functions of the
external, h, and internal, o, fields.

3. Particular Representations
of the Partition Function with the Singled
Out Reference System

The functional representation of the partition func-
tion (16) is rather complicated from the viewpoint of
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its further integration over the variable ¢ and the de-
termination of the dependence on the external field
h, because each of those quantities governs the cumu-
lants, i.e. My (h, ). Therefore, let us return to ex-
pression (15) and write it in the form

7= <2w5]§><0> J

3 2 Be(k)pkp—x hVNpo+2mi 3 wipk

1/2 No?
) dpe™ 2520 /(dp)N(dw)N X

X e k70 e keB X
N
w301 1 -
x Sp {e U exp <—2m' Z Wk —— Z ale“d)}.
wes VNI

(27)

In comparison with Eq. (15), the exponential function
exp (h )", 01) is removed here from the expression un-
der the Sp sign, because of the multiplier 6(py — po)
is present in the integrand, which allows the operator
Po to be substituted by the variable pg. As a result of
this operation, we obtain the following expression for
the partition function:

N 1/2 s N2
7= 2N dpe™ 282(0)
(%5@(0)) .

1Y BB(k)prp-i

X /(dp)N(dw)Ne K0 X

X exp (h\/ﬁpo + 2mi Z wkpk> Jo(w), (28)
keB
where (2mi)" Mo (o)
—27mi)" My (e
Jo(w) = exp [Z T Nt X
n>0 ’
X Z wkl...wkﬂ’5k1+_,.+kﬂ/:|. (29)

ki,....kn

Here, in contrast to Egs. (21), the cumulants M., ()
depend only on the internal field ¢, whereas the de-
pendence on the external field is contained only in the
term hv/N po entering the argument of the exponen-
tial function in the integrand of expression (28). Now,

Mo(p)=1Incoshp, M;(p)=tanhp =z,

Ma(p)=1—22 =y,, Ms(p)=—2z,y,,
My(p)= =2y, + 422y, (30)
Ms ()= 162,y2 — 82l yq,
M (p)= 16y2 — 8822y + 1622y,
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Representation (28) substantially simplifies further
calculations aimed at finding the dependence on the
external field. However, the dependence of cumulants
on the internal field survives.

Expression (15) enables us to write another repre-
sentation for the partition function,

v oN 2/31(0)
(27rﬁ<1> ) /dgpe X

1S pR(k)prp—
e 70 X

< [ (o) ()

X exp (go\/ﬁpo + 2mi Z wkpk> Jp(w), (31)
keB
where
(=2mi)™ My (h)
Jp(w) = exp L;J o Nt X
X Z Wk, ...wkn5k1+.“+kn:|. (32)
st

Here, the cumulants M, (h) look like expressions
(30), but depend on h rather than .

The simplest form for a representation of the par-
tition function with the singled out reference system
is given by the formula

1/2 *
s

— 00

3 2 BP(K)pkp—
X/(<ip)N(dw)N62’“?” T

(¢ + h)VNpo + 2mi Z Wkpk‘| J(w), (33)

keB

X exp

where the transition Jacobian J(w) looks like

2
J(w)=exp {Z ((;:LZ))Manl X
n>1
Z Wiy «e- Wk, 6k1+-~-+k2n:|' (34)

ki,...kan

Note that all odd cumulants and the cumulant M
in Eq. (33) equal zero, and the even cumulants have
the following specific numerical values [2]:

M2 = 17 M4 = _27 MG = 167
366

(35)

By comparing the expressions obtained above, we
arrive at the following important conclusion. The
functional representation of the partition function for
the Ising model in the presence of an external field
in a singled out reference system (the molecular-field
Hamiltonian) can include only even cumulants, as in
formula (33), or both even and odd cumulants, as in
formulas (16), (28) and (31). Each of the represen-
tations given above is exact and can be used in fur-
ther calculations. Certainly, in specific calculations,
the number of terms in the argument of the exponen-
tial function in the integrand has to be finite. While
describing the phenomena in a vicinity of the second-
order phase transition point, all the terms up to the
fourth order in the variable inclusive have to be taken
into consideration [2]. This makes possible to obtain
a qualitative picture of a phase transition in the pres-
ence of an external field [8]. Taking the sixth-order
terms into consideration allows one to say about the
quantitative results of the theory [9]. Therefore, the
accuracy of a calculation technique should be related
only to the number of terms (cumulants) that were
taken into account, while calculating the partition
function rather than the form of a distribution con-
taining only even (or odd) power exponents of the
variable in the exponential function argument.

4. p* Model

For further calculations, let us take expression (33)
as a basis. In the corresponding expression for J(w),
only the terms of the second and fourth orders in wy
will be taken into account. In this case, the partition
function of the system reads

1/2 o0
<2 ﬁ]i(O)) 2N / dpe” B
™

— 00

1
[ et 2 o

X exp [27ri Z Wk P

keB

E Wiy - wk45k1+ +k4:|

..... ky

keB
(2m)* 1
2 N,

(36)

Integrating over the variables wy and using the cal-
culation procedure described in work [10], we obtain
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the following explicit form for the partition function
in the p*-model approximation:

N 1/2 x N2
LY BB pepn

x/(dp)Ne k0 X

1
< oxp (1 0) VR — 502 Y s
keB

1a4

Z Pky e Pk45k1+~-+k4 : (37)

The coefficients ag; are calculated according to the
formulas

ao=In [(2m)~1/2(3/2)1/er" 11U (0, )],
ar= (3/2)20(y), a1 = (3/2)p(y).

where U(y) and ¢(y) are the combinations of
parabolic cylinder functions U (a,y) [10], with the ar-
gument y accepting the value y = (3/2)'/2. Then,
ag = —1.0557, as = 0.6449, and a4 = 0.1826. By
its functional form, the part of the integrand depen-
dent on CVs is similar to the corresponding expres-
sion obtained in work [8]. There are only two differ-
ences. One of them consists in the substitution of the
dimensionless field h by the quantity

(38)

hy =h+ . (39)

The other is associated with the absence of a term
with & = 0 in Eq. (37). This circumstance is not
essential from the viewpoint of the step-by-step cal-
culation of the partition function in the framework
of the Yukhnovskii method [2, 10]. The variable pg
is used in this process only at the final calculation
stage, i.e. after the point of exit of the system from
the critical fluctuation regime. Therefore, according
to the results of work [8], the partition function of
the model with Hamiltonian ((1) takes the form

(oo}
2
Z =N / dipe™ 950 ¢ FFa=BFEY =BFm 71() - (40)
— 00
where the analytical part of the free energy, F,, being

a function of the relative temperature 7 = (T'—T,) /T,
looks like

1 _
F, = —kTN(y + T +7271%) — §N<I>(0)<I>. (41)
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The expressions for the coefficients ; and the quan-
tity @ can be found in work [8].

The contribution to the free energy from the critical
regime of fluctuations equals

FSP = kT Noy*t s 30t (42)
Here, Ny = ngd, and d = 3 is the space dimen-
sionality. The parameter sy determines the interval
of wave vectors, where the Fourier transform of the
potential ®(k) is well approximated by a parabola.
The coefficient 5+ was determined in work [8], and
s is the parameter of division of the CV phase space
into layers. For n,, we have the relation

In(hy, + he)
1= < 43
np + 111 E1 ’ ( )
where the notations
he = 32 (h+ @) /R, he = |7 (44)
are introduced, and

In E1
T = = . 4
7 =1 (c1x/fo) o By (45)

Here, F; and E5 are the larger and smaller, respec-
tively, eigenvalues of the matrix for the linear renor-
malization-group transformation. The quantities ¢y
and fy characterize one of the coefficients in the solu-
tions of the recurrence relations and one of the fixed
point coordinates, respectively, whereas the parame-
ter hg determines the normalization condition for the
critical amplitude of the correlation length (at the
critical temperature Tt.).

The contribution to the free energy from the tran-
sition region (from non-Gaussian to Gaussian order-
parameter fluctuations) is given by the formula (see
work [8])

Frg = *kTNofnp+1873(n”+1)~ (46)
For Z'(y) in Eq. (40), we have
7! = 2(an+2*1)/2 [Q (P71,p+1)]an+2 an+27 (47)
where
an+2:/(dp)an+2 exp [hw\/ﬁpo -
1 I
~3 Z dn,,+2(k)prp—x—
kEBn,+2
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(n +2)
T Nt D oo itk | (48)
ky,....ky
ki €8y, 1o
The primed sum sign means that, for & = 0, the
equality
dn, +2(0) = ag"*? (49)
is obeyed. For all k # 0, the expression
dn, (k) = a5 — BB(0)(1 - 26%K?) (50)
is valid. Let us use the notations
Fay2 = (" = B0 (0))s0+2), (51)
Un, 4o = az(lnp+2)S4(np+2)7
where the quantities
Tny+2 = BP(0)fo (—1+ EoH.), (52)
tn,+2 = (52(0))° po (1 + @ Ea He)

were calculated in work [8]. Carrying out the change
of variables,

Pk = Nk + \/NO'(Sk7
in Eq. (48), we obtain

D, s2=eNF0l#) /(d??)N"er2 X

1 _
X exp [Ao\/ﬁno —3 > dk)max—

kEBnp+2
b1
- a Z Tk, - 77k35k1+ ks T
6 \% ”P+2 ki€Bn,+2
(np+2)
ay 1
—_ 24 Nn » Z ’I7k1 ...’I’]k4(5k1+.“+k4 . (53)
P ki€Bn,+2
Here,
1
Eo(0,0) = (1o + h)o — 50%ag" ™ —
Un,+2 3 —(np+2) 4
— L ggs T g
24 0 (54)
n un
Ag = (p+h) — galrt?) — Ziet2 8-y 42) 58

b=u, +230/2 ~5/2(np+2) 5

368

As was done in work [8], the shift o is determined
from the condition

8E0(0', SD)

=A,=0.
Jdo 0=0

(55)
It is easy to see that, for large n, values (the region
of critical fluctuations), Eq. (55) has a solution

_ p+h
O = Ty (56)
as

Comparing the shift value given by formula (56) with
the corresponding expression obtained in work [8]
(where the reference system was not singled out), we
reveal a principal difference. It consists in the absence
of the term B®(0)p? in the argument of the exponen-
tial function in expression (48).

Substituting Eq. (56) into the formula for Fy(c, ¢)
in Egs. (54), we obtain

2
Lhy _

Un, +250 —(np+2)h4
2 ag

Eo(p) = 24a?
2

(57)

Here, the notation as = a;anrz) is introduced. For

k = 0, the coefficient d(k) in expression (53) satisfies
the relation

7 1 3 N
d(0) = az + *Uanrzsosf(n”+ )f;", (58)
2 as

whereas, for all k& #£ 0,

1 hZ
(np+2) + —Up, +25857(”p+2) % +
2" as

d(k) = rnp+2572

+ 280 (0)b? k2. (59)
In the case where T" > T, and the field is low, the
coefficient 7,,, 42 > 0. Therefore, while calculating
Eq. (53), the Gaussian distribution of fluctuations can
be used, as was proposed in work [8]. Then, the con-
tribution to the free energy from Eq. (47) reads

F'(¢) = —kTN [Eo(¢) + s 33—3st—3<%+1>] (60)

Here,
1 1 1
fa = 51112 — Zln3+lns+ — Iy, 11 — §IHTR7
1 3 1
— 5 In U(xnp+1) Syand f ) (6]‘)
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and
1 Un,+2
— 3.np+2712
TR = Tn,+2 T 5%305 PR,
a3

3 \/2
Tnp+1 = d7lp+1(B"p+27 B"P+1) <("p+1)> ’
ay

1/2
Ynp+1 = 53/2U(Inp+1) <3> / )
@(wn;ﬂrl)

npy+1
dpy+1(Bn,+2, Bn, 1) = ad" Y — BP(Bn, 42, Bn,+1)-
(62)

The quantity ®(B,,, 12, Bn,+1) is the average value
of the Fourier transform for the potential ®(k) in the
wave vector interval k € By, 11\Bn,+2. For fg, we
obtain

2 2

fgv =In(1+d%) — 3 + el arctana, (63)
where

_wb (288(0))/?
O

Taking the expressions obtained above into ac-
count, we write the partition function for the Ising
model with the singled out reference system in the
following form:

i 2
N
7= /dg}exp {_2;1»(0) ~PF - BFG-

—BFrR — 5F/(<P)]~ (64)
Here, F,, describes the analytical part of the free en-
ergy, which does not depend on ¢ (see Eq. (41)),
and Fé;) is the contribution from the critical regime
of fluctuations. The latter is given by formula (42),
where the dependence on ¢ is contained in the quan-
tity n, from Eq. (43). Formula (64) is calculated us-
ing the saddle-point method. The equation for the ex-
treme point of the integrand in Eq. (64) looks like

{@ th e W g

az  BP(0) ¢

— Msf(npﬂ)h?' _ lns% %
6a; ¢ D

x |3y(H)s30m+1) _ Ms—(nwmm
s 24a;3 ¢

=0.

=@

(65)
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In Eq. (65), all terms proportional to hi are taken
into account, and 7§+) = Sag(fnp+]_ —7H) + fa/s?).
The total contribution from all fluctuation regimes

to the free energy of the system at temperatures 7' >
T. equals

F=F,+Fy(p)+Fy" (66)
Here,

%
Fy(@) = —KTNAW (kg +ho) ", (67)
and
F = —kTNEy(p). (68)

The value of ¢ is determined from Eq. (65). In the
case 7 > 7%, the quantity n, is constant (close to
unity) and does not depend on h,, and, hence, ¢. The-
refore, its derivative with respect to ¢ vanishes. The
same is valid for the quantity 7§+). Equation (65) re-
produces the result of the molecular field theory for
@. For all 7 < 7*, the dependence of ¢ on the vari-
ables 7 and h is not analytical, and, consequently, we
have expression (66) for the free energy in the critical
region.

5. Conclusions

A technique for the description of the critical behavior
of a three-dimensional uniaxial magnet in an exter-
nal field has been developed. In its framework, the
Hamiltonian of the self-consistent field is used as a
reference system, and the partition function is cal-
culated in the quartic approximation for the distri-
bution of order-parameter fluctuations. Various forms
of a functional representation for the partition func-
tion with the singled out reference system are ob-
tained and discussed. Each of them is exact and can
be used for further calculations. The choice of the
simplest representation form for the partition func-
tion, which includes only even power exponents of
the variable (up to the fourth order inclusive), al-
lowed us to apply the results of previous researches,
which were obtained without singling out the refer-
ence system. Proceeding from this simplest form of
a representation, the free energy of a one-component
spin system in the critical region is calculated.
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The performed researches make our knowledge con-
cerning the critical properties of the systems belong-
ing to the Ising class of universality more compre-
hensive, being also a certain methodological contribu-
tion to the theoretical description of critical phenom-
ena. The results of this work obtained for the three-
dimensional Ising-like system in an external field may
be found useful for the description of fluid-gas crit-
ical points in both a one-component fluid [11-13]
and a binary fluid mixture (see, e.g., work [14]). The
functional of the partition function for those systems
corresponds to the partition function of the Ising
model in an external field. A new result in the de-
scription of the fluid-gas critical point in compari-
son with the Ising model is the dependence of the
grand partition function on the temperature and the
chemical potential. The latter is equivalent to the
inclusion of a constant external field into the Ising
model.
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AHAJIITUYHUN OIINC KPUTUYHOI
I[MOBEJIHKY TPUBUMIPHOI'O OJHOBICHOI'O
MATHETHKA B 30BHIIIITHBOMY ITOJII

3 BUALJIEHHAM CUCTEMU BLIJIIKY

Peszmowme

Pobory npucssiueHO TEOPETHYHOMY BHUBYEHHIO KPDUTHUYHOI IIO-
BEJIHKM CHUCTEM KJacy YHIBepCaJIbHOCTI TPUBUMIipHOI MoeJi
Isunra. TpuBumipna izunromnoibHa cucrema 3 eKCIOHEHIIHHO
CIIaJHAM IIOTEHIIAJIOM B3a€MO/Iil JOCIIKYETHCA B METOi KO-
JIEKTUBHUX 3MIHHHUX 3a HASBHOCTI OJHOPIJHOIO 30BHIIIHBOI'O
mosist. XapaKTepHOIO OCOOJIMBICTIO PO3PAXYHKY CTATUCTHIHOL
CyMHU Ta BiJIbHOI eHepril OJHOBICHOIO MarHeTHKa € BHIIJICHHS
cucrteMu Bifutiky. Posib ocTaHHBOI Bijirpae ramiJibToHiaH MO-
JIeKyJIApHOro moJsist. MeTon onucy KPUTHYHO! IOBEAIHKHU 3 BU-
JIJIEHOIO0 CHCTEMOIO BiJIIIKy PO3BHHYTO Ha OCHOBI HEraycoBOro
(uerBipHOrO) posnoniny diykryaniii napaMeTpa nopsaky (Mo-
nemi pt).
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