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FREQUENCY LIMITS FOR CONDUCTING
GRAPHENE CHANNEL CAUSED BY QUANTUM
CAPACITANCE AND KINETIC INDUCTANCE

By analyzing the Boltzmann kinetic equation for mesosystems, it is shown that the quantum
capacitance and the kinetic inductance, which are analogs of the electrostatic capacitance and
the magnetic inductance, respectively, have to be taken into consideration while studying the
dynamic conductivity of a graphene channel, despite their different physical nature. The ac-
count of the quantum conductance and the kinetic inductivity leads to the appearance of a
mazimum of the impedance. In the case where the graphene channel is an ideal Landauer re-
sistor crossed by an electron without scattering, this maximum corresponds to the THz range
(therefore, the effect does not worsen the frequency characteristics of graphene FETs operat-
ing in the GHz range). However, for massive graphene channels fabricated with the use of the
CVD method, where the electron transport has the diffusive nature, this maximum corresponds
to the kHz or MHz range depending on the carrier mobility and the channel length.
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The dynamic conductivity of quantum nanosystems
is an important theoretical problem for nanoelectron-
ics (see, e.g., work [1]). The presentation of the main
ideas and methods of this “bottom-down” approach
proposed by S. Datta for the consideration of phe-
nomena in nanoelectronics can be found in a series
of methodological reviews by Yu.M. Kruglyak and
M.V. Strikha published in the journal “Sensorna Elek-
tronika i Mikrosystemni Tekhnologii” (issues from
No. 4 (2012) [2] to No. 1 (2015)).

There are a considerable number of works devoted
to the conductivity in metallic carbon nanotubes,
where the Luttinger liquid theory is used (see, e.g.,
works [3-5]). However, this theory imposes rigid con-
straints on analyzed systems. Therefore, a general
theory was developed in work [6] with the use of
the current-carrying-mode formalism (see, e.g., works
[1,2]), which is applicable to the systems with various
dimensions: from three-dimensional mesoscopic con-
ductors to one-dimensional quantum wires. In work
[6], it was shown that the correct solution of the
Boltzmann kinetic equation for a mesoscopic con-
ductor includes, in addition to the ordinary electro-
static capacitance and electromagnetic inductance,

© M.V. STRIKHA, 2015

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 4

the quantum capacitance and the kinetic inductance.
The new quantities can play a considerable role in
special cases and govern the specific features of the
dynamic conductivity in a system.

The role of the indicated effects in graphene was
studied, e.g., in work [7] in the framework of the
problem concerning the high-frequency limits for a
graphene field-effect transistor. By applying the pro-
cedure of self-consistent quantum-mechanical simula-
tion, the cutoff frequency of this transistor was shown
to be close to the frequency \/% associated with the
kinetic inductance and the quantum capacitance of an
ideal Landauer graphene resistor (an electron passes
through such a resistor without scattering [1,2]) and
amounts to about 100 GHz for a graphene channel
1 pm in length. However, the reduction of the chan-
nel length to 10 nm allowed experimenters to reach
the terahertz frequency range for today (see work [8]
and the reference therein).

At the same time, the issue of characteristic fre-
quencies for relatively massive graphene channels far
from the perfect Landauer resistor (their fabrication
became possible owing to the discovery of a cheap
technology of graphene production by the chemical
vapor deposition (CVD) technique [9]) remained be-
yond the scope of consideration till now. At the same
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Equivalent circuit for the conducting graphene channel: R the
ohmic resistance of the channel, Rc’s are contact resistances,
C the quantum capacitance, and L the kinetic inductance

time, such issues are challenging because, for exam-
ple, it is on the CVD-graphene with large dimensions
(800 x 200 pm?) that the standard of quantum re-
sistance was implemented [10] (according to the con-
clusion of the cited authors, this standard has ad-
vantages in comparison with modern GaAs-based de-
vices). It is important that the cited authors observed
a pronounced resonance at a frequency of 3.3 kHz
in the frequency dependence of the Hall resistance
against a weak descending linear background, which
they considered as an artifact of the unknown origin.

Below, we will consider an electric circuit with a
graphene resistor, which is connected to a source of ac
voltage. Pay attention that, in the majority of prob-
lems concerning the graphene physics, the current-
voltage characteristic is understood as the depen-
dence of the current in a graphene channel on the gate
voltage used for graphene “doping” with electrons or
holes [11]. However, in our case, we consider the gate
to be grounded. As will be shown below, the equiv-
alent circuit scheme including the graphene channel
can be represented as in Figure, where R, are con-
tact resistances (for simplicity, we consider them to be
identical), R is the ohmic resistance of the graphene
channel, C' the quantum capacitance, and L the ki-
netic inductance, which emerge owing to the solution
of Boltzmann kinetic equation following the proce-
dure similar to that described in work [6].

Let us write down the Boltzmann kinetic equation
for an electron that moves in the graphene channel
between the contacts along the axis x (the graphene
channel lies in the zy plane) in the standard form

o,

e N
ot ' me - %Ew . Vk:m f = Sintf7 (1)

where Sint is the collision integral, and the elec-
tric field is related to the electrostatic potential by
the expression E, = 29(U/e)/0x (e is the electron
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charge). Then Eq. (1) can be rewritten in the form

af ou of

In Egs. (1) and (2),

= Aintf' (2)

1
Em(p,%t)} +1

f=

exp |: 5T

is the nonequilibrium Fermi distribution function for
electrons moving along the channel at the velocity
v, and with the two-dimensional momentum with
the absolute value p, and E,,(p,z,t) is the elec-
tron energy that makes allowance for both the lin-
ear graphene spectrum and the presence of discrete
levels enumerated by the subscript m, which follow
from the quantization of the electron motion along
the axis z,

E.(p,z,t) = Ep £vpp + Uz, t) — p(z,t), (3)

where U(z,t) is the electrostatic potential generated
by the voltage applied to the channel, u(x,t) the
electrochemical potential (see, e.g., works [1,2]), and
vp = 10 m/s [11].

Taking Eq. (3) into account in the weak signal ap-
proximation (it means that g—g = ‘ZJ;’, where f, is
the equilibrium Fermi distribution function), we can
rewrite the second and third terms on the left-hand
side of Eq. (2) as follows:
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Then, Eq. (2) looks like

of of\ o _ 4
a + Vg <_ 8E> % - Slntf~ (5)

Now, let us multiply Eq. (5) by %, where [ is the

length of the graphene channel between the contacts,

sum up the result over all momenta p and quantum

levels m, and introduce the relaxation time 7 by the

formula

£ - _Ezvzsintf' (6)
m,p

T l
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In the regime of quasiequilibrium ballistic transport,
the current is proportional to the chemical potential
difference between the contacts and the average num-
ber of conductance modes in an energy interval of the
order of kT in a vicinity of the equilibrium potential
value (see, e.g., works [1,2]):

2e
I =

= (M), 7)
where

3 2 (~5m). ®)

From whence, the current can be written in the form

I= ? > o (- gg’) dp, (9)

m,vy >0

whereas the kinetic equation (5) looks like

oI I 10(u/e)

— =0 10
ot + T L Oz (10)
where L is the kinetic inductance introduced in the

weak current regime,
Ofo
- z (-5%)

According to Eq. (10), the quantity L-its dimen-
sionality in the SI system is H (henry)-can be inter-
preted as an inductance, which is of the kinetic rather
than electromagnetic origin, because it follows from
the alternative representation of the Boltzmann ki-
netic equation for a mesoscopic system. In the case
where the chemical potential changes linearly along
the graphene channel and the relaxation time is large
enough, Eq. (10) can be rewritten in a simple form
that connects the current with the chemical potential
drop along the channel:

(11)

ol Ap
L— .
ot e

(12)

On the other hand, the total charge of the graphene
channel with a unit width is described by the evident
relation

Q= —elZf(m,p),

m,p

(13)
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from whence the quantum capacitance can be intro-
duced, by using the formal relation

_ Qe
C= A (14)
Taking Eq. (13) into account, we obtain
dfo
= Z < ) (15)

Expressions (12) and (14) give ground to represent
the equivalent circuit of the graphene channel in the
form depicted in Figure, and expressions (11) and
(15) make it possible to evaluate the kinetic induc-
tance and the quantum capacitance, respectively.

Substituting (3) to Egs. (11) and (15), we can ob-
tain, similarly to what was done in work [6], approx-
imate expressions for the quantum capacitance and
the kinetic inductance (in so doing, we considered
the thermally averaged velocities of electrons to be
identical in each of m subbands):

2e2M 1
C =~ hon (16)
1 2e2M
= (u2). (17)

L~ hogl

Here, M is the total number of subbands approxi-
mately equal to the number of the de Broglie electron
half-waves across the graphene channel (the chan-
nel cross-section is made in the plane yz normally
to the current) [2, 6], and (...) means averaging for
electrons moving along the axis z (along the current
direction).

The impedance of the electric circuit shown in Fig-
ure is described by the known expression

R(1-w?LC) +w?RLC

7 =2R, +

(1-w?LC)?+ (wRC)?
iwL(l—wQLC)—wRQC (18)
(1-w?2LC)?+ (wRC)?

For w = 0, formula (18) reproduces the trivial result
Z =2R.+R. (19)

As the frequency of the applied ac voltage grows, a
resonance is observed at the frequency w,, where the
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imaginary part of Eq. (18) equals zero, and the circuit
resistance is maximum. This frequency is determined
by the formulas

R2C 1
Wy = W 1-— 7 ; WO:\/?.

Taking Eqgs. (16) and (17) into account, one can see
that if <v§> /v < 1, the approximate equality w, ~
~ wq holds true.

Let us estimate the frequencies predicted by ex-
pression (20). For a high-quality Landauer graphene
resistor [2], where the ballistic regime takes place, and
the electron passes between the contacts without scat-
tering, we obtain, with regard for Eq. (3), that (v2) ~
~ vi. Therefore, from Eq. (20), in view of Eqgs. (16)
and (17), we have

wo ~ v/ {(v2)/l = vp/l.

This expression brings about the terahertz frequency
for a graphene channel 1 gm in length, which is an or-
der of magnitude larger than the frequency obtained
in numerical calculations [7]. The frequency discrep-
ancy is associated with the neglect of the relaxation
time in our simple analysis, which we assumed to
be large enough, when changing from Eq. (10) to
Eq. (12).

However, in the case of a long graphene channel
grown up by the CVD method, when the electron mo-
tion has a diffusive character, and \/(v2) ~ u Esp (p
is the electron mobility, and Egp the time-averaged
electric field between the contacts), if the field Egp ~
~ 103 V/m and the mobility u ~ 1 m?/V s (this value
is typical of not too perfect CVD graphene), the fre-
quency has an order of megahertz. For lower fields
and mobilities, kilohertz frequencies are obtained eas-
ily (probably, this may be an explanation of the res-
onance in the data of work [10], as well as the reso-
nance at a frequency of about 450 kHz in the dynamic
conductivity of a submillimeter-size CVD graphene
channel [12]).

Note that the results presented above are estima-
tions and were obtained in the framework of a num-
ber of approximations. First of all, the current was
considered uniform in the y-direction (the approxi-
mation of a wide enough graphene ribbon). The re-
laxation time in the Boltzmann kinetic equation was
assumed to be large enough to change from Eq. (10)
to Eq. (12). The velocities of thermalized electrons in

354

(20)

(21)

different subbands were taken to be identical. In ad-
dition, various parasitic effects, which inevitably take
place in real systems, were neglected.

However, in the framework of a rather simple
model described by the Boltzmann kinetic equation
for mesoscopic systems and developed for the first
time in work [6], it was shown that the presence
of the kinetic inductance and the quantum capaci-
tance is not an obstacle for obtaining terahertz fre-
quencies in graphene field transistors with a micron-
size channel length (in this case, restrictions are
imposed by relaxation processes [7]). At the same
time, in massive graphene channels grown up us-
ing the CVD method, the quantum capacitance and
the kinetic inductance give rise to frequencies in the
kilo/megahertz interval. Hence, by varying the chan-
nel length (from hundreds of micrometers to millime-
ters) and the mobility (within an interval of 0.1-
1 m?/(V - s) typical of CVD graphene), we may hope
to obtain effective filters for the corresponding fre-
quency range.

The author is grateful to O. Nazarov, who stimu-
lated this work by reporting his experimental results,
and to Yu. Kruglyak, who, first in Ukraine, followed
the approach developed by S. Datta for the considera-
tion of mesosystems.
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M.B. Cmpiza

YACTOTHI MEXKI

JJIgd TPAOEHOBOI'O ITPOBIJHOI'O KAHAJLY,
3VMOBJIEHI HASABHICTIO KBAHTOBOI EMHOCTI
TA KIHETUYHOI THAYKTUBHOCTI

Pesmowme

Ha ocHoBi anasizy Kinernunoro piBHsgHHA BosbiiMaHa U1t Me-
30CHCTEM MOKA3aHO, IO IPU PO3IVIAIAl JUHAMIYHOI IPOBiTHOCTI
rpacdeHOBOro KaHaJIy CJIiJ JOJATKOBO BPAxXOBYBAaTH KBaHTOBY
€MHICTP i KiHeTHYHY iH[yKTUBHICTb, SIKi € aHAJIOTaMU €JIEKTPO-
CTATUYIHOI EMHOCTI i MAruiTHOI iHAyKTHUBHOCTI, ajie MalOTh iHIILY
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dizuuny npupoxay. BpaxyBaHHsI HassBHOCTI KBaAaHTOBOI €MHOCTI
¥ KIHETUYHOI IHyKTUBHOCTI IIPU3BOIUTH 0 MOSIBU MAaKCHUMYMY
iMnemancy. ¥ BHUIAAKY, KOJIM I'PadEHOBUI KaHAJ € i1eaJlbHIM
pesucTopoMm Jlangayepa, sikuil €JIEKTPOH IIPOXOAUTH 6e3 po3ci-
SIHHSI, [[efl MaKCHMMyM BiJIIOBi/Ta€ TepareprioBomy Jiarra3oHOBI
(i or>ke, edeKT He HOripIIy€e YACTOTHUX XaPAKTEPUCTUK I10JIHO-
BUX I'padeHOBUX TPAH3UCTOPIB, fKi IpaIOOThL y rirarepro-
BoMy aianasoni). OgHak Ui MaCMBHUX rpadeHOBHX KaHAJIB,
BUPOIIEHUX METO/IOM OCa/[?KyBaHHS 3 I1apoBol das3u, Je TPaHC-
IOPT €JIEKTPOHIB Ma€ audy3ifiHy IpUpPOAy, MaKCHUMyM Bimmo-
BiJlae KijloreprioBoMy abo MerareproBoMy Jalna30HOBI (3asexk-
HO BiJI PyXJIMBOCTI HOCIIB 1 JIOB’KMHM KaHAJLYy).
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