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Solutions of the Schrödinger equation are obtained for electrons in two-dimensional circu-
lar semiconductor quantum dots and rings in the presence of both external uniform cons-
tant magnetic field and the Rashba and Dresselhaus spin-orbit interactions of equal strengths.
Confinement is simulated by realistic square well potentials. The dependence of the energy
levels on the magnetic field and the strength of spin-orbit interaction is presented in detail.
K e yw o r d s: circular quantum dots and rings, Rashba and Dresselhaus spin-orbit interac-
tions, magnetic field.

1. Introduction

It is well known [1, 2] that the motion of an electron
in an inner layer of a semiconductor heterostructure
can be treated as two-dimensional in the (𝑥, 𝑦) plane
because of the existence of a confining quantum well
along the 𝑧 axis perpendicular to the (𝑥, 𝑦) plane. In
connection with the development of nanotechnology,
the study of quantum dots and rings in heterostruc-
tures acquires the increasing importance. The confin-
ing potentials are usually assumed to be axially sym-
metric: 𝑉𝑐(𝑥, 𝑦) = 𝑉𝑐(𝜌), where 𝜌 =

√︀
𝑥2 + 𝑦2. There

are two types of confining potentials, which are widely
employed in this area. First, the infinite hard walls
are used to describe quantum dots [3, 4] and quan-
tum rings [5, 6]. Second, the parabolic potentials are
applied to simulate quantum dots [7, 8] and quan-
tum rings [9, 10]. However, these models are unphys-
ical in principle, because they do not permit the ex-
istence of unbound states in the absence of a mag-
netic field. The simple, but fairly adequate potentials
of finite depth 𝑉 were proposed in [11, 12] for the
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two-dimensional circular quantum dots and in [13,14]
for the quantum rings. These square well potentials
are

𝑉𝑐(𝜌) =

{︃
0, 0 < 𝜌 < 𝜌𝑜,

𝑉, 𝜌𝑜 < 𝜌 < ∞
(1)

in the case of quantum dots and

𝑉𝑐(𝜌) =

⎧⎪⎨⎪⎩
𝑉, 0 < 𝜌 < 𝜌𝑖,

0, 𝜌𝑖 < 𝜌 < 𝜌𝑜,

𝑉, 𝜌𝑜 < 𝜌 < ∞
(2)

in the case of quantum rings. Here, 𝜌𝑜 is the outer
radius of a dot or ring, and 𝜌𝑖 is the inner radius
of a ring.

The influence of the Rashba [15, 16] and Dressel-
haus [17] spin-orbit interactions on the electron states
in planar heterostructures are widely studied in recent
years. A uniform constant magnetic field 𝐵 normal to
the plane of quantum dots or rings is described by the
vector potential A = 𝐵

2 (−𝑦, 𝑥, 0). Then the Rashba
𝑉R and Dresselhaus 𝑉D interactions are represented
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by the formulas

𝑉R = 𝛼R(𝜎𝑥𝑃𝑦 − 𝜎𝑦𝑃𝑥)/~,

𝑉D = 𝛼D(𝜎𝑥𝑃𝑥 − 𝜎𝑦𝑃𝑦)/~,
(3)

where P = p + 𝑞𝑒A, 𝑞𝑒 is the absolute value of the
electron charge, and 𝜎𝑥 and 𝜎𝑦 are the standard Pauli
spin-matrices. The strengths of these interactions de-
pend on the used materials. The contribution of two
spin-orbit interactions can be measured within vari-
ous experimental methods [2, 18].

The presence of an external magnetic field leads to
the Zeeman interaction

𝐻 ′ = 1
2𝑔𝜇B𝐵𝜎𝑧, (4)

where 𝑔 is the effective gyromagnetic factor, 𝜇B =
= 𝑞𝑒~

2𝑀𝑒
is the Bohr magneton, 𝑀𝑒 is the electron mass,

and 𝜎𝑧 is the Pauli matrix. Thus, the total Hamilto-
nian of the problem can be written in the following
way:

𝐻total =
𝑃 2
𝑥 + 𝑃 2

𝑦

2𝑀eff
+ 𝑉𝑐(𝜌) + 𝑉R + 𝑉D +𝐻 ′, (5)

where 𝑀eff is the effective electron mass, and 𝑉𝑐(𝜌)
is of the form (1) or (2). In the general case with ar-
bitrary values of 𝛼R and 𝛼D, the exact solutions of
the Schrödinger equation with Hamiltonian (5) are
unknown. In the particular case of the Rashba inter-
action (𝛼D = 0), the exact solutions were obtained
in [19] for quantum dots and in [20] for quantum
rings. Note that it is easy to find the similar exact
solutions in the opposite particular case of the Dres-
selhaus interaction (𝛼R = 0).

At the same time, the considerable attention is paid
to the special case [2, 21, 22] where the spin-orbit
interactions of Rashba and Dresselhaus have equal
strength 𝛼R = 𝛼D = 𝛼, which can be experimen-
tally achieved due to the fact that the Rashba inter-
action strength can be controlled by an external elec-
tric field, and the Dresselhaus interaction strength
can be varied, by changing the width of a quantum
well along the 𝑧 axis [1, 2]. In the present paper for
the special case 𝛼R = 𝛼D, we obtain the wave func-
tions, as well as the dependence of the energy levels
on the magnetic field and the spin-orbit interaction
strength. The calculations are performed for the pa-
rameter values associated with GaAs.

2. Exact Solution of the Unperturbed
Schrödinger Equation without the Zeeman
Interaction

In the considered case where 𝛼R = 𝛼D, the Hamilto-
nian can be represented as a sum

𝐻 = 𝐻0 +𝐻 ′ (6)

of the unperturbed part

𝐻0 =
𝑃 2
𝑥 + 𝑃 2

𝑦

2𝑀eff
+ 𝑉𝑐(𝜌) +

𝛼

~
(𝜎𝑥 − 𝜎𝑦)(𝑃𝑥 + 𝑃𝑦) (7)

and the perturbation described by the Zeeman inter-
action. It should be stressed that 𝐻0 depends on the
magnetic field, which is contained in the definition of
𝑃𝑥 and 𝑃𝑦.

We solve the full Schrödinger equation 𝐻Ψ = 𝐸Ψ
in two stages. First, we will obtain an exact solution
of the unperturbed Schrodinger equation

𝐻0Ψ0 = 𝐸0Ψ0 (8)

and then we take the Zeeman interaction into account
within the framework of perturbation theory.

Let us consider the case of the unperturbed equa-
tion (8) with Hamiltonian (7). It is easy to see that,
in addition to the obvious integral of motion

𝜎 = (𝜎𝑥 − 𝜎𝑦)/
√
2, (9)

there is also the non-trivial integral of motion

𝐿 = 𝐿𝑧 + 𝛼𝑀eff(𝑥− 𝑦)(𝜎𝑥 − 𝜎𝑦)/~, (10)

where 𝐿𝑧 is the operator of angular momentum.
We look for the solutions of Eq. (8), which are

eigenfunctions of the operators 𝜎 and 𝐿. Then the
required solutions admit a factorization of the form

Ψ±
0 (𝑥, 𝑦) = n±𝑒∓𝑖

√
2𝛼𝑀eff (𝑥+𝑦)/~2

𝑒𝑖𝑚𝜑𝑢(𝜌), (11)

where 𝑚 is the angular momentum quantum num-
ber (𝑚 = 0,±1,±2, ...), n± are eigenvectors of the
operator 𝜎:

𝜎 n± = ±n±, n± =
1√
2

(︂
1

±𝑒−𝑖𝜋/4

)︂
. (12)

Here, we use the polar coordinates 𝜌, 𝜑 (𝑥 = 𝜌 cos𝜑,
𝑦 = 𝜌 sin𝜑).
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The obtained wave functions satisfy the relations

𝜎Ψ±
0 (𝑥, 𝑦) = ±Ψ±

0 (𝑥, 𝑦),

𝐿Ψ±
0 (𝑥, 𝑦) = 𝑚~Ψ±

0 (𝑥, 𝑦).
(13)

Introducing the dimensionless quantities

𝑟 =
𝜌

𝜌𝑜
, 𝑒0 =

2𝑀eff𝜌
2
𝑜

~2
𝐸0, 𝑣 =

2𝑀eff𝜌
2
𝑜

~2
𝑉,

𝑎 =
2𝑀eff𝜌𝑜

~2
𝛼, 𝑏 =

𝑞𝑒𝜌
2
𝑜

2~
𝐵,

(14)

we write the radial equation

𝑑2𝑢

𝑑 𝑟2
+

1

𝑟

𝑑 𝑢

𝑑 𝑟
−
(︂
𝑚2

𝑟2
− 2𝑏𝑚− 𝑏2𝑟2

)︂
𝑢+

+
(︀
𝑒0 + 𝑎2 − 𝑣𝑐(𝑟)

)︀
𝑢 = 0, (15)

where

𝑣𝑐(𝑟) =

{︃
0, 0 < 𝑟 < 1,

𝑣, 1 < 𝑟 < ∞
(16)

for the quantum dots and

𝑣𝑐(𝑟) =

⎧⎪⎨⎪⎩
𝑣, 0 < 𝑟 < 𝑟𝑖,

0, 𝑟𝑖 < 𝑟 < 1,

𝑣, 1 < 𝑟 < ∞
(17)

for the quantum rings. Here, we use the notation 𝑟𝑖 =
= 𝜌𝑖/𝜌𝑜 for the relative width of a ring.

Note that the equation considered in [23] for the
radial wave function of an electron in a uniform mag-
netic field without taking the spin-orbit interaction
into account coincides with Eq. (15) if the replace-
ment 𝑒0 → 𝑒0 + 𝑎2 − 𝑣𝑐(𝑟) is performed in all regions
defined in (16) and (17). Therefore, following [23], we
represent a required function 𝑢(𝑟) by the formula

𝑢(𝑟) =
(︀
𝑏𝑟2
)︀ |𝑚|

2 exp

(︂
−𝑏𝑟2

2

)︂
𝑤(𝑟). (18)

The function 𝑤(𝑟) is expressed in terms of the con-
fluent hypergeometric functions of the first and sec-
ond kinds 𝑀(𝛾, 𝛽, 𝜉) and 𝑈(𝛾, 𝛽, 𝜉) [24]. The particu-
lar solutions are chosen so that the radial wave func-
tions are regular at the origin 𝑟 → 0 and tend to
zero, as 𝑟 → ∞. We demand the fulfilment of con-
tinuity conditions for the function 𝑤(𝑟) and its first
derivative 𝑤′(𝑟) = 𝑑𝑤(𝑟)/𝑑𝑟 at the boundary points.

For the quantum dots, we derive the explicit
formulas

𝑤(𝑟) =

{︃
𝑐1�̃�1(𝑟), 0 < 𝑟 < 1,

𝑐2�̃�2(𝑟), 1 < 𝑟 < ∞,
(19)

where

�̃�1(𝑟) = 𝑀
(︀
𝛾𝑖, 𝛽, 𝑏𝑟

2
)︀
, �̃�2(𝑟) = 𝑈

(︀
𝛾𝑜, 𝛽, 𝑏𝑟

2
)︀
, (20)

𝛾𝑜 =
𝑚+ |𝑚|+ 1

2
− 𝑒0 + 𝑎2 − 𝑣

4𝑏
,

𝛾𝑖 =
𝑚+ |𝑚|+ 1

2
− 𝑒0 + 𝑎2

4𝑏
, 𝛽 = |𝑚|+ 1.

(21)

The continuity condition at the boundary point
𝑟 = 1 leads to the system of algebraic equations

𝑇2(𝑚, 𝑒0, 𝑣, 𝑎, 𝑏)X̃ = 0 (22)

for two coefficients, where X̃ = {𝑐1, 𝑐2}, and
𝑇2(𝑚, 𝑒0, 𝑣, 𝑎, 𝑏) is a 2× 2 matrix of the form

𝑇2 =

(︂
�̃�1(1) −�̃�2(1)

�̃�′
1(1) −�̃�′

2(1)

)︂
. (23)

Hence, the exact equation for 𝑒0(𝑚, 𝑣, 𝑎, 𝑏) is

det𝑇2 = 𝛾𝑜𝑀(𝛾𝑖, 𝛽, 𝑏)𝑈(𝛾𝑜 + 1, 𝛽 + 1, 𝑏) +

+
𝛾𝑖
𝛽
𝑈(𝛾𝑜, 𝛽, 𝑏)𝑀(𝛾𝑖 + 1, 𝛽 + 1, 𝑏) = 0. (24)

The coefficients 𝑐1 and 𝑐2 are connected by relation

𝑐2 = 𝑐1𝑀(𝛾𝑖, 𝛽, 𝑏)/𝑈(𝛾𝑜, 𝛽, 𝑏), (25)

and the value of 𝑐1 is obtained from the normalization
condition ⟨Ψ±

0 |Ψ±
0 ⟩ = 1.

For the quantum rings, we obtain the expressions

𝑤(𝑟) =

⎧⎪⎨⎪⎩
𝑐1𝑤1(𝑟), 0 < 𝑟 < 𝑟𝑖,

𝑐21𝑤21(𝑟) + 𝑐22𝑤22(𝑟), 𝑟𝑖 < 𝑟 < 1,

𝑐3𝑤3(𝑟), 1 < 𝑟 < ∞,

(26)

where

𝑤1(𝑟) = 𝑀
(︀
𝛾𝑜, 𝛽, 𝑏𝑟

2
)︀
, 𝑤21(𝑟) = 𝑀

(︀
𝛾𝑖, 𝛽, 𝑏𝑟

2
)︀
,

𝑤3(𝑟) = 𝑈
(︀
𝛾𝑜, 𝛽, 𝑏𝑟

2
)︀
, 𝑤22(𝑟) = 𝑈

(︀
𝛾𝑖, 𝛽, 𝑏𝑟

2
)︀
.
(27)

In this case, the continuity conditions at the bound-
ary points 𝑟 = 𝑟𝑖 and 𝑟 = 1 lead to the system of
algebraic equations

𝑇4(𝑚, 𝑒0, 𝑣, 𝑎, 𝑏, 𝑟𝑖)X = 0 (28)
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for four coefficients, where X = {𝑐1, 𝑐21, 𝑐22, 𝑐3}, and
𝑇4(𝑚, 𝑒0, 𝑣, 𝑎, 𝑏, 𝑟𝑖) is a 4× 4 matrix of the form

𝑇4 =

⎛⎜⎜⎝
𝑤1(𝑟𝑖) −𝑤21(𝑟𝑖) −𝑤22(𝑟𝑖) 0

𝑤′
1(𝑟𝑖) −𝑤′

21(𝑟𝑖) −𝑤′
22(𝑟𝑖) 0

0 𝑤21(1) 𝑤22(1) −𝑤3(1)

0 𝑤′
21(1) 𝑤′

22(1) −𝑤′
3(1)

⎞⎟⎟⎠. (29)

Now, we determine 𝑒0(𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖) as a solution of
the equation

det𝑇4(𝑚, 𝑒0, 𝑣, 𝑎, 𝑏, 𝑟𝑖) = 0. (30)

In order to construct the radial wave function com-
pletely, we find the values of required coefficients(︃
𝑐21
𝑐22
𝑐3

)︃
= −𝑐1𝑇

−1
3 (𝑚, 𝑒0, 𝑣, 𝑎, 𝑏, 𝑟𝑖)

⎛⎝𝑤′
1(𝑟𝑖)
0
0

⎞⎠, (31)

where

𝑇3 =

⎛⎝−𝑤′
21(𝑟𝑖) −𝑤′

22(𝑟𝑖) 0

𝑤21(1) 𝑤22(1) −𝑤3(1)

𝑤′
21(1) 𝑤′

22(1) −𝑤′
3(1)

⎞⎠. (32)

The residual arbitrariness in the choice of the coef-
ficient 𝑐1 is used to implement the standard normal-
ization condition.

We also use the notation 𝑒0(𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖) for the
quantum dots keeping in mind that, in this case,
𝑟𝑖 = 0. From Eq. (15), we see that the dependence of
𝑒0 on 𝑎 is trivial: 𝑒0(𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖) = 𝑒0(𝑚, 𝑣, 0, 𝑏, 𝑟𝑖)−
− 𝑎2. In addition, the relation 𝑒0(𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖)−
− 𝑒0(−𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖) = 4𝑏𝑚 is satisfied. Of course,
Eqs. (24) and (30) cannot be solved analytically, but
can be easily solved numerically.

3. Contribution of the Zeeman
Interaction within the Framework
of Perturbation Theory

The expression for the Zeeman interaction in dimen-
sionless quantities takes the form

ℎ′ =
2𝑀eff𝜌

2
𝑜

~2
𝐻 ′ = 4𝑠𝑏 𝜎𝑧, 𝑠 =

𝑔𝑀eff

4𝑀𝑒
. (33)

Since each energy level of the unperturbed system
is doubly degenerate with two eigenfunctions (11), we
consider the contribution of the Zeeman interaction
with the help of perturbation theory in the degenerate
case.

Because of 𝜎𝑧 n± = n∓, we have the equalities

⟨Ψ±
0 |𝜎𝑧|Ψ±

0 ⟩ = 0 (34)

for the diagonal matrix elements in the basis of the
eigenvectors |Ψ+

0 ⟩ and |Ψ−
0 ⟩ of the unperturbed Ha-

miltonian. The off-diagonal matrix elements are given
by

⟨Ψ+
0 |𝜎𝑧|Ψ−

0 ⟩ = ⟨Ψ−
0 |𝜎𝑧|Ψ+

0 ⟩ = 𝛿(𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖), (35)

where

𝛿(𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖) =

∞∫︀
0

𝐽0(2𝑎𝑟)𝑢
2(𝑟)𝑟 𝑑𝑟

∞∫︀
0

𝑢2(𝑟)𝑟 𝑑𝑟

(36)

in terms of the Bessel function.
Then we get the splitting

𝑒± = 𝑒0 ± 𝑒′ (37)

for the unperturbed energy levels, where

𝑒′ ≡ 𝑒′(𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖) = 4𝑠𝑏 𝛿(𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖). (38)

The relation 𝑒′(−𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖) = 𝑒′(𝑚, 𝑣, 𝑎, 𝑏, 𝑟𝑖) is
fulfilled for the corrections 𝑒′. The normalized eigen-
functions in the zero-order approximation, which cor-
respond to the eigenvalues 𝑒±, are described by the
formulas

Ψ± =
1√
2

(︀
Ψ+

0 ±Ψ−
0

)︀
. (39)

Note that, in the limiting case 𝛼 = 0, expressions (37)
and (39) become exact.

4. Numerical Results

Now, we present some graphic illustrations in addi-
tion to the analytical results. In accordance with [4],
we choose the parameters 𝑀eff = 0.067𝑀𝑒 and 𝑔 =
= −0.44 related to GaAs. Then we get 𝑠 = −0.00737.

If we assume 𝜌𝑜 = 30 nm, then the following
correspondences 𝑎 = 1 → 𝛼 = 18.9579 meV nm,
𝑒 = 1 → 𝐸 = 0.631933 meV between the dimen-
sionless and dimensional quantities are obtained. For
example, at the chosen parameters, the dimension-
less value 𝑣 = 400 corresponds to the potential well
depth 𝑉 = 252.772 meV, which is close to the value
257 meV in [14].
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Fig. 1. Dependences of 𝑒0 and −𝑒′/𝑒0 on 𝑏 at 𝑎 = 1 for a
quantum dot (𝑟𝑖 = 0)

Fig. 2. Dependences of 𝑒0 and −𝑒′/𝑒0 on 𝑏 at 𝑎 = 1 for a
quantum ring (𝑟𝑖 = 0.5)

Fig. 3. Dependences of 𝑒0 and −𝑒′/𝑒0 on 𝑎 at 𝑏 = 1 for a
quantum dot (𝑟𝑖 = 0)

Fig. 4. Dependence of 𝑒0 and −𝑒′/𝑒0 on 𝑎 at 𝑏 = 1 for a
quantum ring (𝑟𝑖 = 0.5)
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Figures 1 and 2 show the dependences of the unper-
turbed energy 𝑒0 and the relative correction −𝑒′/𝑒0
to the energy on a magnetic field 𝑏 in the dimension-
less form at the fixed value of spin-orbit interaction
strength 𝑎 for the quantum dots (𝑟𝑖 = 0) and the
quantum rings (𝑟𝑖 = 0.5).

Figures 3 and 4 demonstrate the dependences of 𝑒0

and −𝑒′/𝑒0 on 𝑎 at a fixed value of 𝑏. The solid lines
represent the first energy levels, and the dashed lines
represent the second levels for three values of angular
momentum (𝑚 = 0, 1, 2).

In connection with Figs. 3 and 4, it should be
noted that the relative corrections −𝑒′/𝑒0 are equal
to zero at 𝑎 = 1.897 for the quantum dots and at
𝑎 = 1.609, 1.619, 1.623, 1.647, 1.648, 1.649 for the
quantum rings. Of course, this circumstance does not
indicate the disappearance of the Zeeman interaction,
but demonstrates a property of the lower approxima-
tion. The contribution of the Zeeman interaction will
appear in higher approximations for all values of pa-
rameter 𝑎.

5. Conclusion

The wave functions and the energy levels are ob-
tained for electrons in two-dimensional quantum dots
and rings with regard for the Rashba and Dressel-
haus spin-orbit interactions of equal strengths in the
presence of an external uniform constant magnetic
field in the framework of an adequate model with a
finite-depth confining potential. These results may be
of interest in the study of spin-dependent effects in
semiconductor heterostructures.
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РIВНI ЕНЕРГIЇ I ВЛАСНI ФУНКЦIЇ
ДВОВИМIРНИХ ЕЛЕКТРОННИХ СИСТЕМ
З УТРИМУЮЧИМИ ПРЯМОКУТНИМИ
ПОТЕНЦIАЛАМИ I СПIН-ОРБIТАЛЬНИМИ
ВЗАЄМОДIЯМИ У ПРИСУТНОСТI
МАГНIТНОГО ПОЛЯ

Р е з ю м е

Отримано рiшення рiвняння Шредiнгера для електронiв у
двовимiрних кругових напiвпровiдникових квантових то-
чках i кiльцях у присутностi зовнiшнього постiйного однорi-
дного магнiтного поля та спiн-орбiтальних взаємодiй Раш-
би i Дрессельхауса рiвних iнтенсивностей. Конфайнмент
моделюється реалiстичними прямокутними потенцiалами.
Представлено залежнiсть рiвнiв енергiї вiд магнiтного по-
ля та iнтенсивностi спiн-орбiтальної взаємодiї.
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