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We investigate T-matrix for bound and continuous-spectrum states in the discrete oscillator
representation. The investigation is carried out for a model problem – the particle in the field
of a central potential. A system of linear equations is derived to determine the coefficients
of the T-matrix expansion in the oscillator functions. We selected four potentials (Gaussian,
exponential, Yukawa, and square-well ones) to demonstrate peculiarities of the T-matrix and
its dependence on the potential shape. We also study how the T-matrix expansion coefficients
depend on the parameters of the oscillator basis such as the oscillator length and the number
of basis functions involved in calculations.
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1. Introduction

We are going to consider the convergence of a wave
function and the T-matrix expansion in the oscillator
functions. This consideration will be restricted to a
model problem of the particle in the field of a central
potential. The analysis will be done within the ma-
trix form of quantum mechanics, which involves an
infinite set of oscillator functions to realize a discrete
representation. This matrix form is well known as the
algebraic version of the resonating group method or
J-matrix method. The methods were formulated in
[1, 2] and [3, 4], respectively. Now, they are widely
used to describe nuclear, atomic, and molecular sys-
tems. In Ref. [5], one can find progress in resolving
the internal problems of the method and the numer-
ous applications to solving real physical problems in
different branches of quantum physics.

Usually, the expansion of a wave function in the
oscillator or any other square-integrable basis is con-
sidered within the J-matrix. The discrete form of the
T-matrix has not been investigated yet. For instance,
in Ref. [6], the oscillator basis was used to construct
wave functions and to calculate the phase shift for a
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Gaussian potential. The T-matrix was also obtained
in that paper, but only in the momentum space. So,
we are going to fill in this gap. We consider the states
of both discrete and continuous spectra. However, the
main attention will be paid to the scattering states.

We are going to demonstrate the convergence of
the T-matrix and how the convergence depends on
the shape of a potential, on the oscillator length of a
basis and the energy of the state. For this aim, we se-
lected four potentials, which mimic different physical
systems. Note that, by solving model problems, one
can reveal the interesting features and peculiarities
of systems under consideration, which are observed in
more complicated and realistic systems. For instance,
it was discovered in Refs. [7,8], while studying simple
model problems, that the J-matrix in some cases suf-
fers of a slow convergence. This means that one needs
to involve a very large basis of oscillator functions to
achieve the desired precision of calculations. An effec-
tive method was formulated in [8–10]. It allows one
to reduce the set of oscillator functions by three-five
times in order to obtain the phase shifts with higher
precision.

The paper is organized in the following way. In
Section 2, we make all necessary definitions and de-
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duce the equations for the T-matrix expansion coeffi-
cients. We briefly consider main equations, which are
used to describe quantum systems. These equations
will be transformed from a continuous (coordinate
or momentum) representation to a discrete, oscilla-
tor representation. The analysis of the T-matrix in
the discrete representation is presented in Section 3
for four potentials (Gaussian, Yukawa, exponential,
and square-well ones).

2. Model Formulation

We make use of the system of units by selecting the
constant ~2/𝑚 = 1. This leads to a renormalization
of the potential energy operator

̂︀𝑉 (𝑟) ⇒ 𝑚

~2
̂︀𝑉 (𝑟).

In this representation, the kinetic energy operator iŝ︀𝑇 = − 1
2∇

2 in coordinate space and ̂︀𝑇 = 1
2p

2 in the
momentum space, and the energy is 𝐸 = 1

2𝑘
2. In this

paper, we will consider central potentials. Thus, the
orbital momentum 𝐿 is a good quantum number.

2.1. Basic equations

To determine the spectrum of bound states and their
wave functions or to determine the scattering param-
eters and the corresponding functions for continuous
spectrum states, one should solve the Schrödinger
equation

( ̂︀𝐻 − 𝐸)Ψ𝑘𝐿 (𝑟) = 0 (1)

or the Lippmann–Schwinger equation

Ψ𝑘𝐿 (𝑥) = 𝜓𝑘𝐿 (𝑥)−

−
∫︁
𝐺 (𝑥, ̃︀𝑥) ̂︀𝑉 (︁̃︀𝑥, ̃︀̃︀𝑥)︁Ψ𝑘𝐿

(︁̃︀̃︀𝑥)︁ ̃︀𝑥2𝑑̃︀𝑥̃︀̃︀𝑥2𝑑̃︀̃︀𝑥. (2)

The latter can be written in the coordinate space
(𝑥 = 𝑟) or in the momentum space (𝑥 = 𝑝). In the
coordinate space, we have

𝜓𝑘𝐿 (𝑟) =

√︂
2

𝜋
𝑘𝑗𝐿 (𝑘𝑟), (3)

𝐺 (𝑟, ̃︀𝑟) = 𝑗𝐿 (𝑘𝑟<)𝑛𝐿 (𝑘𝑟>), (4)̂︀𝑉 (︁̃︀𝑥, ̃︀̃︀𝑥)︁ = 𝛿
(︁̃︀𝑟 − ̃︀̃︀𝑟)︁ ̂︀𝑉 (̃︀𝑟) (5)

(𝑟< = min (𝑟, ̃︀𝑟) , 𝑟> = max (𝑟, ̃︀𝑟)) and in the momen-
tum space

𝜓𝑘𝐿 (𝑝) = 𝛿 (𝑝− 𝑘) , (6)

𝐺 (𝑝, ̃︀𝑝) = (︂
1

2
𝑝2 − 1

2
𝑘2 + 𝑖𝜀

)︂−1

𝛿 (𝑝− ̃︀𝑝), (7)

̂︀𝑉 (𝑝, ̃︀𝑝) = 2

𝜋
𝑝̃︀𝑝 ∞∫︁

0

𝑗𝐿 (𝑝𝑟) ̂︀𝑉 (𝑟) 𝑗𝐿 (̃︀𝑝𝑟) 𝑟2𝑑𝑟. (8)

Note that the transition from the coordinate space
to the momentum one is determined by the Fourier–
Bessel integral

Ψ𝑘𝐿 (𝑝) =

√︂
2

𝜋
𝑝

∞∫︁
0

𝑗𝐿 (𝑝𝑟)Ψ𝑘𝐿 (𝑥) 𝑟2𝑑𝑟. (9)

There is another equation, which is also used to
determine the spectrum and the wave functions of
bound and scattering states. This is the Lippmann–
Schwinger equation for the half-off shell transition T-
matrix (see, e.g., [11, 12])

𝑡𝐿 (𝑝, 𝑘) = 𝑉𝐿 (𝑝, 𝑘) +

∞∫︁
0

𝑑̃︀𝑝̃︀𝑝 2𝑉𝐿 (𝑝, ̃︀𝑝) 𝑡𝐿 (̃︀𝑝, 𝑘)
𝐸 − 1

2 ̃︀𝑝2 + 𝑖𝜖
. (10)

There are several equivalent definitions of the T-mat-
rix, in particular, those, which involve integrals with
the potential energy operator and the wave function

𝑡𝐿 (𝑝, 𝑘) =

√︂
2

𝜋
𝑝

∞∫︁
0

𝑑𝑟𝑟2𝑗𝐿 (𝑝𝑟) ̂︀𝑉 (𝑟)Ψ𝑘𝐿 (𝑟) (11)

in the coordinate space or, in the momentum space,

𝑡𝐿 (𝑝, 𝑘) =

∞∫︁
0

𝑑̃︀𝑝̃︀𝑝2 ̂︀𝑉 (𝑝, ̃︀𝑝)Ψ𝑘𝐿 (̃︀𝑝). (12)

We present the following important relation, which
connects the T-matrix and the wave function in the
momentum space:

Ψ𝑘𝐿 (𝑝) = 𝛿 (𝑝− 𝑘)− 𝑡𝐿 (𝑝, 𝑘)
1
2𝑝

2 − 1
2𝑘

2
. (13)

By calculating the T-matrix, we can easily construct
the wave function of a system in the momentum
space.

It is well known that, in order to determine the
spectrum and wave functions by solving the Schrö-
dinger equation, one needs to impose the adequate
boundary conditions, while the necessary boundary
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conditions are included in the Lippmann–Schwinger
equation.

In the present paper, we use the standing-wave rep-
resentation, which means that the asymptotic part of
wave functions is

Ψ
(𝑎)
𝑘𝐿 (𝑟) =

√︂
2

𝜋
𝑘 𝑗𝐿 (𝑘𝑟)− tan 𝛿𝐿

√︂
2

𝜋
𝑘 𝑛𝐿 (𝑘𝑟),

where 𝛿𝐿 is the phase shift, and 𝑗𝐿 (𝑘𝑟) and 𝑛𝐿 (𝑘𝑟)
are Bessel and Neumann functions, respectively. Ho-
wever, the T-matrix is usually determined with the
wave function in the running-wave representation. In
this representation,

Ψ
(𝑎)
𝑘𝐿 (𝑟) =

[︁
𝜓
(−)
𝐿 (𝑘𝑟)− 𝑆𝐿𝜓

(+)
𝐿 (𝑘𝑟)

]︁
.

Here, 𝑆𝐿 = exp {2𝑖𝛿𝐿} is the scattering matrix, and

𝜓
(±)
𝐿 (𝑘𝑟) =

1

2

√︂
2

𝜋
𝑘 [−𝑛𝐿 (𝑘𝑟)± 𝑖𝑗𝐿 (𝑘𝑟)]

are incoming (𝜓(−)
𝐿 (𝑘𝑟)) and outgoing (𝜓(+)

𝐿 (𝑘𝑟))
waves.

Note that the factor
√︁

2
𝜋𝑘 in the definition of the

asymptotic part of a wave function for the continu-
ous spectrum state is chosen to normalize the wave
function Ψ𝑘𝐿 by the condition⟨︀
Ψ𝑘𝐿|Ψ̃︀𝑘𝐿⟩︀ = 𝛿

(︁
𝑘 − ̃︀𝑘)︁. (14)

It is easy to show that the T-matrix 𝑇 (𝑅𝑊 ) con-
structed in the running-wave representation is con-
nected with the T-matrix 𝑇 (𝑆𝑊 ) in the standing-wave
one by the simple relation

𝑇 (𝑅𝑊 ) = −𝑖𝑒𝑖𝛿𝐿 sin 𝛿𝐿𝑇
(𝑆𝑊 ).

Thus, we prefer to work with the real function 𝑇 (𝑆𝑊 ).

2.2. Discrete representation

To transform the Schrödinger equation and the
Lippmann–Schwinger equation for a wave function or
T-matrix to the discrete representation, we use a full
set of oscillator functions {Φ𝑛𝐿 (𝑥, 𝑏)} in the coordi-
nate space and {Φ𝑛𝐿 (𝑝, 𝑏)} in the momentum space.
The explicit form of the functions is as follows:

Φ𝑛𝐿 (𝑟, 𝑏) = (−1)
𝑛𝒩𝑛𝐿𝑏

−3/2𝜌𝐿𝑒−
1
2𝜌

2

𝐿
𝐿+1/2
𝑛

(︀
𝜌2
)︀
,

𝜌 = 𝑟/𝑏,
(15)

Φ𝑛𝐿 (𝑝, 𝑏) = 𝒩𝑛𝐿𝑏
3/2𝜌𝐿𝑒−

1
2𝜌

2

𝐿
𝐿+1/2
𝑛

(︀
𝜌2
)︀
,

𝜌 = 𝑝𝑏.
(16)

Here,

𝒩𝑛𝐿 =

√︃
2Γ (𝑛+ 1)

Γ (𝑛+ 𝐿+ 3/2)
.

These functions obey the completeness relations

∞∑︁
𝑛=0

Φ𝑛𝐿 (𝑟, 𝑏) Φ𝑛𝐿 (̃︀𝑟, 𝑏) = 𝛿 (𝑟 − ̃︀𝑟), (17)

∞∑︁
𝑛=0

Φ𝑛𝐿 (𝑝, 𝑏) Φ𝑛𝐿 (̃︀𝑝, 𝑏) = 𝛿 (𝑝− ̃︀𝑝). (18)

To transform any equation for a wave function or
T-matrix to the oscillator representation, we will use
the orthogonality of the basis functions and the com-
pleteness relations. We can also use the fact that all
quantities, which appear in Eqs. (1), (2), and (10),
can be represented as

𝐹 (𝑥) =

∞∑︁
𝑛=0

Φ𝑛𝐿 (𝑥, 𝑏)𝐹𝑛𝐿 (𝑏), (19a)

̂︀𝑂 (𝑥) =

∞∑︁
𝑛=0

Φ𝑛𝐿 (𝑥, 𝑏)
⟨
𝑛
⃒⃒⃒ ̂︀𝑂⃒⃒⃒

𝑚
⟩
Φ𝑚𝐿 (𝑥, 𝑏), (19b)

̂︀𝑂 (𝑥, ̃︀𝑥) = ∞∑︁
𝑛=0

Φ𝑛𝐿 (𝑥, 𝑏)
⟨
𝑛
⃒⃒⃒ ̂︀𝑂⃒⃒⃒

𝑚
⟩
Φ𝑚𝐿 (̃︀𝑥, 𝑏), (19c)

where 𝑥 stands for 𝑟 or 𝑝. In Eqs. (19), it is tacitly as-
sumed that the function 𝐹 (𝑥), local operator ̂︀𝑂 (𝑥),
and nonlocal one ̂︀𝑂 (𝑥, ̃︀𝑥) obey all necessary condi-
tions to be expandable in the oscillator basis.

We start the transformation with the Schrödinger
equation. It is easy to verify that the Schrödinger
equation in the oscillator representation is

∞∑︁
𝑚=0

[︁⟨
𝑛
⃒⃒⃒ ̂︀𝐻 ⃒⃒⃒

𝑚
⟩
− 𝐸𝛿𝑛,𝑚

]︁
𝐶𝑚 = 0, (20)

where {𝐶𝑚} are the wave function expansion coeffi-
cients

Ψ𝑘𝐿 (𝑟) =

∞∑︁
𝑚=0

𝐶𝑚Φ𝑛𝐿 (𝑟, 𝑏),

𝐶𝑚 = ⟨Φ𝑛𝐿|Ψ𝑘𝐿⟩.
(21)
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Now, we turn our attention to the Lippmann–Schwin-
ger equation for the wave function. The integral equa-
tion (2) is transformed to a system of linear equations

𝐶𝑛 = 𝐶(B)
𝑛 −

∞∑︁
𝑚=0

∞∑︁
𝑚=0

⟨𝑛 |𝐺|𝑚⟩
⟨
𝑚

⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒ ̃︀𝑚⟩𝐶𝑛. (22)

Here, {𝐶(B)
𝑛 } is the wave function of free motion

(Bessel function) (3) in the oscillator representa-
tion. Due to the peculiarities of oscillator functions
and the oscillator Hamiltonian, the expansion coeffi-
cients 𝐶(B)

𝑛 coincide with oscillator functions in the
momentum space (see more details in [1, 3, 4, 13])

𝐶(B)
𝑛 = ⟨Φ𝑛𝐿|𝜓𝑘𝐿⟩ = Φ𝑛𝐿 (𝑝 = 𝑘, 𝑏) . (23)

To solve system (22), one needs to calculate the ma-
trix elements of the potential energy operator⟨
𝑛
⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒

𝑚
⟩
=

∞∫︁
0

𝑑𝑟𝑟2Φ𝑛𝐿 (𝑟, 𝑏) ̂︀𝑉 (𝑟) Φ𝑚𝐿 (𝑟, 𝑏) =

=

∞∫︁
0

𝑑𝑝𝑝2Φ𝑛𝐿 (𝑝, 𝑏)𝑉 (𝑝, 𝑘) Φ𝑚𝐿 (𝑘, 𝑏) 𝑘2𝑑𝑘

and the matrix elements of Green’s function for the
free motion Hamiltonian between oscillator functions

⟨𝑛 |𝐺|𝑚⟩ =

=

∞∫︁
0

𝑑𝑝𝑝2Φ𝑛𝐿 (𝑝, 𝑏)

[︂
𝐸 − 1

2
𝑝2 + 𝑖𝜖

]︂−1

Φ𝑚𝐿 (𝑝, 𝑏) =

=

∞∫︁
0

∞∫︁
0

𝑑𝑟𝑟2Φ𝑛𝐿 (𝑟, 𝑏)𝐺 (𝑟, ̃︀𝑟) Φ𝑚𝐿 (̃︀𝑟, 𝑏) ̃︀𝑟2𝑑̃︀𝑟. (24)

In Ref. [14], one can find the explicit form of the ma-
trix elements ⟨𝑛 |𝐺|𝑚⟩ and the recurrence relations
they satisfy.

There are two different ways to present the T-mat-
rix in the discrete (oscillator) form. First, we can use
the expansion

𝑡𝐿 (𝑝, 𝑘) =

∞∑︁
𝑛=0

Φ𝑛𝐿 (𝑝, 𝑏) 𝑡𝑛𝐿 (𝑏, 𝑘). (25)

It is obvious that the expansion coefficients
{𝑡𝑛𝐿 (𝑏, 𝑘)} are determined as

𝑡𝑛𝐿 (𝑏, 𝑘) =

∞∫︁
0

𝑑𝑝𝑝2Φ𝑛𝐿 (𝑝, 𝑏) 𝑡𝐿 (𝑝, 𝑘). (26)

Thus, we have to deal with an infinite vector.

Second, we can represent the T-matrix as a matrix

𝑡𝐿 (𝑝, 𝑘) =

∞∑︁
𝑛,𝑚=0

Φ𝑛𝐿 (𝑝, 𝑏) 𝑡𝑛𝑚 (𝑏) Φ𝑚𝐿 (𝑘, 𝑏), (27)

where the matrix elements 𝑡𝑛𝑚 (𝑏) are determined as

𝑡𝑛𝑚 (𝑏) =

∞∫︁
0

𝑑𝑝𝑝2Φ𝑛𝐿 (𝑝, 𝑏) 𝑡𝐿 (𝑝, 𝑘)×

×Φ𝑚𝐿 (𝑘, 𝑏) 𝑘2𝑑𝑘. (28)

We note that the expansion coefficients for the T-
matrix in both representations depend on the oscil-
lator length. In the next section, we will study how
strongly the T-matrix expansion coefficients depend
on the oscillator length 𝑏.

By projecting Eq. (10) on the oscillator basis, we
obtain the sets of linear inhomogeneous equations for
the vector 𝑡𝑛 = 𝑡𝑛𝐿(𝑏, 𝑘),

𝑡𝑛 = 𝑉𝑛 (𝑏, 𝑘) +

∞∑︁
𝑚,̃︀𝑚=0

⟨
𝑛
⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒

𝑚
⟩
⟨𝑚 |𝐺| ̃︀𝑚⟩ 𝑡̃︀𝑚 (29)

or
∞∑︁
̃︀𝑚=0

[︃
𝛿𝑛̃︀𝑚−

∞∑︁
𝑚=0

⟨
𝑛
⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒

𝑚
⟩
⟨𝑚 |𝐺| ̃︀𝑚⟩

]︃
𝑡̃︀𝑚=𝑉𝑛 (𝑏, 𝑘) ,

(30)
and for the matrix 𝑡𝑛𝑚 = 𝑡𝑛𝑚 (𝑏):

𝑡𝑛𝑚 = 𝑉𝑛𝑚 +

∞∑︁
𝑚,̃︀𝑚=0

⟨
𝑛
⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒

𝑚
⟩
⟨𝑚 |𝐺| ̃︀𝑚⟩ 𝑡̃︀𝑚𝑚 (31)

or
∞∑︁
̃︀𝑚=0

[︃
𝛿𝑛̃︀𝑚 −

∞∑︁
𝑚=0

⟨
𝑛
⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒

𝑚
⟩
⟨𝑚 |𝐺| ̃︀𝑚⟩

]︃
𝑡̃︀𝑚𝑚 = 𝑉𝑛𝑚.

(32)
Here,

𝑉𝑛𝐿 (𝑏, 𝑘) =

√︂
2

𝜋
𝑘

∞∫︁
0

𝑑𝑟𝑟2Φ𝑛𝐿 (𝑟, 𝑏) ̂︀𝑉 (𝑟) 𝑗𝐿 (𝑘𝑟) =

=

∞∫︁
0

𝑑𝑝𝑝2Φ𝑛𝐿 (𝑝, 𝑏)𝑉𝐿 (𝑝, 𝑘) =

∞∑︁
𝑚=0

⟨
𝑛
⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒

𝑚
⟩
𝐶(𝐵)

𝑚 .

Let us consider the T-matrix expansion coefficients
(26). By using the definition of the T-matrix (11),
this equation can be rewritten as

𝑡𝑛𝐿 (𝑏, 𝑘) =
⟨
Φ𝑛𝐿

⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒
Ψ𝑘𝐿

⟩
=

300 ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 4



T-Matrix in Discrete Oscillator Representation

=

∞∫︁
0

𝑑𝑟𝑟2Φ𝑛𝐿 (𝑟, 𝑏) ̂︀𝑉Ψ𝑘𝐿 (𝑟) (33)

or

𝑡𝑛𝐿 (𝑏, 𝑘) =

∞∑︁
𝑚=0

⟨
𝑛
⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒

𝑚
⟩
𝐶𝑚. (34)

Here, {𝐶𝑚} are expansion coefficients of the wave
function Ψ𝑘𝐿 (𝑟) (see Eq. (21)).

2.3. Square-well potential

To check our numerical results, we need to consider
a potential, which admits a simple expression for the
T-matrix. There is only a restricted number of two-
body problems, which can be solved analytically, and
for which the T-matrix can be obtained in a closed
analytic form. For instance, the T-matrix in Ref. [15]
was constructed for a delta-shell potential.

One of these cases is the square-well potential

̂︀𝑉 (𝑟) =

{︂
𝑉0 𝑟 ≤ 𝑎,
0 𝑟 > 𝑎.

This case has been considered in detail many times.
See, for instance, Ref. [16], where the off-shell T-mat-
rix was obtained. We also consider this potential in
detail, assuming that 𝑉0 is negative, and the potential
is attractive. The obtained results will be intensively
used in Section 3.

To determine the T-matrix for a square-well po-
tential, we have to obtain the wave function. The
wave function for the potential in the internal region
(0 ≤ 𝑟 ≤ 𝑎) reads

Ψ𝑘𝐿 (𝑟) = Ψ
(𝑖)
𝑘𝐿 (𝑟) = 𝒜𝑘𝐿

√︂
2

𝜋
𝑘𝑗𝐿 (𝑘0𝑟), (35)

where 𝒜𝑘 is the normalization constant, and

𝑘0 =
√︀
2 (𝐸 + 𝑉0), 𝑘 =

√
2𝐸. (36)

In the asymptotic region (𝑟 ≥ 𝑎) for the continuous-
spectrum states, we have

Ψ
(𝑎)
𝑘𝐿 (𝑟)=

√︂
2

𝜋
𝑘 𝑗𝐿 (𝑘𝑟)−tan 𝛿𝐿

√︂
2

𝜋
𝑘 𝑛𝐿 (𝑘𝑟). (37)

By matching the internal (35) and asymptotic (37)
parts of the wave function and their first derivatives
as well, we can determine the phase shift 𝛿𝐿 and the
constant 𝒜𝑘𝐿.

The T-matrix for the square-well potential is fully
determined by the internal part (35) of the wave func-
tion

𝑡𝐿= 𝑡𝐿 (𝑝, 𝑘)=

√︂
2

𝜋
𝑉0𝒜𝑘𝐿

𝑎∫︁
0

𝑑𝑟𝑟2𝑗𝐿 (𝑝𝑟) 𝑗𝐿 (𝑘0𝑟). (38)

It is easy to verify that, for the zero value of orbital
momentum 𝐿 = 0,

𝑡0 (𝑝, 𝑘) =
2

𝜋

𝑘

𝑘0
𝑉0𝒜𝑘 ×

× 𝑝 cos (𝑝𝑎) sin (𝑘0𝑎)− 𝑘0 sin (𝑝𝑎) cos (𝑘0𝑎)

𝑘20 − 𝑝2
(39)

and

𝐴𝑘 = 𝑘/ [𝑘 sin (𝑘0𝑎) sin (𝑘𝑎) + 𝑘0 cos (𝑘0𝑎) cos (𝑘𝑎)].

On the energy shell, we have

𝑡 (𝑘, 𝑘) =
2

𝜋

𝑘2

𝑘0
tan 𝛿0. (40)

Note that expression (39) represents the T-matrix
not only for scattering states (𝐸 ≥ 0), but also for
bound state(s) (−𝑉0 ≤ 𝐸 < 0). One has to calculate
the energy of a bound state (or the momentum 𝑘0)
and the corresponding normalization factor 𝐴𝑘.

3. Analysis of Results

The numerical analysis of the T-matrix will be car-
ried out for the 𝑠-state (𝐿 = 0) only, where the inter-
action is more stronger than in other orbital states
(𝐿 > 0) and is not diminished by the centrifugal
barrier. Four potentials are used to study properties
of the T-matrix. They are Gaussian (G), exponential
(E), Yukawa (Y), and square-well (SW) potentials:

̂︀𝑉 (𝑟) = 𝑉0 exp

{︂
−
(︁ 𝑟
𝑎

)︁2}︂
, (G)

̂︀𝑉 (𝑟) = 𝑉0 exp
{︁
− 𝑟
𝑎

}︁
, (E) (41)

̂︀𝑉 (𝑟) = 𝑉0 exp
{︁
− 𝑟
𝑎

}︁(︁𝑎
𝑟

)︁
, (Y)

̂︀𝑉 (𝑟) =

{︂
𝑉0 𝑟 ≤ 𝑎,

0 𝑟 > 𝑎,
(SW)

In this section, we use the nuclear units for energy
(MeV) and length (fm), so that the constant ~2/𝑚 =
= 41.47 MeV· fm2.
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Fig. 1. Convergence of the ground-state energy for the Gauss
and exponential potentials

For all potentials, we take the radius of the poten-
tial 𝑎 = 1 fm, and the depth 𝑉0 = −85 MeV. With
such a choice of parameters, we obtain one bound
state for all potentials, whose energies are listed in
Table. It was established by the numerical solution
of the set of equations (20) with a maximal num-
ber of oscillator functions (see the text bellow). One
can see that we obtained a deeply bound state for the
Yukawa potential, a weakly bound state for the Gaus-
sian potential, and a moderately bound state for the
exponential and square-well potentials. The results
demonstrated in Table are obtained with 𝑁 = 300
functions and the oscillator length 𝑏 = 𝑎 = 1.0 fm.

In what follows, we will use four values of the os-
cillator radius 𝑏 = 0.5, 1.0, 1.5, and 2.0 fm to study
the dependence of the T-matrix expansion coefficients
on the oscillator radius. Calculations are organized in
the following way. First, we construct the 𝑁 ×𝑁 ma-
trix of the Hamiltonian, where 1≤ 𝑁 ≤ 500. (We

Energy of the bound state

Potential G E Y SW

𝐸, MeV −3.564 −7.006 −26.744 −9.388

do not dwell here on the calculations of matrix ele-
ments of the potential energy operator between os-
cillator functions. We make use of the technique of
generating functions, details of which can be found
in Refs. [17, 18]). Second, we calculate the eigenval-
ues (spectrum) and the eigenfunctions of the matrix
by using the discrete form of the Schrödinger equa-
tion (20). Then we obtain the T-matrix of bound and
pseudobound states in the oscillator representation,
by using Eq. (34). Third, we solve the system of lin-
ear equation (22), which determine the wave function
and the phase shift of the scattering state with fixed
energy 𝐸, and then we construct the T-matrix by us-
ing Eq. (34). Finally, on the fourth step, we solve the
set of linear equations (29) and obtain directly the
T-matrix for a fixed energy 𝐸. We make use of the
third way to check the correctness of the calculations
of the T-matrix in the fourth way.

In this section for the sake of convenience, we will
denote the T-matrix as 𝑡 (𝑝,𝐸) explicitly indicating
the energy of the discrete or continuous-spectrum
state.

3.1. Convergence

First of all, we consider whether the oscillator basis is
large enough to provide the convergent results for the
bound state energy and the phase shift of continuous-
spectrum states. In Fig. 1, we show the dependence
of the bound state energy 𝐸 on the number of os-
cillator functions 𝑁 involved in calculations. These
results are obtained for two potentials (Gaussian and
exponential) and for four different values of oscilla-
tor length 𝑏. One can see that one hundred functions
give a very stable value of ground state energy for
all oscillator lengths. The dependence of the phase
shift on the number of oscillator functions 𝑁 used
in calculations is demonstrated in Fig. 2. The phase
shift is determined for the energy 𝐸 = 5.0 MeV. The
exact values of phase shift are calculated within the
variable phase method [19, 20]. To obtain the stable
phase shift independent of 𝑁 , we need to use more
oscillator functions than for bound state calculations.

3.2. Ground state

In this section, we consider the T-matrix of bound
states. In Fig. 3, we show the T-matrix for bound
states with the Yukawa and exponential potentials.
To demonstrate the rate of decreasing of the T-matrix
expansion coefficients, we display the renormalized
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Fig. 2. Phase shift as a function of the number of oscillator
functions involved in calculations. Results are obtained for the
Gauss and exponential potentials with the energy 𝐸 = 5.0

expansion coefficients 𝑡𝑛/𝑡0 = 𝑡𝑛 (𝑏, 𝐸) /𝑡0 (𝑏, 𝐸). For
the Yukawa potential, the bound state is a deeply
bound one with its energy to be −26.74 MeV. This
explains why the T-matrix for this potential decreases
very rapidly, as 𝑛 increases. The common feature of
the T-matrix for the Yukawa and exponential poten-
tials is that the larger the oscillator length 𝑏, the
slower is the decreasing of the T-matrix expansion
coefficients. The same tendency is observed for the
Gaussian and square-well potentials.

With the help of relation (25), we can easily con-
struct the T-matrix of a bound state in the momen-
tum space. In Fig. 4, we display the T-matrix 𝑡 (𝑝,𝐸)
as a function of the momentum 𝑝 for the bound state
for four potentials. These results are obtained with
the oscillator length 𝑏 = 1 fm and with 𝑁 = 300
oscillator functions. However, by using other values
of oscillator length, we obtain the same results. It is
worth to note that the T-matrix for a deeply bound
state (Yukawa potential) is very dispersed in the mo-
mentum space. This reflects the fact that the behav-
ior of the T-matrix in the momentum space is de-
termined by the wave function in the internal and

Fig. 3. T-matrix for bound states calculated with the Yukawa
and exponential potentials

Fig. 4. T-matrix of the bound state as a function of the
momentum 𝑝 calculated with four potentials

asymptotic regions (see Eq. (11)). In some cases, the
internal part of wave functions gives a larger contri-
bution than the asymptotic part. The same is true for
the square-well potential, where the T-matrix is fully
determined by the internal part of the wave function
(as was pointed out above (see Eq. (38))). Contrary
to the case of the Yukawa and square-well potentials,
the T-matrix for the Gaussian and exponential poten-
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Fig. 5. T-matrix expansion coefficients for continuous-spect-
rum states obtained with the Gaussian potential

tials is represented by the small values of momentum
𝑝: 0 ≤ 𝑝 ≤ 7 fm−1.

3.3. Continuous-spectrum states

We selected five values of energy (𝐸 = 1, 5, 10, 15,
and 20 MeV) to study the dependence of the T-matrix
expansion coefficients on the energy in the continu-
ous spectrum. The energy range 0 < 𝐸 ≤ 20 MeV se-
lected in our calculations represents the region, where
the effect of the potential energy is stronger than in
the high-energy region.

As we are interested in the study of the rate of de-
creasing of 𝑡𝑛, we will display the renormalized expan-
sion coefficients 𝑡𝑛 = 𝑡𝑛/𝑡0. In Fig. 5, we show the T-
matrix expansion coefficients for the Gauss potential
for four values of energy 𝐸 = 1, 5, 10, and 15 MeV.
One can see that 𝑡𝑛 drops to zero very rapidly, as
𝑛 is increased. The smaller the oscillator length, the

Fig. 6. The T-matrix expansion coefficients as a function of
𝑛 calculated with the exponential potential

faster is the decreasing of the T-matrix expansion co-
efficients for the Gauss potential. Note that the rate
of decreasing of 𝑡𝑛 almost independent of the energy
used in our calculations.

By comparing Fig. 5 with Figs. 6, 7, and 8, we can
see that the fast decrease of expansion coefficients is
observed only for the Gaussian potential, while the
other potentials exhibit a much more slower decrease.

Contrary to the Gaussian and square-well poten-
tials, the T-matrix expansion coefficients for the ex-
ponential and Yukawa potentials are more strongly
dependent on the energy. This is explicitly demon-
strated in Fig. 8, where the expansion coefficients for
the T-matrix are displayed for a fixed oscillator length
𝑏 and for five different values of energy 𝐸.

The T-matrix as a function of the momentum 𝑝 for
the square-well potential is shown in Fig. 9. These
results are obtained with 𝑁 = 300 oscillator func-
tions. In Fig. 9, we compare the calculated T-matrix
with the exact one (marked as Ext) represented by
Eq. (39). One can see that the calculated T-matrix
coincides with the exact one in a wide range of mo-
menta 𝑝. The upper limit of the range depends on
the number of functions 𝑁 and the oscillator length 𝑏
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Fig. 7. Expansion coeficients 𝑡𝑛/𝑡0, obtained with the Yukawa
potential

and, in view of the properties of oscillator functions,
can be expressed as

𝑝 ≤
√
4𝑁 + 2𝐿+ 3

𝑏
. (42)

Thus, the smaller the oscillator length, the larger
is the range of momenta, which can be covered by
𝑁 oscillator functions. Indeed, with 𝑏 = 2.0 fm, the
nonzero values of the T-matrix are obtained for 𝑝 ≤
≤ 17 fm−1, which is in accordance with formula (42).

So far, to be on a safe side, we used the large ba-
sis of functions (𝑁 = 300) to describe the bound
and continuous-spectrum states. Now, we are going
to determine a minimal set of oscillator functions,
which gives solutions with necessary precision. We
again turn our attention to the square-well poten-
tial, because the wave function and the T-matrix for
this potential are obtained in a simple analytic form.

Fig. 8. Square-well potential. The renormalized T-matrix ex-
pansion coefficients as a function of 𝑛

This helps us to verify the precision of our calcula-
tions. The exact (39) and calculated T-matrices de-
termined with 𝑁 = 25, 50, and 75 oscillator func-
tions are shown in Fig. 10. As is seen, 25 functions
cannot provide with a good precision for the T-mat-
rix. The calculated T-matrix noticeably deviates from
the exact one, whereas the T-matrix calculated with
𝑁 = 50 and 𝑁 = 75 is sufficiently close to the exact
T-matrix. We note that the larger the number of os-
cillator functions involved in calculations, the larger
is the range of momenta 𝑝, where the T-matrix is de-
scribed by these functions. Note that this number of
functions is consistent with the results presented in
Figs. 1 and 2 as for the convergence of calculations of
the bound state and the phase shift.

A similar picture is observed for the Gaussian
and exponential potentials. Unfortunately, we do not
know the exact T-matrix for both of them. For these
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Fig. 9. T-matrix convergence for the square-well potential
calculated for two values of energy 𝐸 = 1 and 𝐸 = 10 MeV

Fig. 10. Convergence of the T-matrix for the square-well po-
tential. Results are obtained for 𝐸 = 20.0 MeV and with the
oscillator length 𝑏 = 1 fm

potentials, the T-matrix calculated with 𝑁 = 300
oscillator functions can be considered as “exact”, as
this number of functions provides us with a stable
solution and the exact phase shift. With this defini-
tion, the calculations with 𝑁 = 50 and 𝑁 = 75 basis
functions are almost indistinguishable for the “exact”
T-matrix. As for the Yukawa potential, one needs at
least 𝑁 = 125 to be close to the “exact” T-matrix.

3.4. Asymptotics

In this section, we consider the asymptotic behavior
of the T-matrix as a function of 𝑛 for large values
of 𝑛. In Refs. [1, 2], it was shown that the expan-
sion coefficients for wave functions have the following
asymptotic form:

𝐶𝑛 = ⟨𝑛|Ψ𝑘𝐿⟩ ≃
√︀
2𝑅𝑛Ψ𝑘𝐿 (𝑏𝑅𝑛). (43)

Thus, the expansion coefficients 𝑡𝑛 = 𝑡𝑛𝐿(𝑏, 𝑘) for the
T-matrix can be represented as

𝑡𝑛 = 𝑡𝑛𝐿 (𝑏, 𝑘) =
⟨
𝑛
⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒

Ψ𝑘𝐿

⟩
≃

≃
√︀
2𝑅𝑛𝑉 (𝑏𝑅𝑛)Ψ𝑘𝐿 (𝑏𝑅𝑛) = 𝑉 (𝑏𝑅𝑛)𝐶𝑛, (44)

where

𝑅𝑛 =
√
4𝑛+ 2𝐿+ 3 (45)

is the turning point for a classical harmonic oscillator
in the three-dimensional space.

In Ref. [8] (see also [21]), it was discovered that
there is another contribution (which was called as the
short-range (SR) contribution, while the asymptotic
term in Eqs. (43) and (44) is called as the long-range
(LR) contribution) to the asymptotic form, which re-
lates the expansion coefficients 𝐶𝑛 and 𝑡𝑛 with the
wave function and the T-matrix

⟨𝑛|Ψ𝑘𝐿⟩ ≃ (−1)
𝑛
√︀
2𝑅𝑛Ψ𝑘𝐿 (𝑅𝑛/𝑏), (46)

𝑡𝑛𝐿 =
⟨
𝑛
⃒⃒⃒ ̂︀𝑉 ⃒⃒⃒

Ψ𝑘𝐿

⟩
≃ (−1)

𝑛
√︀
2𝑅𝑛𝑡𝐿 (𝑅𝑛/𝑏, 𝑘). (47)

Equations (43) and (44) establish some relations be-
tween the expansion coefficients 𝐶𝑛 and 𝑡𝑛 and the
wave function and the T-matrix for the large values
of momentum 𝑝 = 𝑅𝑛/𝑏.

Let us consider the calculation of 𝑡𝑛 for the square-
well potential in more details. To determine 𝑡𝑛, one
has to calculate the integral

𝑡𝑛 = 𝑡𝑛 (𝑏, 𝑘) = 𝑉0𝒜𝑘𝐿

√︂
2

𝜋
𝑘

𝑎∫︁
0

𝑑𝑟𝑟2Φ𝑛𝐿(𝑟, 𝑏) 𝑗𝐿(𝑘0𝑟) =

= 𝑉0𝒜𝑘𝐿

√︂
2

𝜋
𝑘𝑏3

𝑎/𝑏∫︁
0

𝑑𝜌𝜌2Φ𝑛𝐿 (𝜌, 1) 𝑗𝐿 (𝑏𝑘0𝜌),

where 𝜌 = 𝑟/𝑏. If 𝑎/𝑏 ≫ 1 or 𝑎/𝑏 >
√
4𝑛+ 2𝑙 + 3,

then the integral can be extended to infinity, and
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Fig. 11. Exact (E) and asymptotic (A(LR)) forms of expan-
sion coefficients 𝑡𝑛 calculated with the exponential potential
for the energy 𝐸 = 10.0

it gives the expansion coefficients for Bessel func-
tions. Thus, we obtain the long-range approxima-
tion. For small values of the ratio 𝑎/𝑏 ≪ 1 or 𝑎/𝑏 ≪
≪

√
4𝑛+ 2𝑙 + 3, we can use the approximate formula

for oscillator functions (Laguerre polynomials).
It was also demonstrated in [8] that, in some cases

(which depend on the value of oscillator length 𝑏 and
the shape of a potential), the SR contribution is much
larger than the LR one. In addition, one has to con-
sider both of them in some cases. Unfortunately, we
do not know the exact asymptotic form of the wave
function Ψ𝑘𝐿(𝑝) in the momentum space and the T-
matrix for large values of 𝑝 as well. It makes difficult
to realize the short-range approximation.

Note that the knowledge of the asymptotics for the
wave function and the T-matrix allowed us to for-
mulate strategies (see Ref. [7] and also Ref. [10]) to
obtain convergent results for the phase shift with a
minimal set of oscillator functions.

We have explicit forms of the wave function and
the T-matrix only for the square-well potential. We
will use it to check the asymptotic behavior of the
T-matrix.

In Fig. 11, we compare the calculated (E) and
asymptotic long-range (A(LR)) forms of the T-matrix
with the exponential potential. As is seen, the asymp-

Fig. 12. Expansion coefficient for the exact T-matrix (E)
compared with the asymptotic short-range form (A(SR)). Cal-
culations are made for 𝐸 = 10.0 with the square-well potential

totic long-range form is valid for small values of
𝑏. Starting from 𝑏 = 1.0, the asymptotic form is much
smaller than the exact form. A similar picture is ob-
served for the Gaussian potential. However, for the
Yukawa and square-well potentials, the long-range
form gives a very small contribution comparing with
the exact form.

In Fig. 12, we demonstrate how the asymptotic
short-range approximation works for the square-well
potential. We show results for two values of oscillator
length 𝑏: the smallest (𝑏 = 0.5) and largest (𝑏 = 2.0)
ones. As is seen, the asymptotic short-range form is
valid for small values of 𝑏. For large values of 𝑏, the
asymptotic form coincides with the exact one for the
whole range of the quantum number 𝑛.

It should be stressed that the long-range asymp-
totic form gives zero contribution to the presented
results due to a specific shape of the square-well po-
tential.

4. Conclusion

We have studied the properties of the T-matrix in the
discrete oscillator representation. It is demonstrated
that the T-matrix in the oscillator representation can
be presented in the vector and matrix forms. The vec-
tor form is suitable for investigating the T-matrix on
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the half-on-shell space, while the matrix form is more
appropriate for the full off-shell space. The set of lin-
ear equations for the T-matrix expansion coefficients
is deduced for both vector and matrix forms.

We calculated the T-matrix expansion coefficients
for four different potentials. It is shown that the
rate of decreasing of the T-matrix expansion coeffi-
cients depends on the shape of a potential and on
the oscillator length. It is also shown that the T-
matrix expansion coefficients slightly depend on the
continuous-spectrum state energy. We recall that the
energy of scattering states is considered in the range
0 ≤ 𝐸 ≤ 20, which is typical of the low-energy nuclear
processes.

It is shown that the calculations of the T-matrix
in the discrete representation is a reliable way for ob-
taining the information on the behavior of a quantum
mechanical system.

We have investigated thoroughly the asymptotic
properties of the T-matrix in the discrete space and
established a relation with its asymptotic form in the
continuous coordinate and momentum spaces.

The present discretization method can be easily ex-
tended for the T-matrix of real physical systems such
as many-channel and many-cluster systems.
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В.С.Василевський, М.Д.Солоха-Климчак

Т-МАТРИЦЯ В ДИСКРЕТНОМУ,
ОСЦИЛЯТОРНОМУ ПРЕДСТАВЛЕННI

Р е з ю м е

Дослiджено властивостi Т-матрицi для зв’язаних станiв та
станiв неперервного спектра у дискретному, осциляторно-
му представленнi. Дослiдження проводяться для модель-
ної проблеми – частинка в полi центрального потенцiалу.
Виведено систему лiнiйних рiвнянь, розв’язок яких визна-
чає коефiцiєнти розкладу Т-матрицi по осциляторних фун-
кцiях. Ми вибрали чотири потенцiали (гаусiвський, юка-
вiвський, експоненцiальний та потенцiал прямокутної ями)
для демонстрацiї особливостей Т-матрицi та її залежностi
вiд форми потенцiалу. Ми також вивчаємо як коефiцiєнти
розкладу Т-матрицi залежать вiд параметрiв осциляторно-
го базису – осциляторної довжини та числа базисних фун-
кцiй, залучених у розрахунках.
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