
FIELDS AND ELEMENTARY PARTICLES

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 4 289

E.V. GORBAR 1, 2

1 Faculty of Physics, Taras Shevchenko National Kiev University
(2, Prosp. Academician Glushkov, Kyiv 03022, Ukraine)

2 Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: gorbar@bitp.kiev.ua)

CHIRAL ASYMMETRY IN MAGNETIZED
DENSE RELATIVISTIC MATTER AND PULSAR KICKS

PACS 11.40.Dw,
26.60.Dd, 97.60.Gb

The weak interactions of neutrinos with charged fermions in a magnetized dense relativistic
matter are shown to generate a non-zero chiral shift parameter for neutrinos that produces their
asymmetric distribution in the momentum space in the equilibrium state. It is found that this
asymmetry is too small in order to explain the largest pulsar velocities observed. The hot-spot
scenario involving the topological current or some other mechanism of the hot spot formation
is suggested, and it is argued that this scenario can provide the necessary large pulsar kicks.
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1. Introduction

Since neutrinos extremely weakly interact with mat-
ter, they cannot be trapped under normal conditions
in a certain region, because they simply will stream
out of this region. The only place where neutrinos
can be trapped for a sufficiently long time is the cen-
tral regions of neutron stars, which are characterized
by the highest matter densities that occur in the na-
ture. They can exceed the density of the nuclear mat-
ter up to ten times. Such densities are large enough
for that the neutrinos interacting through the weak
interactions with this dense matter are trapped and
come to an equilibrium state. It is also very impor-
tant that the neutron stars are usually characterized
by very strong magnetic fields that could reach up to
1015 G in magnetars [1, 2] (for a recent review of the-
oretical developments in the studies of a dense matter
in compact stars, see Ref. [3]).

Pulsars are highly magnetized rapidly rotating neu-
tron stars that emit beams of electromagnetic radi-
ation. Some pulsars are observed moving with very
high velocities, which can exceed 1000 km/s [4]. It
is very difficult to explain how such high velocities
can be reached. For example, the asymmetric super-

c○ E.V. GORBAR, 2015

nova explosions can provide velocities up to 200 km/s
only. Since neutrinos carry away 99% of the energy
released during a supernova explosion, a simple esti-
mate shows that the necessary velocities can be at-
tained, if the neutrino emission during a supernova
explosion is asymmetric only by 3% in the momentum
space. However, as we will discuss below, it is difficult
to provide such asymmetry in the equilibrium state.

Many physical properties of neutron stars are un-
derstood theoretically and could be tested to some ex-
tent through observational data. Still, the dense rel-
ativistic matter in a strong magnetic field may hold
some new theoretical surprises. In particular, it was
revealed in Refs. [5, 6] that the relativistic matter in
a magnetic field is characterized by the presence of
a non-dissipative axial current in its ground state.
More recently, it was shown in Ref. [7] that there ex-
ists a chiral shift parameter Δ in the normal ground
state of such matter. It enters the effective action as
a Lagrange multiplier in front of the operator of the
axial current 𝑗35 = 𝜓𝛾3𝛾5𝜓 (we assume that the mag-
netic field points in the +𝑧 direction). The meaning of
this parameter is clearest in the chiral limit: it deter-
mines a relative shift of the longitudinal momenta in
the dispersion relations of opposite-chirality fermions,
𝑘3 → 𝑘3 ± Δ, where the momentum 𝑘3 is directed
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along the magnetic field. This suggests a possible con-
nection between the chiral shift parameter Δ and the
axial current along the direction of the magnetic field.

Since only the left-handed fermions participate in
the weak interactions, the asymmetry with respect to
the longitudinal momentum 𝑘3 of the opposite-chira-
lity fermions in the ground state of a dense magne-
tized matter implies that the neutrinos will scatter
asymmetrically off the magnetized relativistic mat-
ter. This provides a qualitatively new mechanism for
pulsar kicks [8]. This mechanism was proposed in
Ref. [7].

The idea behind this mechanism of pulsar kicks is
the following. In the presence of a magnetic field, al-
most any type of relativistic matter inside a protoneu-
tron star should develop axial currents. The main car-
riers of such currents are electrons in the nuclear mat-
ter and quarks together with electrons in the decon-
fined quark matter. Since the induced currents and
the chiral shift parameter have only a weak temper-
ature dependence (assuming 𝑇 ≪ 𝜇) [9], this phe-
nomenon may provide a robust anisotropic medium
even at the crucial earliest stages of the protoneu-
tron star. This is of great importance, because only
the hot matter with 𝑇 . 50 MeV may have a large
enough amount of the thermal energy to power the
strongest pulsar kicks observed [8]. In contrast, the
constraints of the energy conservation make it hard,
if not impossible, to explain such kicks, if the interior
matter is cold (𝑇 . 1 MeV). The common difficulty
of using a hot matter, however, is the very efficient
thermal isotropization that erodes a non-isotropic dis-
tribution of neutrinos produced by almost any mech-
anism [10,11]. In the new mechanism proposed, how-
ever, the asymmetric distribution of neutrinos in the
momentum space arises as a result of the weak in-
teractions with the left-handed electrons or quarks
flowing in the stellar matter in the direction along
the magnetic field. In passing, let us mention that
the robustness of the axial currents in a hot magne-
tized matter may also provide an additional neutrino
push to facilitate the successful supernova explosions,
as suggested in Ref. [12]. The specific details of such
scenario are yet to be worked out.

Another mechanism of generation of pulsar kicks
was suggested in [13, 14]. This mechanism is based
on the existence of non-dissipative electric and axi-
al currents in a dense magnetized relativistic mat-
ter related to the quantum anomalies. Historically,

the first example of a non-dissipative current was re-
vealed in [5], where it was shown that the ground
state of the system of free relativistic fermions in a
magnetic field is characterized by the presence of an
axial current. Later, it was argued [6, 15] that the
existence of this current is closely related to the chi-
ral anomaly. This effect is known in the literature as
the chiral separation effect (for a brief review, see
Ref. [16]).

Using the chiral anomaly, it was suggested in
Refs. [17, 18] that there exists a non-dissipative elec-
tric current in a relativistic matter with the non-zero
chiral chemical potential 𝜇5 in a magnetic field B,
which is given by

⟨j⟩ = 𝜇5𝑒
2B

2𝜋2
. (1)

This phenomenon is known in the literature as the
chiral magnetic effect (CME), and current (1) is
called topological, because it arises due to the low-
est Landau level contribution connected with the chi-
ral anomaly. It was argued in [19] that the QCD
topological fluctuations in heavy-ions collisions pro-
duce metastable domains with 𝒫 and 𝒞𝒫 breaking
with a chirality induced in the quark-gluon plasma
by the chiral anomaly. To mimic the effect of topo-
logical charge changing transitions, it was proposed
phenomenologically in [20] to introduce a chiral chem-
ical potential (this chemical potential couples to the
difference between the number of left- and right-
handed fermions). The charge-dependent correlations
and flow, experimentally observed in heavy-ions col-
lisions at RHIC [21–24] and LHC [25], appear to be
in a qualitative agreement with the predictions of the
CME [26, 27].

It was proposed in Refs. [13, 14] (see also Ref. [28])
that the pulsar kicks can be generated by the topo-
logical current in a dense relativistic matter. It was
argued that a chiral chemical potential appears, be-
cause an imbalance in left- and right-handed particles
exists in the neutron star matter due to the weak in-
teractions. The idea of this mechanism of pulsar kicks
is the following. If the electrons carried by the current
can transfer their momentum into space, the current
could push the star like a rocket.

In this paper, we study the mechanism of pulsar
kicks suggested in Ref. [7] and propose a generaliza-
tion of the mechanism considered in Refs. [13, 14, 28]
in the form of a hot-spot scenario. The paper is orga-
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nized as follows. The kinetic equation and the prin-
ciple of detailed balance are considered in Sec. 2. In
Sec. 3, the neutrino energy dispersion and the neu-
trino momentum asymmetry in a dense magnetized
relativistic matter are studied. The hot-spot scenario
of pulsar kicks is proposed in Sec. 4. The results and
the conclusions are given in Sec. 5.

2. Kinetic Equation
and the Principle of Detailed Balance

Horowitz and Li were first to suggest [29] that a global
asymmetry of the neutrino emission of a nascent neu-
tron star could originate from the cumulative effect
of multiple neutrino scatterings off polarized nucleons
in the magnetized neutron star medium. Indeed, let
us assume that the differential neutrino cross section
on polarized neutrons equals
𝑑𝜎

𝑑Ω
= 𝜎0 ( 1 + 𝑃 cos 𝜃 ), (2)

where 𝜎0 = 𝐺2
F𝐸

2
𝜈/4𝜋

2 is the neutrino cross section
on unpolarized neutrons, 𝑃 = 𝑒𝐵/𝑚𝑛𝑇 is the polar-
ization of the neutrons by a strong magnetic field of
the neutron star, which is given by

𝑃 ≈ 2× 10−5

[︂
𝐵

1013 G

]︂[︂
3MeV

𝑇

]︂
.

The cross section (2) is clearly asymmetric and, be-
ing integrated over the spherical angle, produces
the asymmetry 𝐴 = 𝑃/3. Using 𝑃 ≈ 10−5, this
would give very small kick velocities less than
0.1 km/s. However, Horowitz and Li argued that a
large asymmetry can arise because the anisotropy
of the neutrino flux increases with multiple neutrino
scatterings on the neutrons and found that the sub-
sequent neutrino emission may produce velocities up
to 𝑣 ≈ 400 km/s. Lai and Qian investigated further
this idea and obtained similar results [30].

In order to address the problem of multiple neu-
trino scatterings and neutrino transport, Kusenko,
Segre, and Vilenkin [10] considered the kinetic equa-
tion for neutrinos. They argued that the principle of
detailed balance requires that, even in the presence of
parity-violating processes and with anisotropic scat-
tering amplitudes, no asymmetry is generated in the
thermal equilibrium. Arras and Lai [31] came also to
the same conclusion.

Let us consider these results in more detail. The
kinetic equation for the neutrino distribution function

has the form [10, 30]

𝜕𝑓𝜈(r,k, 𝑡)

𝜕𝑡
+
𝑐k

|k|
∇𝑓𝜈(r,k, 𝑡) = 𝐼coll, (3)

where k is the neutrino momentum, 𝑐 is the velocity
of light (we neglect small neutrino masses), and the
collision integral equals

𝐼coll =

∫︁
𝑑3𝑝

(2𝜋)3
𝑑3𝑘′

(2𝜋)3
𝑑3𝑝′

(2𝜋)3
𝑊𝑖→𝑓 ×

×{[1− 𝑓𝜈(k)] [1− 𝑓𝑛(p)] 𝑓𝑛(p
′)𝑓𝜈(k

′)−

− 𝑓𝜈(k)𝑓𝑛(p) [1− 𝑓𝑛(p
′)] [1− 𝑓𝜈(k

′)]}, (4)

where 𝑓𝑛(r,p, 𝑡) is the neutron distribution func-
tion, and 𝑊𝑖→𝑓 is the 𝑆-matrix element for neutrino-
neutron scattering k, p → k′, p′. We omitted also
the summation over the spins and assumed that
𝑊𝑖→𝑓 = 𝑊𝑓→𝑖. Factors like 1 − 𝑓𝜈 and 1 − 𝑓𝑛 in
Eq. (4) take into account the Pauli blocking.

The authors of Refs. [10,31] stated that the equilib-
rium state of neutrinos is given by the conventional
Fermi–Dirac distribution function for any asymme-
try in the neutrino-neutron cross section. This con-
clusion is based on the principle of detailed balance
in the thermal equilibrium. Mathematically, it is in-
deed easy to check that the equation

[1− 𝑓𝜈(k)][1− 𝑓𝑛(p)]𝑓𝑛(p
′)𝑓𝜈(k

′) =

= 𝑓𝜈(k)𝑓𝑛(p) [1− 𝑓𝑛(p
′)] [1− 𝑓𝜈(k

′)]

for 𝑓𝜈 = (𝑒(𝐸𝜈−𝜇𝜈)/𝑇 + 1)−1 and 𝑓𝑛 = (𝑒(𝐸𝑛−𝜇𝑛)/𝑇 +
+1)−1 implies the equality

𝑒
𝐸𝜈 (𝑘)+𝐸𝑛(𝑝)

𝑇 = 𝑒
𝐸𝜈 (𝑘′)+𝐸𝑛(𝑝′)

𝑇 ,

which holds obviously due to the conservation of
energy.

Consequently, although it seems that the multiple
neutrino scatterings off polarized neutrons (or quarks
if the quark matter exists in the cores of neutron
stars) in the magnetized neutron star medium due
to the asymmetric cross section (2) should produce
a large asymmetry of the neutrino distribution in
the momentum space, the study utilizing the kinetic
equation shows that no such an asymmetry develops
in view of the principle of detailed balance. Arras and
Lai [31] estimated also the neutrino emission asym-
metry due to a deviation of the neutrino distribution
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from equilibrium in the region close to the neutrino-
matter decoupling layer and found that very large
magnetic fields of order 1016 G are needed in order to
get kick velocities of order 100 km/s. Thus, we con-
clude that the mechanism suggested by Horowitz and
Li cannot produce the required large pulsar kick ve-
locities.

3. Neutrino Energy Dispersion
and Momentum Asymmetry in Dense
Magnetized Relativistic Matter

The kinetic equation describes the evolution of par-
ticle distribution functions and is used to describe
fluids, when they are not in a local equilibrium state.
The interaction between particles is taken into ac-
count in the kinetic equation through the collision
integral 𝐼coll. As we saw above, the collision integral
is automatically zero if the fermion distribution func-
tions are the Fermi–Dirac ones (the same is true in
the case of the Bose–Einstein distribution functions
for bosons). However, the kinetic equation approach
considered in the previous section implicitly assumes
that the energy dispersions of particles coincide with
that in the free space. Indeed, the kinetic equation
was first used for the description of gases, where the
particle energy dispersions are the same as in the free
space, and the collisions between particles only redis-
tribute the momenta and energies of individual par-
ticles.

However, we know that interactions between par-
ticles do, in general, change their energy dispersion
in media. For example, the kinetic equation is widely
used in solid-state physics, where the quasiparticles
energy dispersions are, in general, not like those in
the free space. As to neutrinos propagating in a dense
matter, we know that their energy dispersion does
change compared to that in the free space. In fact,
the dense matter effect in the neutrino dispersion rela-
tion is one of the crucial ingredients in the well known
Mikheyev–Smirnov–Wolfenstein effect [32, 33].

Let us discuss the medium effects on the neutrino
propagation [34]. Since the neutrinos in neutron stars
have energies much less than the masses of the 𝑊
and 𝑍 bosons, the effective low-energy Hamiltonian
describing the relevant neutrino interactions [35] is
given by

𝐻int =
𝐺F

2
√
2

(︂
𝐽 (+)𝜇𝐽 (−)

𝜇 +
1

4
𝐽 (𝑁)𝜇𝐽 (𝑁)

𝜇

)︂
, (5)

where 𝐽 (+)
𝜇 , 𝐽 (−)

𝜇 , and 𝐽 (𝑁)
𝜇 are the standard charged

and neutral currents of the weak interactions. Then
it is not difficult to check that, e.g., the electrons
present in the medium lead to the following effective
Hamiltonian describing the interaction of neutrinos
with electrons:

𝐻𝜈−𝑒 =
𝐺F√
2
𝜈𝑒(𝑥)𝛾

𝜇(1− 𝛾5)𝜈𝑒(𝑥)×

× 𝑒 𝛾𝜇

(︂
1− 𝛾5

2
+ 2 sin2 𝜃𝑊

)︂
𝑒. (6)

Here, 𝐺F = 1.17 × 10−11 MeV−2 is the Fermi cou-
pling constant, and sin2 𝜃𝑊 = 0.23 is the weak mix-
ing angle. The interaction Hamiltonian (6) leads for
the neutrinos interacting with electrons in a magne-
tized relativistic plasma to the following terms in the
neutrino effective kinetic term:

𝐻(eff)
𝜈 =

=
𝐺F𝑛𝑒

2
√
2
(1 + 4 sin2 𝜃𝑊 ) 𝜈𝑒(𝑥)𝛾

0(1− 𝛾5)𝜈𝑒(𝑥)−

− 𝐺F⟨𝑗53⟩√
2

𝜈𝑒(𝑥)𝛾
3 1− 𝛾5

2
𝜈𝑒(𝑥). (7)

Here, 𝑛𝑒 = ⟨𝑒𝛾0𝑒⟩ is the electron density, and ⟨𝑗53⟩ =
= ⟨𝑒𝛾3𝛾5𝑒⟩ is the component of the electron axial
current along the direction of the magnetic field. The
first term in Eq. (7) describes a correction to the ef-
fective neutrino chemical potential. According to the
MSW effect [32, 33], such corrections are relevant for
neutrino oscillations, because they are different for
the electron, muon, and tau neutrinos propagating in
a stellar medium. The second term in Eq. (7) cor-
responds to a shift of the third component of the
neutrino momentum in the neutrino dispersion rela-
tion. This means that the thermal equilibrium neu-
trino distribution will be asymmetric. Note that a
similar contribution was discussed after Eq. (2.25)
in [36]. Obviously, the neutrino emission with such
asymmetric momentum distribution may contribute
to the kick contrary to the conclusion of Refs. [10,31].

Let us estimate the corresponding contribu-
tion. According to Refs. [5, 6], the topological axial
current due to the lowest Landau level contribution
of the electrons equals ⟨𝑗53⟩ = −𝑒𝐵𝜇𝑒/(2𝜋

2). Using
it, we obtain that 𝛿3 = 𝐺F𝑒𝐵𝜇𝑒/(2

√
2𝜋2) is of order

10−11 MeV/c for 𝐵 = 1015 G and 𝜇𝑒 = 100 MeV and
is ten orders less than that needed in order to explain
the largest pulsar velocities observed.
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4. Hot-Spot Scenario

Although the neutrinos do have an asymmetric dis-
tribution in the momentum space due to the weak
interactions with charged fermions in neutron stars
with a magnetic field, we found in the previous sec-
tion that this asymmetry is too small to produce the
necessary pulsar kicks. Still, there is a large chiral
asymmetry stored in charged fermions in a protoneu-
tron star. It was suggested in Refs. [13, 14, 28] that
the topological currents of charged fermions could
be responsible for the large proper motion (kicks)
of neutron stars. The star collapse during the neu-
tron star formation is connected with the capture
of electrons by nuclei through the process of inverse
beta-decay. Since only the left-handed fermions take
part in this interaction, the remaining electrons are
mostly right-handed. Consequently, there exists a sig-
nificant chiral asymmetry for the electrons in the ini-
tial state of a protoneutron star, which can be de-
scribed through the introduction of the chiral chemi-
cal potential 𝜇5.

Although it is not clear what will happen to the
electrons when they reach the surface of the star, it
was assumed in Refs. [13,14] that somehow the entire
current (or at least its sizeable part) carried by the
topological current will be transferred into space by
some means. The authors of Refs. [13, 14] mentioned
that this assumption is likely to be correct only for
bare quark stars, where the crust is about 1000 fm
wide and is likely wrong for typical neutron stars,
where the crust is 1 km in thickness. The energy of
the electrons would be absorbed in the latter case by
the crust and would not contribute to the kick. Still,
we think that it is possible that the absorbed en-
ergy will heat the area, where the topological current
reaches the crust producing a hot spot on the surface
of neutron star.

We would like to emphasize that hot spots may
be formed not necessarily only in the scenario with
the topological current. For example, the magnetic
field of a neutron star funnels charged particles back
toward the surface that could result in the forma-
tion of hot spots in the polar regions (the Ruderman
mechanism [38]). Alternatively, hot spots in the po-
lar regions could be formed due to the anisotropic
heat transfer from the neutron star core, which
depends strongly on the magnetic field direction
and is maximal along the magnetic field lines (see,

e.g., Ref. [39]). There might exist also other physical
mechanisms of formation of hot spots. Still at present,
it is difficult to estimate reliably the efficiency of the
formation of hot spots and their characteristics.

In the astrophysical literature, the hot spots were
used also phenomenologically in order to explain
the results of certain observations. It was argued in
Ref. [40] that a sinusoidal light curve of the neutron
star candidate 1E 161348-5055 located at the cen-
ter of the supernova remnant RCW 103 could be ex-
plained by a freely precessing neutron star with a
hot spot. Moreover, using the data from the XMM-
Newton spacecraft, the rotating hot spots on the sur-
faces of three nearby neutron stars were observed for
the first time [41]. The spots vary in size from less
than 100 meters to about one kilometer.

Assuming that a hot spot is formed, the emission
from this spot will be stronger than from other areas
that produces a kick to the neutron star. Let us esti-
mate this kick. For this, we assume that the hot spot
has radius 𝑅 and temperature 𝑇 + Δ𝑇 that exceeds
the temperature 𝑇 of the rest emitting surface of the
neutron star.

The Stefan–Boltzmann law determines the total
energy radiated per unit surface area over all wave-
lengths per unit time. Integrating it over the area of a
hot spot and time and subtracting the corresponding
value for temperature 𝑇 , we find the following pulsar
kick velocity:

𝑣 = 4km/s

(︂
𝑇

1MeV

)︂3(︂
Δ𝑇

0.1MeV

)︂(︂
𝑅

1 km

)︂2(︂
𝑡

1 s

)︂
. (8)

For 𝑇 = 3 MeV, 𝑅 = 1 km, Δ𝑇 = 0.4 MeV, and
𝑡 = 1 s, this estimate gives the quite large velocity
𝑣 = 430 km/s.

4.1. Momentum Density

For the mechanism proposed in Refs. [13, 14, 28], as
well as for the hot-spot scenario proposed above, to
work, it is necessary that the electrons connected
with the topological current do carry a non-zero mo-
mentum. Let us check this explicitly. The energy-
momentum density tensor for fermions equals (see,
e.g., Eq. (3.153) in Ref. [35])

𝑇𝜇𝜈 =
𝑖

2

(︀
𝜓𝛾𝜇𝜕𝜈𝜓 − 𝜕𝜈𝜓𝛾𝜇𝜓

)︀
. (9)

The fermion propagator in a magnetic field takes the
form of a product of the Schwinger phase factor Φ
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and a translation invariant part, i.e.,

𝐺(𝑟, 𝑟′) = 𝑒𝑖Φ(r,r′)�̄�(𝑟 − 𝑟′), (10)

where the translation invariant part of the propagator
in the momentum space expanded over the Landau
levels is given by (for simplicity, we consider massless
fermions)

�̄�(𝜔, 𝑘3,k) = 𝑖𝑒−𝑘2𝑙2
∑︁
𝜒=±

∞∑︁
𝑛=0

𝐷𝑛(𝜔, 𝑘
3,k)×

× 1 + 𝜒𝛾5

2

(−1)𝑛

(𝜔 + 𝜇− 𝜒𝜇5)2 − 𝑘23 − 2𝑛|𝑒𝐵|
, (11)

where 𝜇 is the chemical potential, 𝑙 = |𝑒𝐵|−1/2 is
the magnetic length, k = (𝑘1, 𝑘2) is the “transverse
momentum”, 𝑘 = |k|, and the 𝑛-th Landau level con-
tribution is determined by

𝐷𝑛(𝜔, 𝑘
3,k) = 4(k · 𝛾)𝐿1

𝑛−1

(︀
2𝑘2𝑙2

)︀
+

+2[(𝜔 + 𝜇+ 𝜒𝜇5)𝛾
0 − 𝑘3𝛾3] ×

×
[︀
𝒫−𝐿𝑛

(︀
2𝑘2𝑙2

)︀
− 𝒫+𝐿𝑛−1

(︀
2𝑘2𝑙2

)︀]︀
. (12)

Here, 𝐿𝛼
𝑛 are the generalized Laguerre polynomials,

𝐿𝛼
−1 = 0 by definition,

𝒫± =
1

2

[︀
1± 𝑖𝛾1𝛾2𝑠⊥

]︀
are spin projectors, and 𝑠⊥ = sgn(𝑒𝐵). Using
Eqs. (9), (10), and (11), we find the following momen-
tum density in the direction of the magnetic field:

𝑃 3 = ⟨𝑇 03⟩ =
∫︁
𝑑𝜔𝑑𝑘3𝑑2k

(2𝜋)4
𝑘3tr

[︀
𝛾0�̄�(𝜔, 𝑘3,k)

]︀
=

= −𝑖
∑︁
𝜒=±

∞∑︁
𝑛=1

(−1)𝑛
∫︁
𝑑𝜔𝑑𝑘3𝑑2k

(2𝜋)4
𝑘23𝑒

−𝑘2𝑙2 ×

× tr

[︃
𝛾0𝛾3

[︀
𝒫−𝐿𝑛

(︀
2𝑘2𝑙2

)︀
− 𝒫+𝐿𝑛−1

(︀
2𝑘2𝑙2

)︀]︀
(𝜔 + 𝜇− 𝜒𝜇5)2 − 𝑘23 − 2𝑛|𝑒𝐵|

×

× (1 + 𝜒𝛾5)

]︃
− 2𝑖

∫︁
𝑑𝜔𝑑𝑘3𝑑2k

(2𝜋)4
𝑘3 𝑒−𝑘2𝑙2 ×

× tr
[︂
𝛾0[(𝜔 + 𝜇)𝛾0 − 𝑘3𝛾3 + 𝜇5𝛾

0𝛾5]𝒫−

(𝜔 + 𝜇)2 − 𝑘23 + 𝜇2
5 − 2(𝜔 + 𝜇)𝜇5𝛾5

]︂
, (13)

where we separated the lowest Landau level contri-
bution in the last term. Integrating over k, one may
check that only the lowest Landau level contributes.

Using

(𝜔 + 𝜇)𝛾0 − 𝑘3𝛾3 + 𝜇5𝛾
0𝛾5

(𝜔 + 𝜇)2 − 𝑘23 + 𝜇2
5 − 2(𝜔 + 𝜇)𝜇5𝛾5

𝒫− =

=
1

(𝜔 + 𝜇)𝛾0 − 𝑘3𝛾3 − 𝜇5𝛾0𝛾5
𝒫− =

=
1

(𝜔 + 𝜇)𝛾0 − (𝑘3 − 𝑠⊥𝜇5)𝛾3
𝒫−, (14)

we find the following momentum density:

𝑃 3 = −4𝑖

∫︁
𝑑𝜔𝑑𝑘3

(2𝜋)3𝑙2
(𝜔 + 𝜇)𝑘3

(𝜔 + 𝜇)2 − (𝑘3 − 𝑠⊥𝜇5)2
=

= −4𝑖𝜇5𝑒𝐵

∫︁
𝑑𝜔𝑑𝑘3

(2𝜋)3
𝜔 + 𝜇

(𝜔 + 𝜇)2 − 𝑘23
=

=
𝜇5𝑒𝐵sgn(𝜇)

2𝜋2

∫︁
𝑑𝑘3 𝜃(𝜇2 − 𝑘23) =

𝜇𝜇5𝑒𝐵

𝜋2
. (15)

Thus, the momentum density for charged fermions
in a magnetized relativistic matter is not equal to
zero and is proportional to the product of the cor-
responding electric 𝜇 and chiral 𝜇5 chemical poten-
tials. Consequently, if the dense relativistic matter
has a chiral asymmetry generated by a chiral chemi-
cal potential, then the corresponding electric current
due to the chiral magnetic effect does carry a non-zero
momentum. Therefore, if the thermal conductivity of
the crust is not too large so that it cannot efficiently
remove the heat produced by the energy deposited
by the topological current, then the hot-spot scenario
may produce large pulsar velocities.

4.2. Neutrino emission and hot spots

It is well known that the neutrino emission is the
most efficient mechanism of cooling of neutron stars
[42]. The hot-spot scenario relies on the stability of
hot spots for a period of several seconds. Therefore, it
is crucial to check that the neutrino emission will not
eliminate a hot spot during this period. Neutrinos
are emitted through many reactions. The strongest
of them are the direct Urca processes, but they are
threshold reactions open only at sufficiently large den-
sities. Otherwise, the modified Urca processes are the
main reactions relevant for the cooling of neutron
stars (see, e.g., review [43]).

According to Table 2 in Ref. [43], the neutrino
emission from a neutron star matter at temperature
𝑇 due to the modified Urca processes leads to the fol-
lowing loss of energy per second and cubic centimeter
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of volume:
𝑄 = 2× (1030–1033)

(︂
𝑇

105 eV

)︂8
eV

cm3 · s
. (16)

The thermal energy stored in one cubic centimeter of
volume of this matter equals

𝐸 =
1.3× 1013 eV

cm3

(︁m
eV

)︁4 ∞∫︁
0

√︀
𝑥2 + 1𝑥2𝑑𝑥×

×

⎛⎝ 1

𝑒

√
𝑥2+1−𝜇𝑛/𝑚

𝑇/𝑚 + 1

− 𝜃
(︁𝜇𝑛

𝑚
−
√︀
𝑥2 + 1

)︁⎞⎠, (17)

where 𝜃(𝑥) is the step function, 𝑚 is the neutron
mass, and 𝜇𝑛 is the neutron chemical potential.

Using Eq. (16), we easily find that the additional
energy released per second through the neutrino emis-
sion of one cubic centimeter of the hot spot matter at
a temperature 𝑇 +Δ𝑇 equals

Δ𝑄 = 1.6× (1031−1034)

(︂
𝑇

105 eV

)︂8
Δ𝑇

𝑇

eV

cm3 · s
. (18)

On the other hand, the excess of the thermal energy
stored in one cubic centimeter of the hot spot matter
is given by

Δ𝐸 =
1.3× 1013 eV

cm3

(︁m
eV

)︁4 𝑚Δ𝑇

𝑇 2

∞∫︁
0

√︀
𝑥2 + 1𝑥2𝑑𝑥×

× (
√
𝑥2 + 1− 𝜇𝑛/𝑚) 𝑒

√
𝑥2+1−𝜇𝑛/𝑚

𝑇/𝑚(︂
𝑒

√
𝑥2+1−𝜇𝑛/𝑚

𝑇/𝑚 + 1

)︂2 . (19)

For 𝑇 = 3 MeV, Δ𝑇 = 0.4 MeV, 𝑚 = 940 MeV, and
𝜇𝑛 = 1 GeV, we obtain

Δ𝑄 = 1.4× (1042–1045)
eV

cm3 · s
,

Δ𝐸 = 2× 1044
eV

cm3
.

Thus, the thermal energy excess Δ𝐸 stored in one
cubic centimeter of excess hot spot matter is two or-
ders of magnitude larger than the lower limit of the
additional energy Δ𝑄 · 1 s released through the neu-
trino emission for one second. Still, Δ𝐸 is one order
of magnitude smaller than the upper limit of Δ𝑄 ·1 s.
Therefore, we conclude that the hot spots may or may
not survive for the necessary period of several sec-
onds. Clearly, in view of the uncertainty as high as
three orders of magnitude in the energy released per
second through the neutrino emission, a more care-
ful study of neutrino emission is necessary in order to
settle the question of the stability of hot spots.

5. Conclusion

We have shown that the trapped neutrinos in a pro-
toneutron star, which interact with charged fermions
in a magnetized relativistic matter, build up an
anisotropic distribution in the momentum space
due to the interaction-induced chiral shift parame-
ter. However, we have found that this asymmetry is
approximately ten orders of magnitude less than that
needed to explain the largest pulsar velocities ob-
served.

We have calculated the momentum density of the
electric current due to the chiral magnetic effect and
have found that it is not zero and is proportional to
the product of the electric and chiral chemical po-
tentials and the magnetic field. Assuming that the
energy delivered by this current is absorbed by the
crust, we have suggested a hot-spot scenario in order
to explain large pulsar kicks. We have estimated the
pulsar velocities that can be generated through the
emission from a hot spot and have found that they
are sufficiently large to explain the largest pulsar ve-
locities observed. The problem of the stability of hot
spots for a period of several seconds with respect to
the cooling due to the neutrino emission is consid-
ered, and it is found that the hot spots may or may
not survive. In view of the significant uncertainty in
the energy released per second through the neutrino
emission that exists in the literature, a more careful
study of the neutrino emission is necessary. Still, we
think that the hot-spot scenario may be considered
as one of the realistic mechanisms of the generation
of large pulsar kicks.
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Е.В. Горбар

КIРАЛЬНА АСИМЕТРIЯ
У ГУСТIЙ НАМАГНIЧЕНIЙ РЕЛЯТИВIСТСЬКIЙ
МАТЕРIЇ I ШВИДКОСТI ПУЛЬСАРIВ

Р е з ю м е

Показано, що внаслiдок слабкої взаємодiї нейтрино iз за-
рядженими частинками у густiй релятивiстськiй плазмi iз
iндукованим за рахунок взаємодiї параметром кiрального
зсуву у зовнiшньому магнiтному полi нейтрино мають аси-
метричний розподiл в iмпульсному просторi у рiвноважно-
му станi. Знайдено, що вiдповiдна асиметрiя є дуже слаб-
кою для того, щоб пояснити найвищi швидкостi пульсарiв,
якi спостерiгаються. Запропоновано сценарiй для гарячих
точок, який пов’язаний з топологiчним струмом або iншим
механiзмом їх утворення, i аргументовано, що цей сцена-
рiй може забезпечити генерацiю потрiбних великих швид-
костей пульсарiв.
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