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By mirroring a one-dimensional oriented set in a complex space specially created on the basis
of a symmetry, a mirror 𝑛-dimensional space with 𝑛 > 1 has been constructed. The geometry of
the resulting space is described by the Clifford algebra. On the basis of the algebra of hyperbolic
hypercomplex numbers, a pseudo-Euclidean space has been constructed with the metric of the
Minkowski space. The conditions for a function of a hyperbolic hypercomplex argument to be
analytic (ℎ-analyticity) are obtained. The conditions implicitly contain the Maxwell equations
for the 4-potential in a free space.
K e yw o r d s: mirror transformation, Clifford algebra, hyperbolic hypercomplex numbers,
Minkowski space.

1. Introduction

Within the last decades, there emerged the necessity
in the search for the physical ideas and a mathemat-
ical apparatus that would be capable of describing
the variety of physical phenomena from unique po-
sitions. For instance, a tendency is observed to re-
consider the classical space-time concepts in favor of
their treatment using various methods of algebra. In
particular, the binary geometrophysics (the relational
theory) [1], the algebraic theory of space-time on the
basis of quaternions [2,3], and the algebraic geometry
on the basis of the Clifford algebra [4, 5, 12], quater-
nions being examples of the latter.

The geometrical Clifford algebra pretends to play
the role of the unified language in mathematical
physics [17] owing to a powerful mathematical appa-
ratus of all known complex and hypercomplex num-
bers, which are naturally included into this alge-
bra. Regular conferences and numerous publications
in the framework of ICCA (International Conference
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on Clifford Algebras and their Applications in Math-
ematical Physics) 1 testifies to the outlook of this di-
rection, and the scope of application permanently ex-
tends from mechanics and signal processing to chem-
istry and biology. Concerning physical applications,
it should be noted that even the formulation of tra-
ditional physical problems in the language of the
Clifford algebra leads more often to a simplification
of mathematical calculations and/or new unexpected
results.

As an example, the analysis of the equations of
motion for a material point in an inhomogeneous
anisotropic space in the Clifford algebra basis par-
tially agrees with the Einstein equations. Moreover,
the very principle of construction of equations is an
alternative to variational methods [18]. The equations
of motion for a classical particle with spin in an elec-
tromagnetic field become substantially simpler in the
Clifford basis. In particular, instead of the nonlinear

1 The 10-th ICCA was held in Tartu on 4–8 August, 2014. The
ICCA proceedings are published in the ICCA journal “Ad-
vances in Applied Clifford Algebras”.
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equations of perturbation theory, linear equations are
to be solved [19], and the analysis of the specific fea-
tures in the neutron-nucleus interaction, as well as
the possibility for neutron-nucleus molecules to exist,
on the basis of the Dirac equation [22] can be carried
out, by using the Clifford algebra language 2.

In turn, the Clifford algebra is connected with
spinors [10]. The latter are specific geometric objects
sometimes called “semivectors”, because only spin-
tensors of rank 𝑛 > 1 are associated with observ-
ables. Such a role of spinors and the spinor space in
the geometry is similar to that played by the wave
functions in quantum mechanics and requires an ad-
ditional analysis. Since the Clifford algebra pretends
to be a unified language of mathematical physics, the
issue concerning its interrelation with fundamental
laws of the nature arises as well.

The principles of symmetry that form the basis of
nature’s laws [6,20] have been substantially corrected
recently. Recent researches in the string theory [7, 8]
unexpectedly drew a close attention to extended ca-
pabilities of the mirror symmetry. In those researches,
two sets,𝑋 and𝑋 ′, were connected with each other as
mirror pairs with the use of an auxiliary space. The
properties of the pairs obtained completely depend
on the properties of this space at special points and
are not confined to the right-to-left substitution, as
in the conventional geometrical mirror symmetry. In
this work, the idea of mirror symmetry with the help
of an auxiliary space is used to construct, from a 1-
dimensional oriented set, a vector space with dimen-
sionality 𝑛 > 1 in the mirror space. As an auxiliary
space, the complex space specially created on the ba-
sis of a symmetry is used, in which the role of sin-
gular points is played by certain planes (the planes
of “mirrors”), relative to which the geometrical mir-
ror symmetry is obeyed. An analogy between the ob-
tained space and the properties of complex numbers
is consistently drawn, and the algebra, geometry, and
physical properties of the obtained vector space are
analyzed. For the presentation of the material to be
logic and comprehensive, both the known and original
results are discussed. This work should be considered

2 In the Internet, one should pay attention to A.A. Ketsaris’s
lectures (http://toe-physics.org/ru/lectures.htm) or to the
works by R. Dahm, D. Hestenes, and N.G. Marchuk (appli-
cations to the field theory), W.E. Baylis, B. Jancewicz, and
P. Puska (electrodynamics), and D. Hestenes and D.S. Shi-
rokov (Clifford algebra).

Fig. 1. Action of the symmetry operators on the basis vectors
of a coordinate system

as a first part – the substantiation of the method – of
a wider research, which is planned to be presented in
the future.

2. Construction of an Auxiliary Space
on the Basis of the Complex-Plane Symmetry

According to É. Cartan [9], symmetry is defined as
the operation S of geometrical mirroring with respect
to a hyperplane𝑀 that passes through the coordinate
origin, in the direction of an anisotropic vector 𝑠 or-
thogonal to this hyperplane. Let us define the opera-
tions of mirror symmetry ±𝑠1 and ±𝑠2 in the coordi-
nate system on the plane that change the directions
of the basis vectors and the orientation of the coordi-
nate system in accordance with the diagram depicted
in Fig. 1. For an arbitrary point 𝑃 = (𝑥, 𝑦) on the
complex plane, the symmetry operation in the vector
basis 1 → (1, 0) and 2 → (0, 𝑖) can be presented by
the expression

(𝑠1 + 𝑠2)
(︁
𝑥
𝑖𝑦

)︁
=
(︁
𝑥

−𝑖𝑦
)︁
+
(︁
𝑖𝑦
𝑥

)︁
=
(︁
𝑥+ 𝑖𝑦
𝑥− 𝑖𝑦

)︁
=
(︁
𝑧
𝑧

)︁
,

(1)

where 𝑖 is the imaginary unit, and 𝑧 means the com-
plex conjugate value. As a result of the mirror sym-
metry (1), the complex plane in the basis (1, 𝑖) is
mapped in the 3-dimensional basis (1, 0), (0, 1), (𝑖, 𝑖)
as a plane that passes through the axis of imaginary
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Fig. 2. Auxiliary complex space of mirror images

Fig. 3. Construction of an orthogonal coordinate system in
the mirror space

coordinates along the bisector of the orthogonal axes
(1, 0) and (0, 1) (Fig. 2). The axis of imaginary coor-
dinates is represented as a combination of two oppo-
sitely oriented imaginary axes with the common point
0, which are orthogonal to the plane of basis vectors
(1, 0) and (0, 1). Let us denote those orthogonal vec-
tors as 𝜙+ = (1, 0) and 𝜙− = (0, 1). The complexifi-
cation of the real-valued Euclidean plane by a combi-
nation of symmetric imaginary axes generates a space
ℰ++
2 of two orthogonal complex planes in the bases

(𝜙+, 𝑖𝜙+) and (𝜙−, 𝑖𝜙−), respectively. The planes in-
tersect each other along the imaginary axes, possess
one common point 0, and determine, in the general
case, a complex vector 𝛾 = (𝜉, 𝜂). If ℰ++

2 is consid-
ered as a 3-dimensional space, any of its points 𝑃 has
real-valued coordinates: 𝑃 = (𝑥1, 𝑥2,±𝑦), where the
coordinate ±𝑦 corresponds to a combination of the
imaginary axes, and the vector 𝛾 has the coordinates
𝜉 = 𝑥1 + 𝑖𝑦 and 𝜂 = 𝑥2 − 𝑖𝑦. The representation of a
complex number by a 2-dimensional complex vector
(𝑧,𝑧) has its logic substantiation. Really, the product
of two complex numbers can be expressed in the form

𝑧1𝑧2 = (𝑧1 ∙ 𝑧2) + 𝑖[𝑧1 × 𝑧2], (2)

where 𝑧1 ∙ 𝑧2 stands for the scalar and [𝑧1 × 𝑧2] for
the vector product of the vectors 𝑧1 and 𝑧2. The real
and imaginary parts of Eq. (2) are presented in the
symmetric and antisymmetric forms,

Re(𝑧1𝑧2) = (𝑧1 ∙ 𝑧2) =
1

2
(𝑧1𝑧2 + 𝑧2𝑧1),

Im(𝑧1𝑧2) = [𝑧1 × 𝑧2] = − 𝑖

2
(𝑧1𝑧2 − 𝑧2𝑧1).

(3)

Below, it will be shown that expressions (2) and (3)
are true for hypercomplex numbers as well.

3. Construction of a Coordinate
System in the Mirror Space

The coordinate system is constructed in the mirror
space by applying the operation of mirror symmetry
to the basis vector 𝜙+ in the plane (𝜙+, 𝜙−) of the
space ℰ++

2 . For this purpose, let us write down the
operator of mirror symmetry in the general form as
follows:

S(𝛼) = cos
𝛼

2
𝑠1 + sin

𝛼

2
𝑠2, (4)

where the angle 𝛼/2 is reckoned counterclockwise
from the basis vector 𝜙+, and the angle 𝛼 itself is
an angle between the new basis vectors in the mir-
ror space and the mirror image of the vector 𝜙+. The
factor 1/2 follows from the properties of mirror im-
ages. It should be noted, first of all, that, owing to
this factor, the symmetry transformation within the
angular interval 0 ≤ 𝛼/2 < 2𝜋 covers the mirror space
twice. Therefore, the transformations within the in-
tervals 0 ≤ 𝛼/2 < 𝜋 and 𝜋 ≤ 𝛼/2 < 2𝜋 have to be
analyzed separately.

In the mirror space, let us construct an orthogonal
basis coordinate system on a plane corresponding to
the angles 𝛼 = 0, 𝜋/2, 𝜋, and 3𝜋/4. Substituting
those values into Eq. (4), we obtain, in the mirror
space, two pairs of oppositely oriented basis vectors:

𝜙+ = S(0)𝜙+ =
(︁
1
0

)︁
, 𝜓+ = S(𝜋/2)𝜙+=

1√
2

(︁
1
1

)︁
,

𝜙− = S(𝜋)𝜙+ =
(︁
0
1

)︁
, 𝜓− = S(3𝜋/4)𝜙+=

1√
2

(︁−1
1

)︁
.

(5)

The operations of mirror symmetry S(𝛼) with re-
spect to the selected planes in the space ℰ++

2 map
(Fig. 3) the initial 1-dimensional vector space 𝑅1 onto

470 ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 5



Mirror Symmetry

a 2-dimensional vector one in the mirror space, the or-
thogonal coordinate axes of which are presented as a
bundle of two oppositely oriented basis vectors with
a common zero point (the coordinate origin) (right
panel in Fig. 3). The obtained system of basis vectors
agrees well with the concept of arbitrary choice for
the direction and the orientation of a coordinate sys-
tem. However, it can be considered only as a possible
realization of the coordinate system, because the co-
ordinates of arbitrary point have an uncertainty con-
nected with the sign of numerical values. A possibility
for the basis vector to have the opposite orientation
can be formalized by introducing the vector-operator
of symmetry 𝑒, for which the oppositely oriented vec-
tor pairs are eigenvectors, and its eigenvalues ±1 are
responsible for that or another orientation of the ba-
sis vector. Since the eigenvectors are determined by
expressions (5), it is easy to obtain the matrix repre-
sentation of the vector-operators in the form

𝑒1 =
(︁
1 0
0 −1

)︁
, 𝑒2 =

(︁
0 1
1 0

)︁
,

𝑒𝑖𝜙𝑖± = ±1𝜙𝑖±, 𝑒𝑖𝑒𝑖 = 𝑒2𝑖 = 1,

(6)

where 1 is a diagonal matrix, which can be considered
as the identity symmetry operator. The right panel of
Fig. 3 can be considered as a geometric image of basis
vector-operators.

From Eq. (4), we obtain the following relation for
the S(𝛼) transformations in the interval of angles
2𝜋 ≤ 𝛼 < 4𝜋:

S(2𝜋 ≤ 𝛼 < 4𝜋) = −S(0 ≤ 𝛼 < 2𝜋). (7)

It allows us to obtain two more pairs of orthogonal
basis vectors in the mirror space, 𝜙± and 𝜓±, which
are connected with vectors (5) by the relations

𝜙± = −𝜙±; 𝜓± = −𝜓±. (8)

It is evident that the basis vectors (8) define the
vector-operators 𝑒𝑖 = −𝑒𝑖. Expressions (7) and (8) il-
lustrate a well-known problem of sign uncertainty for
transformations in the spinor space 3. However, it can
be considered from another perspective. Really, tak-
ing advantage of the analogy with the vector repre-
sentation of a complex number together with its con-
jugate value in the auxiliary complex space, we will

3 A description of this problem can be found both in textbooks
(see, e.g., lecture 24 in: M.M. Postnikov, Lectures in Geom-
etry. Semester II. Linear Algebra (Mir, Moscow, 1983) and
special literature (see, e.g., p. 33 in [15]).

consider the vector 𝑒𝑖 to be a conjugate value of the
vector 𝑒𝑖. Such approach allows us to consider trans-
formations in the spin space within the angular inter-
val of 0 ≤ 𝛼 < 2𝜋 only, provided that the conjugation
operation is introduced as an independent basic op-
eration. Hence, formally, the mirror symmetry oper-
ations (5) performed the operation S: 𝑅1 ↦→ 𝑅2(2) in
the auxiliary complex space, where 𝑅2(2) denotes a 2-
dimensional vector space in the mirror space with the
bundle of oppositely oriented basis vectors. In turn,
𝑅2(2) is a geometric image of the algebra of matrix
operators 𝑒𝑖, which will be used below to construct
the Euclidean vector space 𝐸2.

4. Algebra and Geometry
of 𝐸2 in the Mirror Space

In order to construct an Euclidean space, we must
define a scalar product. Since vectors are presented
by matrices, their product is noncommutative in the
general case. Therefore, formally, we may write

𝑒1𝑒2 =
1

2
(𝑒1𝑒2 + 𝑒2𝑒1) +

1

2
(𝑒1𝑒2 − 𝑒2𝑒1). (9)

The symmetric bilinear form defines the internal, or
scalar, product of vectors,

𝑒1 ∙ 𝑒2 =
1

2
(𝑒1𝑒2 + 𝑒2𝑒1), (10)

and the antisymmetric form defines their external
product,

𝑒12 = 𝑒1 ∧ 𝑒2 =
1

2
(𝑒1𝑒2 − 𝑒2𝑒1). (11)

The condition of vector orthogonality is 𝑒1 ∙ 𝑒2 = 0,
so that Eqs. (9) and (10) yield

𝑒1𝑒2 = −𝑒2𝑒1, 𝑒12 = 𝑒1𝑒2, 𝑒21 = −𝑒12. (12)

From Eq. (12), it follows that the orthogonal vec-
tors anticommute with each other. The external prod-
uct generates a bivector 𝑒12, which is a simple vec-
tor product for orthogonal vectors and changes its
sign if the order of multipliers (the order of in-
dices) changes. The latter property is the property of
an antisymmetric form for orthogonal vectors rather
than that of the noncommutativity of a matrix prod-
uct. The bivector 𝑒12 also determines the symmetry
of the coordinate system, because it is a combination
of symmetries. To find it, let us use an expression for
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the mirror image of the vector 𝑥 in the basis (𝑒1, 𝑒2) in
the direction of the unit vector 𝑠 [10]: 𝑥′ = −𝑠𝑥𝑠. Let
𝑥 = 𝑒𝑖 and let the mirroring be performed twice: first
at 𝑠 = 𝑒2, and then at 𝑠 = 𝑒1. We obtain

𝑒′𝑖 = 𝑒1𝑒2𝑒𝑖𝑒2𝑒1 = −𝑒𝑖, (13)

where properties (12) were taken into account. Since
the even images generate rotations, Eq. (13) corre-
sponds to a rotation of the basis coordinate system
by an angle of 180∘. In the case of 𝑅2(2), this oper-
ation corresponds to the swapping of the basis vec-
tors with the subscripts “+” and “−”. The bivector
𝑒12 determines the oriented area of a parallelogram
constructed on the vectors 𝑒1 and 𝑒2. Therefore, the
rotation axis in 𝑅2(2) is considered to be the axis of
bivector coordinates. Then, similarly to Eq. (8), we
have

𝑒12𝜙12± = ±𝑖𝜙12±, 𝑒
2
12 = −1. (14)

The complexification 𝑅2(2) → 𝑅
+(+)
2(2) as a result of in-

troducing a bundle of imaginary rotation coordinate
axes becomes possible owing to the extension of the
symmetry concept to the case of a plane by including
the ±180∘-rotations. The bivector 𝑒21 = −𝑒12 has
the opposite orientation and changes the orientation
of the system of basis vectors 𝑒1, 𝑒2, and 𝑒21, as a
whole, to 𝑅+(+)

2(2) . If this system of symmetry vector-
operators is appended by the operator of identical
symmetry, 1, we obtain a system of linearly indepen-
dent vectors, on which the Clifford algebra C2 over
the field of real or complex numbers is built,

A = 𝑎01+ 𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎12𝑒12. (15)

Expression (15), where 𝑎0 is a scalar, 𝑎1 and 𝑎2 are
vector components, and 𝑎12 is a bivector component,

Multiplication tables of quaternion
basis vectors for right- and left-handed
orientations of the coordinate system

𝑖 𝑗 𝑘 𝑖* 𝑗* 𝑘*

𝑖 −1 −𝑘 𝑗 𝑖* −1 𝑘* −𝑗*

𝑗 𝑘 −1 −𝑖 𝑗* 𝑘* −1 𝑖

−𝑘 −𝑗 𝑖 −1 𝑘* 𝑗* −𝑖* −1

will be referred to as an aggregate. The C2 algebra
contains all three known systems of complex numbers
with the basis pairs (1, 𝑖), (1, 𝑒), and (1, 𝜖), which have
their analogs in C2:

∙ ordinary complex numbers 𝑎+ 𝑖𝑏, 𝑖2 = −1 1 → 1;
𝑖→ 𝑒12;

∙ binary numbers 𝑎+ 𝑒𝑏, 𝑒2 = 1 1 → 1; 𝑒→ 𝑒1, 𝑒2;
∙ dual numbers 𝑎+𝜖𝑏, 𝜖2 = 0 1 → 1; 𝜖→ (𝑒1+𝑒12).

According to the properties of their absolute val-
ues |𝑧|2 = 𝑧𝑧, which are defined by the expressions
|𝑧|2 = 𝑎2+𝑏2, |𝑧|2 = 𝑎2−𝑏2, and |𝑧|2 = 𝑎2, those num-
bers are sometimes called elliptic, hyperbolic, and
parabolic complex numbers, respectively [11].

But the capabilities of C2 are not restricted to that.
If we formally change from the basis (𝜙1±, 𝜙2±) to
the basis (𝑖𝜙1±, 𝑖𝜙2±) in 𝑅

+(+)
2(2) in the case of C2,

we will obtain a new basis (𝑖𝑒1, 𝑖𝑒2, 𝑒12) in the right-
handed coordinate system and a basis (𝑖𝑒1, 𝑖𝑒2, 𝑒21)
in the left-handed one. Let us introduce new no-
tations for those vectors: (𝑖, 𝑗,𝑘) for the right-
handed coordinate system and (𝑖*, 𝑗*,𝑘*) for the left-
handed one. The Clifford algebras (15) constructed
on those basis vectors form the systems of elliptic
hypercomplex numbers, which are known as quater-
nions. Historically, things so happened that the ma-
jority of authors use the system with the left-handed
orientation of basis vectors. By expressing a quater-
nion in terms of the scalar and vector parts, 𝑄(𝑎,𝑢),
it is easy to verify with the help of Table for the mul-
tiplication of basis vectors that the product of two
quaternions, 𝑄(𝑎,𝑢)𝑄(𝑏,𝑣), looks like

𝑄𝑅(𝑎𝑏− 𝑢 ∙ 𝑣, 𝑎𝑣 + 𝑏𝑢− 𝑢× 𝑣) (16a)

for the right-handed coordinate system and

𝑄𝐿(𝑎𝑏− 𝑢 ∙ 𝑣, 𝑎𝑣 + 𝑏𝑢+ 𝑢× 𝑣) (16b)

for the left-handed one, where 𝑢∙𝑣 denotes the scalar
product of vectors, and 𝑢× 𝑣 stands for their vector
product. The difference in expressions (16) consists in
different signs before the vector product.

It should be noted that, by their properties, the
basis vectors of quaternions 𝑄𝑅 and 𝑄𝐿 are bivec-
tors and form a 3-dimensional space of bivectors 𝐵3

with the right- and left-handed orientations. A neces-
sity to consider the orientations of a coordinate sys-
tem stems from the fact that the invariant of a com-
plex or hypercomplex number is formed in the general
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case as a quadratic form of the initial and conjugate
numbers. In this work, the conjugate number is in-
troduced with the help of symmetry operations that
change the orientation of coordinate systems. Really,
considering aggregate (15) as a hypercomplex num-
ber written in the general form in the 4-dimensional
space, the conjugate aggregate Ā is constructed in
the basis

1,−𝑒1,−𝑒2,−𝑒12, (17)

and the invariant or fundamental quadratic form
(FQF), which is defined as |A|2 = AĀ, looks like

|A|2 = (𝑎0)2 + (𝑎12)2 − (𝑎1)2 − (𝑎2)2. (18)

This indefinite FQF corresponds to the pseudo-
Euclidean space 𝐻

(2)
4 . It is easy to verify that,

for quaternions, the FQF is positive definite and
corresponds to the Euclidean space 𝐻4. A necessity
to be attentive to the orientation of the systems
of basis vectors and bivectors substantially grows,
while changing from the 2-dimensional space to a
3-dimensional one, which is considered in the next
section. Really, the 3-dimensional space formally in-
cludes 3 oriented planes, in which the orthogonal po-
lar basis vectors are determined, and their orientation
is given by the corresponding bivector. Therefore,
a common orientation of the basis of polar vectors
is closely related to the orientation of basis bivec-
tors. Conventionally, the bases with the right-hand
orientation are used by default, if any special reasons
do not force this rule to be violated. In this case, a
special remark is made.

5. Algebra and Geometry
of 𝐸3 in the Mirror Space

To obtain the third vector of the Clifford basis, let us
perform the mirror symmetry operation (4) for the
basis vector 𝜙+ in the plane (𝜙+, 𝑖𝜙−). In view of
the orientation of this plane (Fig. 2), a 3-dimensional
Clifford basis with the right-hand orientation is ob-
tained, if the angle 𝛼 = −𝜋/2 or−3𝜋/4. In this case,
the eigenvectors 𝜙3± and the basis vector 𝑒3 look like

𝜙3+ = S3(−𝜋/2)𝜙+ =
1√
2

(︂
1

𝑖

)︂
;

𝜙3− = S3(−3𝜋/4)𝜙+ =
1√
2

(︂
−1

𝑖

)︂
; 𝑒3 =

(︂
0 −𝑖
𝑖 0

)︂
.

(19)

The complete Clifford algebra on C3 includes 8 basis
vectors:

∙ the scalar (0-vector) 𝑎01 = 𝐴𝑆 ,
∙ the vector 𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎3𝑒3 = 𝐴𝑉 ,
∙ the bivector 𝑎23𝑒23 + 𝑎31𝑒31 + 𝑎12𝑒12 = 𝐴𝐵 ,
∙ the 3-vector 𝑎123𝑒123 = 𝑎123𝑖 = 𝐴𝑃𝑆 .
The basis 3-vector or pseudo-scalar 𝑖 = 𝑒123 com-

mutes with all vectors and bivectors, and its proper-
ties are determined by the expressions

𝑖2 = −1, 𝑖−1 = 𝑒321 = −𝑒123, 𝑖𝑖
−1 = 1, 𝑖 = 𝑖1. (20)

The geometric image of a 3-vector is the volume of
a parallelepiped constructed on the vectors 𝑒𝑖. The
multiplication table for the basis vectors can be ob-
tained rather easily, if we take into account that the
even permutations of subscripts result in a multiplier
of +1, and odd ones in −1. The C3 algebra includes
all operations of the ordinary vector algebra in the
description of classical mechanics [4]. However, the
properties of C3 are not confined to that. Let us form
a system of hyperbolic hypercomplex numbers H and
a conjugate one, H̄, as follows:

H = 𝑎0𝑒0 + 𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎3𝑒3,

H̄ = 𝑎0𝑒0 − 𝑎1𝑒1 − 𝑎2𝑒2 − 𝑎3𝑒3,
(21)

where 𝑒0 = 1. The FQF |H|2 = HH̄ looks like

|H|2 = (𝑎0)2 − (𝑎1)2 − (𝑎2)2 − (𝑎3)2. (22)

It corresponds to the metric of the pseudo-Euclidean
Minkowski space 𝑀 (3)

4 . In order to prove that H ∈
∈𝑀

(3)
4 , let us determine the metric tensor 𝑔𝛼𝛽 using

the scalar product of basis vectors 𝑒𝛼 (𝛼 = 0, 1, 2, 3)
analogously to that for complex numbers (Eq. (3)):

𝑔𝛼𝛽 = 𝑒𝛼 ∙ 𝑒𝛽 =
1

2
(𝑒𝛼𝑒𝛽 + 𝑒𝛽𝑒𝛼) (23)

With the help of the equality 𝑒0𝑒𝑛 = 𝑒𝑛𝑒0 (𝑛 =
= 1, 2, 3), it is easy to check that 𝑔𝛼𝛽 has a
diagonal form with the signature diag(𝑔𝛼𝛽) =
= (+1,−1,−1,−1). In other words, a hyperbolic hy-
percomplex number H is a vector in the pseudo-
Euclidean Minkowski space 𝑀 (3)

4 with the orthogonal
basis vectors 𝑒𝛼 (𝛼 = 0, 1, 2, 3). The hypercomplex
number H can be regarded as a hyperbolic quaternion
or H-quaternion, which, unlike ordinary quaternions,
does not form a field and a division algebra, although
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some reservations should be made. Nevertheless, H-
quaternions with the Minkowski space structure have
to be studied further in physical problems. First at-
tempts to construct the algebraic theory of space-time
and matter on the basis of 2-dimensional hyperbolic
numbers have already been done [13,14]. In this work,
we only mark some features of differential operations
over hyperbolic hypercomplex numbers.

As in the case of ordinary complex numbers, the
coordinates of 4-vector are considered to be functions
of 4 variables: 𝑎𝛼(𝑥0, 𝑥1, 𝑥2, and 𝑥3). Let us introduce
a space-time 4-gradient as a covariant vector in the
reciprocal basis (𝑒0, 𝑒𝑛),

∇ = 𝑒𝛼𝜕𝛼 = ∇(𝑒0𝜕0, 𝑒
𝑛𝜕𝑛), 𝜕0 =

1

𝑐

𝜕

𝜕𝑡
, (24)

where the summation over repeated indices is im-
plied. Let us formulate the analyticity conditions for
the function G(H) of a hyperbolic hypercomplex ar-
gument, similar to Cauchy–Riemann ones for ordi-
nary complex numbers. For this purpose, let us con-
struct the invariant of a hypercomplex number as its
combination in the initial and conjugate bases (the
right- and left-hand orientations of the coordinate
system). For the 4-gradient, the relation between the
initial and reciprocal bases is given by the metric ten-
sor 𝑒𝛼 = 𝑔𝛼𝛽𝑒

𝛽 . Therefore, the 4-gradient in the ini-
tial basis is defined by the expression

∇̄ = ∇(𝑒0𝜕0, 𝑒𝑛𝜕𝑛). (25)

The analyticity condition for the function G(H)
is written in the form of the equation ∇̄G(𝑎0𝑒0,
𝑎𝑛𝑒𝑛) = 0. Direct calculations and zeroing the com-
ponents of a scalar, a vector, and a bivector give

𝜕0𝑎
0 = div �⃗�; 𝜕0�⃗� = grad 𝑎0; rot �⃗� = 0, (26)

where the notation �⃗� = 𝑎𝑛𝑒𝑛 is used. In the simple
case of binary numbers, it follows from Eq. (26) that

𝜕𝑎0

𝜕𝑥0
=
𝜕𝑎1

𝜕𝑥1
;
𝜕𝑎1

𝜕𝑥0
=
𝜕𝑎0

𝜕𝑥1
. (27)

Expression (27) corresponds to the condition of hy-
perbolic analyticity or ℎ-analyticity for the binary
numbers [16]. Therefore, we adopt that conditions
(26) are the extension of ℎ-analyticity onto the
case of hypercomplex hyperbolic numbers. Defining
the function G(H) as a vector of 4-potential

A(𝜙0𝑒0, 𝐴
𝑛𝑒𝑛), calculating the divergence of the sec-

ond equality in Eq. (26), and substituting the re-
sult into the first equality in Eq. (26), we obtain the
Maxwell equation for the scalar potential 𝜙. An al-
ternative way can also be used. Namely, we calculate

∇̄Ā = (𝜕0𝜙
0+div A⃗)𝑒0−𝜕0A⃗−grad𝜙0+𝑖 rot A⃗, (28)

where A⃗ = 𝐴𝑛𝑒𝑛. Expression (28) contains the scalar
𝐴𝑆 = 𝜕0𝜙

0 + div A⃗, the vector E = −𝜕0A⃗− grad𝜙0,
and the bivector 𝑖H = 𝑖 rot A⃗. If we put 𝐴𝑆 = 0
(the Lorenz gauge condition) and associate E and H
with the vectors of electric and magnetic fields, re-
spectively, then expression (28) will define a complex
Riemann–Silberstein vector R = E+𝑖H. It should be
emphasized that the introduction of the 4-potential Ā
conjugation is associated with the necessity to equal-
ize the orientations of basis coordinate systems in ex-
pression (28). At last, the equation ∇R = 0 contains
the Maxwell equation for the vector R in the free
space (𝜖 = 𝜇 = 1).

6. Coordinate Transformation
in ℰ++

2 and in the Mirror Space

The complex Euclidean space ℰ++
2 with the mirroring

operation is, in essence, an eigenvector space of sym-
metry operators 𝑒𝑖. Therefore, any vector 𝛾 in this
space can be decomposed into any pair (𝜙𝑖+, 𝜙𝑖−) of
orthogonal eigenvectors 𝑒𝑖,

𝛾𝑖 = 𝜉𝑖𝜙𝑖+ + 𝜂𝑖𝜙𝑖−, (29a)

and the influence of 𝑒𝑖 on 𝛾 is described by the ex-
pression

𝑒𝑖𝛾 = 𝜉𝑖𝜙𝑖+ + (−𝜂𝑖)𝜙𝑖−, (29b)

where 𝜉𝑖 and 𝜂𝑖 are the representation of 𝛾 in the
corresponding basis. In Section 3, the mirror images
in ℰ++

2 that form a group of improper rotations were
considered. In this section, we consider eigenrotations
of the coordinate system V in ℰ++

2 and in the mirror
space. Subjecting both Eqs. (29) to some transfor-
mation V, it is easy to obtain a relation between the
transformation in ℰ++

2 and the basis vectors 𝑒𝑖 in the
form

𝑒
′

𝑖𝛾
′
= 𝜉𝑖𝜙

′

𝑖+ + (−𝜂𝑖)𝜙
′

𝑖−, (30)
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where the transformed quantities are defined by the
expressions

𝑒′𝑖 = V𝑒𝑖V
−1𝛾′ = V𝛾,

𝜙′
𝑖+ = V𝜙𝑖+𝜙

′
𝑖− = V𝜙𝑖−.

(31)

Let us confine the consideration here to unimodular
transformations V with the determinant equal to +1.
Rotations will be analyzed in 5 planes of ℰ++

2 , which
are defined by the pairs of basis vectors (𝜙+, 𝜙−),
(𝜙+, 𝑖𝜙+), (𝜙−, 𝑖𝜙−), (𝜙+, 𝑖𝜙−), and (𝜙−, 𝑖𝜙+). The
notation 𝑖 for the imaginary unit means that the
imaginary coordinate axis 𝑖𝜙− is oriented oppositely
to the imaginary axis 𝑖𝜙+ (Fig. 2). The counterclock-
wise transformation of the basis in the real plane
(𝜙+, 𝜙−) is described by the expression

𝜙′
𝑖+ = cos

𝛼

2
𝜙+ + sin

𝛼

2
𝜙−,

𝜙′
𝑖− = − sin

𝛼

2
𝜙+ + cos

𝛼

2
𝜙−.

(32)

The matrix describing the basis rotation by the angle
𝛼/2 around the bundle of imaginary axes looks like

V(𝛼/2) =

(︃
cos 𝛼

2 sin 𝛼
2

− sin 𝛼
2 cos 𝛼

2

)︃
. (33)

The transformation of the basis in the plane
(𝜙+, 𝑖𝜙−) by the angle 𝛽/2 around the axis 𝜙− to-
ward the positive direction of the axis 𝑖𝜙− (clockwise)
looks like

𝜙′
𝑖+ = cos

𝛽

2
𝜙+ + sin

𝛽

2
(𝑖𝜙−),

(𝑖𝜙−)
′ = − sin

𝛽

2
𝜙+ + cos

𝛽

2
(𝑖𝜙−).

(34)

This direction of a rotation was chosen for the angle
𝛽 to be positively defined. By multiplying the second
equality (34) by −𝑖, the rotation around the axis 𝜙−
in the plane (𝜙+, 𝑖𝑖𝜙−) is transformed into the cor-
responding rotation around the bundle of imaginary
axes in the plane (𝜙+, 𝜙−). The matrix of this trans-
formation looks like

V(𝛽/2) =

(︃
cos 𝛽

2 𝑖 sin 𝛽
2

𝑖 sin 𝛽
2 cos 𝛽

2

)︃
. (35)

The transformation of the basis in the plane
(𝜙−, 𝑖𝜙+) counterclockwise by the angle 𝛾/2 around

the axis 𝜙+ is described, similarly to Eq. (35), and
the corresponding transformation matrix looks like

V(𝛾/2) =

(︃
cos 𝛾

2 𝑖 sin 𝛾
2

𝑖 sin 𝛾
2 cos 𝛾

2

)︃
. (36)

The transformation in the planes (𝜙+, 𝑖𝜙+) and
(𝜙−, 𝑖𝜙−) is a common transformation of a pair of
complex numbers and is described, in the general
form, by the expression

V(𝑘, 𝛿/2) =

(︂
𝑘 exp(𝑖𝛿/2) 0

0 𝑘−1 exp(−𝑖𝛿/2)

)︂
. (37)

A transformation of this type is a homothety (comp-
ression-expansion) with a rotation in the complex
plane.

To analyze the basis transformations in the mirror
space, let us enumerate the basis vectors 𝑒𝑖 so that the
components of the vector r = (𝑥, 𝑦, 𝑧) in the mirror
space, r = 𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3, would correspond to the
matrix representation

r =

(︂
𝑧 𝑥− 𝑖𝑦

𝑥+ 𝑖𝑦 −𝑧

)︂
. (38)

Matrices (33) and (35)–(37) of the coordinate trans-
formation can be expanded in the Clifford basis
(1, 𝑒𝑖𝑒𝑗), and the rotation in the mirror space can be
expressed in terms of quaternionic variables Q. For
instance, rotation (33) will obtain the form

V(𝛼/2) = Q(𝛼/2) = cos
𝛼

2
1+ sin

𝛼

2
𝑒3𝑒1. (39)

Since 𝑒′𝑖 = V𝑒𝑖V
−1, and since 𝑒31 anticommutes with

(𝑒1, 𝑒3) and commutes with 𝑒2, the transformation of
a vector r in the mirror space reads

r′ = Q(𝛼)(𝑥𝑒1 + 𝑧𝑒3) + 𝑦𝑒2. (40)

Expression (40) describes a rotation around the ba-
sis axis 𝑒2. Analogously to transformation (35), the
rotation around the basis vector 𝑒1 takes the form

r′ = 𝑥𝑒1 +Q(𝛽)(𝑦𝑒2 + 𝑧𝑒3), (41)

where Q(𝛽) = cos𝛽 1 + sin𝛽 𝑒2𝑒3. Expressions (35)
and (36) are an example of the “degeneration” effect
induced by a symmetry; in the specific case, this is the
symmetry of imaginary axes. A similar phenomenon
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takes place in quantum mechanics, where the energy
degeneration of the spin states can be eliminated with
the help of a magnetic field owing to a decrease in
the symmetry. Therefore, let us describe the rota-
tion around the basis vector 𝑒3 by expression (37).
Then, putting 𝑘 = 1 and 𝛿 = 𝛾, the corresponding
quaternion looks like Q(𝛾) = cos 𝛾1 + sin 𝛾𝑒1𝑒2. If
𝑘 ̸= 1, no analogs of the transformations of a 3-
dimensional space are known. However, in the space
with the Minkowski metric, the variable 𝑘 is responsi-
ble for the boost transformation in the special theory
of relativity. It should be noted that the quaternion
in expressions (40) and (41) can act on the coordi-
nates in the parentheses not only from left to right,
but also from right to left. In the latter case, the signs
of angles in the transformation formulas have to be
changed to the opposite ones.

7. Discussion of the Results

1. Two- and three-dimensional spaces obtained by
mirroring in the auxiliary complex space have a basis
of the vector Clifford algebra in the mirror space. In
turn, the basis vectors 𝑒𝑖 of the Clifford algebra are
symmetry operators describing two opposite orienta-
tions of a basis vector. These properties of the mir-
ror images emphasize a direct relationship between
the Clifford algebra and the fundamental principles of
symmetry. The auxiliary complex space ℰ++

2 , which
was constructed with the use of symmetry operations
and in which the mirroring operations are performed,
is, in essence, a space of eigenvectors for the sym-
metry vector-operators 𝑒𝑖 of the Clifford basis. This
space has the Euclidean metric with orthogonal ba-
sis vectors and does not fit the classical definition of
spin-space [21], which has an antisymmetric metric on
isotropic basis vectors. At the same time, the prop-
erties of ℰ++

2 have a certain similarity with those of
the classical spin-space. This statement concerns the
identity of the expressions for coordinate transforma-
tions and their sign ambiguity. However, the intro-
duction of the Clifford basis conjugation operation at
the stage of the basis construction allowed us, in a
definite sense, to solve the problem of transformation
ambiguity.

2. The consistent application of the vector formal-
ism of complex numbers in the Clifford algebra made
it possible to redefine the scalar product for the Clif-
ford basis and to correctly introduce the metric ten-

sor 𝑔𝛼𝛽 of an orthogonal basis in the Minkowski space
𝑀

(3)
4 for hyperbolic hypercomplex numbers. For this

space, the ℎ-analyticity conditions were obtained for
functions of a hypercomplex argument, which are sim-
ilar to the Cauchy–Riemann conditions for complex
numbers. Moreover, the conditions of ℎ-analyticity
implicitly include the Maxwell equations for a 4-po-
tential in the free space.

3. In the vector interpretation of hypercomplex
numbers, the important role is played by the orien-
tation of a coordinate system. A change in the ori-
entation of the system of basis vectors for hypercom-
plex numbers corresponds to the operation of complex
number conjugation. The construction of the invari-
ant for hypercomplex numbers–for complex numbers,
this is the absolute value composed of conjugated
numbers–corresponds to the composition of numbers
in the left- and right-hand oriented coordinate sys-
tems. Just those reasons served as a basis to obtain
the conditions of ℎ-analyticity. The consideration of
a coordinate system orientation also made it possible
to distinguish between right- and left-handed quater-
nions, thereby emphasizing the vector character of
the Clifford algebra.

The author is thankful to Prof. V.I. Vysotskyi for
his valuable remarks and discussion, which made it
possible to reevaluate the work from another view-
point.
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9. É. Cartan, Leçons sur la Théorie des Spineurs (Hermann,
Paris, 1938).

476 ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 5



10. P.K. Rashevsky, Usp. Matem. Nauk 10, No. 2, 3 (1955).
11. I.M. Yaglom, Complex Numbers in Geometry (Academic

Press, New York, 1968).
12. E. Hitzer, SICE J. Control Meas. 4, 1 (2011).
13. D.G. Pavlov and S.S. Kokarev, Giperkompl. Chisla Geom.

Fiz. 7, No. 1, 78 (2010).
14. D.G. Pavlov and S.S. Kokarev, Giperkompl. Chisla Geom.

Fiz. 7, No. 2, 11 (2010).
15. R. Penrose and W. Rindler, Spinors and Space-Time,

Vol. 1: Two-Spinor Calculus and Relativistic Fields (Cam-
bridge Univ. Press, Cambridge, 1987).

16. M.A. Lavrent’ev and B.V. Shabat, Problems in Hydrody-
namics and Their Mathematical Models (Nauka, Moscow,
1977) (in Russian).

17. D. Hestenes and G. Sobczyk, Clifford Algebra to Geomet-
ric Calculus, A Unified Language for Mathematics and
Physics (Kluwer, Dordrecht, 1984).

18. S.V. Terekhov, Vestn. Novgorod. Gos. Univ., No. 26, 56
(2004).

19. A.L. Glebov, Teor. Mat. Fiz. 48, 340 (1986).
20. E. Wigner, Phys. Today 17, 34 (1964).

21. Yu.B. Rumer, Spinor Analysis (ONTI, Moscow, 1936) (in
Russian).

22. V.I. Vysotskii and M.V. Vysotskyy, Eur. Phys. J. A 44,
279 (2010). Received 27.05.14.

Translated from Ukrainian by O.I. Voitenko
Ю.В.Хорошков

ДЗЕРКАЛЬНА
СИМЕТРIЯ ЯК ОСНОВА ПОБУДОВИ
ПРОСТОРОВО-ЧАСОВОГО КОНТИНУУМУ

Р е з ю м е

За допомогою дзеркального вiдображення 1-вимiрної орiєн-
тованої множини у спецiально створеному на основi симе-
трiї комплексному просторi будується в задзеркаллi простiр
розмiрностi 𝑛 > 1. Геометрiя отриманого простору опису-
ється векторною алгеброю Клiффорда. На основi алгебри
гiперболiчних гiперкомплексних чисел будується псевдоев-
клiдiв простiр з метрикою простору Мiнковського. Одер-
жано умови аналiтичностi функцiї вiд гiперболiчного гiпер-
комплексного аргументу (h-аналiтичнiсть), в яких в неяв-
ному виглядi мiстяться рiвняння Максвелла для 4-потен-
цiалу у вiльному просторi.


