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PARAMETRIC EXCITATION

OF SURFACE MAGNETOSTATIC MODES

IN AN AXTALLY MAGNETIZED ELLIPTIC
CYLINDER UNDER LONGITUDINAL PUMPING

A rigorous analytical theory of parametric excitation under the longitudinal pumping has been
developed for the surface magnetostatic modes of a long elliptic ferrite cylinder magnetized
along its axis with regard for the boundary conditions at the surface of the cylinder. It is shown
that a pair of frequency-degenerated counter-propagating surface modes at half the pumping
frequency can be parametrically excited, and the expressions for the corresponding paramet-
ric excitation threshold have been derived. The threshold demonstrates a strong dependence
on the mode number and elliptic cylinder’s aspect ratio and tends from above for the large
aspect ratio to the value deduced on the basis of the plane-wave analysis. The simple analytical
relation between the ratio of axes of the high-frequency magnetization polarization ellipse of
excited surface magnetostatic oscillations and the parametric excitation threshold is obtained,

discussed, and graphically illustrated.
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1. Introduction

The parametric excitation of spin waves due to the
intrinsic nonlinear properties of ferromagnetic mate-
rials plays a key role in practical applications. While
the magnetization oscillations with small amplitudes
can be safely analyzed in the linear approximation [1],
the nonlinear properties of ferrite for relatively large
amplitudes of the high-frequency magnetization lead
to various nonlinear effects [2], including the paramet-
ric excitation (PE) of spin waves [3]. On the one hand,
such phenomenon restricts the dynamic range of the
input RF power of magnetostatic resonators. On the
other hand, a number of nonlinear devices, such as
a power limiter and a signal-to-noise enhancer are
based on this effect [4]. Therefore, the careful exam-
ination of parametric excitation with regard for the
specific features of a ferrite resonator and excitation
conditions is of importance for the applied research.

Suhl [3] developed the basics of the PE theory,
as applied to a transversely pumped isotropic ferro-
magnet. Subsequently, the theoretical model was im-
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proved to account for the arbitrary orientation and
polarization of a microwave pumping field [5]. Finally,
it was generalized for the first and second bands un-
der the dual pumping of ferrite materials with either
uniaxial or cubic magnetocrystalline anisotropy, by
using arbitrary polarized and oriented RF fields [6].

However, Suhl’s theory utilizes the expansion of the
high-frequency magnetization in uniform plane spin
waves, which is justified only when the wave number
k of excited spin waves is much larger than the inverse
dimensions of a sample. But, for thin ferrimagnetic
films with thickness of the order of a few to a few tens
of microns, the typical wave numbers of resonator
eigen-excitations — surface magnetostatic oscillations
(SMSO) — are much less than the inverse thickness. In
this case, one ought to expand the magnetization vec-
tor m and the RF magnetic field in problem’s normal
modes m,;: m =Y (A,m, +c.c.) [7,8], instead of
plane spin waves.

In this paper, the parametric excitation of SMSO
in a longitudinally magnetized yttrium-iron garnet
(YIG) film resonator with elliptic cross-section un-
der the longitudinal pumping will be considered, by
taking the actual boundary conditions at the res-
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onator surface into account. The ferrite anisotropy is
neglected, by assuming the external static magnetic
field to be much larger than typical YIG cubic and
uniaxial anisotropy fields (=50 Oe).

2. General Theory

The exact analytical theory of SMSO in infinitely long
isotropic ferrite resonator magnetized along its axis
with elliptic cross-section (Fig. 1) in the nonexchange
limit is presented in [9].

It was shown [9, 10], that the eigenfrequency of the
SMSO n-th mode of such resonator is given by:

w? = (wy +wn/2)?—1/4w3,((a — b)/(a + b))2". (1)

The magnetostatic modes of the infinitely long el-
liptic resonator can be characterized by three indices
[7], namely, the number of nodes in the circumfer-
ential direction n, index r of a solution of the char-
acteristic equation, and wavenumber § correspond-
ing to the propagation along the cylinder axis. For
the axially uniform oscillations, § = 0, and the
surface modes are labeled by r = 0, according to
[7]. Hereafter, we will designate each mode with the
single subscript n instead of all three indices (n, 0, 0),
for the sake of brevity.

Since w, = w_, (1), the external pumping RF
magnetic field h (applied in parallel to the DC field
H,) with the frequency w, = 2w,, can parametrically
excite two frequency-degenerated counterpropagating
surface magnetostatic modes with the indices n and
—n.
The magnetostatic potential ¥ for the SMSO n-th
mode in an elliptic ferrite cylinder with semiaxes a
and b can be expressed in the modified elliptic coor-
dinate system (p, ¢, z) as [9]

\Ijn (p7 ¢) = BH(R;’L_ (p) cos(n(b) -

~isgn(n) YA (o) sin(ng), 2)

a

where B, is the mode amplitude, R} (p) = (p"l +
+(c/2)?Mp 1", Ry (p) = (p" = (e/2)*"pmIn),
A= (1= (c/(a+b)*")/(1+(c/(a+ )", e =

= Va2 -0, p = (W - wl)/(W - wh), pa =
:wwM/(wz—w%), W = wylwg + wur), wy =

= y4w My, wg = vHy, 7 is the gyromagnetic ratio,
and My is the saturation magnetization. In (2), one
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Fig. 1. Longitudinally magnetized ferrite elliptic cylinder un-
der parallel pumping

should treat w as the eigenfrequency w,, of the n-th
mode at a given magnetic field Hy (see (1)).
In view of the standard expressions

h, = grad ¥,

. WM WH 1w

X= w? —w? (—iw wH)’

relations (2) yield the explicit formulae for the com-
ponents of the high-frequency magnetization vector
m, for each SMSO mode. Then we verified,by
straightforward calculations, the orthogonality re-
lation [ (mpnMem — MenMmpm)dV = 0 and calcu-
lated the eigenmode normalization constant D, =
= —i [(mpnml, —m%, mey,)dV [7]. It was found, that

272 . .
D,=D_, = %En, where C,, is some expression

depending on the frequency, magnetic field, satura-
tion magnetization, and geometric parameters of a
sample, and E,, = 2w, 2wy + wp (1 + ((a — b)/(a+
+b))I")) =1 Note that, in modified elliptical cylindri-
cal coordinates [9], we have dV = phidpdcpdz, h, =
= \/(1 —c2/4p2)2 + (c2/4p?) sin® .

In [7], the general expression for the experimentally

observed parametric excitation threshold RF field A,
was found to be

m,, = Yh,,

_ AwrnWem

he)? = —mrrm 3
(1he)? = o )
where A\, = (1/D,,) [ (m}im},)dV, and w,, is the
relaxation frequency of the proper mode.

Using (2), we obtain

* * * * WC?% 2
(mpnmpm + mtpnmtpm) v = |’I’L| (1-Ey),
when |n| = |m|, and is equal to zero otherwise (here,

C, and F,, are exactly the same as in the expression
for D,,). Therefore,

(1-E7)
Anm = n
’ 2F,

_ *
Olnl,m| = A
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This means that the PE process like w, = wy, +wyy,
|n| # |m|, which could be allowed by the energy
conservation law, would have, nevertheless, the in-
finite threshold due to the zero overlapping inte-
gral Ap .. Thus, only the parametric excitation of
two SMSO modes having opposite azimuthal indices
n = —m is allowed and would be considered further.
By substituting all the previously calculated expres-
sions into (3), we obtain

o (2wm> 2E,
‘ v ) (1-E2)

After some cumbersome calculations, the final ex-
pression takes the form

B — <2wm> 2, B nwp N

Y " a—b‘nl_w a—bln‘
MA\a+0b M\a+0
(4)

where 1 = 0w, /0wy = (wg + war/2)/wy, is the el-
lipticity factor [11], and AH} is the ferromagnetic
resonance linewidth.

Apparently, the excitation threshold for SMSO un-
der the longitudinal pumping strongly depends on
the geometric parameters of a sample (e.g., the as-
pect ratio a/b). But otherwise, expression (4) is sim-
ilar to that deduced on the basis of the plane-wave
analysis [1].

As it was pointed out earlier [8], the PE process
efficiency strongly correlates with the polarization of
excited spin waves. Next, we will elucidate this state-
ment for the problem under consideration and express
it in the strict mathematical form.

Using the explicit expressions for m,,, our calcula-
tions show that the ratio of axes of the high-frequency
magnetization polarization ellipse is given by the for-
mula

Mumin/Mmax = tan(1/2arcsin(2E,, /(1 + E2))).

Tt is worth noting that mmin /Mmax does not depend
on coordinates, i.e., it is spatially uniform.

After some simplifications, we obtain a formula
that explicitly expresses the ratio of axes of the eigen-
mode polarization ellipse in terms of the magnetic and
geometric parameters of the SMSO resonator:

M min . Wn

—— =tan (1/2arcsin ———— ). 5
Mmax ( / wH + w2M> ( )
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Considering the expression for the ellipticity fac-
tor and relation (1), one can see that magnetization’s
polarization is defined by the ellipticity factor n only,
according to Mupin/Mmax = tan (1/2arcsin (1/7)).

Since the critical field h. and the polarization state
depend on the same coefficient F,, we can express
one physical quantity directly via another one. Thus,
we have

2 T min max
hcz(”"> Manin/Manex (6)
Y 1-— (mmin/mmax)

The physical origin of such correlation is clear:
for the circular precession of the magnetization
(Mmin/Mmax = 1), the longitudinal component of
the magnetization m, is absent, and no coupling
with the pumping field is possible (h. — o0). For
a more elliptic precession, m, becomes correspon-
dently larger. Hence, the interaction is stronger, and
the threshold is lower [8].

3. Discussion

Let us consider two limiting cases of (4): a circular
ferrite rod (a = b) and a very elongated elliptic cylin-
der (a > b). In the first case, h, — 00, since the char-
acteristic equation admits a solution only for n > 0,
and a pair of counterpropagating surface modes re-
quired for the PE process is absent, as it was cor-
rectly pointed out in [7]. As for the second case, let
us use the previously published expression for the
PE of traveling surface magnetostatic waves with the
wavevectors =k in a thin magnetic film with thick-
ness d [12]. In that situation, the threshold is equal to
he = 2w, /) (wp/war) exp(|k|d), which for kd <1
reduces to h.= (2w,,/7) (wp/wr) (1 + |k|/d). On
the other hand, expression (4) for b/a < 1 reduces to
he = (2w, /77) (Wp/war) (1 + 2bn|/a). Those two for-
mulae would be identical, if we make the natural re-
placement 2b — d and assume that an “equivalent”
wavevector |k| = |n|/a can be assigned to each eigen-
mode with index n. Since 1/a — 0, the discrete set of
mode indices smoothly transforms into a continuous
manifold of k. Thus, expression (4) gives the correct
results in both limiting cases.

The dependence of the threshold on the cylinder
shape is illustrated in Fig. 2, where the normalized
microwave threshold field h./AHj for a few lowest-
order SMSO modes is depicted as a function of the
aspect ratio a/b. In calculations, we used Hy = 1 kOe
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and the value of 47 My = 1.75 kG typical of YIG. The
dash-dotted line shows the normalized threshold for
infinite isotropic media (that is equal to w,/war), by
assuming that AHj in both cases are identical. One
can see that the parametric excitation threshold dras-
tically increases for cylinder’s shape close to the cir-
cular one. But, for elliptic cylinders with a large as-
pect ratio (for example, thin-film resonators), it is
approaching the value for plane spin waves. Speci-
fically, for the n = 1 mode, the difference from the
“bulk” value is less than 15% for a/b > 20. Moreover,
the threshold noticeably increases with the mode
number.

Thus, the calculations presented here allow one to
evaluate the PE threshold for any given mode of an
elliptic resonator and give the more flexibility to an
SMSO resonator designer in choosing the dynamic
power range of a device. For example, if the opera-
tion at a larger input power is required, the resonator,
according to (4) and Fig. 2, should work on higher
modes with large h. or must be manufactured as a
circular cylinder. On the other hand, for the appli-
cations like a power limiter, one can precisely set the
desired resonator’s threshold power, by simply select-
ing the appropriate axis ratio (see Fig. 2).

The analysis of expression (5) demonstrates that,
for a circular cylinder (¢ = b), all modes without
exception have circular polarization. However, when
cylinder’s aspect ratio a/b increases, the Mmumin/Mmax
ratio start decreasing, and the modes with larger in-
dex n are always being more “circular”. In addition,
the polarization ellipse aspect ratio increases with Hy,
tending to 1 for the large bias (see Fig. 3).

The threshold vs. polarization dependence, as de-
scribed by expression (6), is illustrated in Fig. 4. It
is clearly seen that the more elliptic precession of
the magnetization (smaller mpy,/mmax) facilitates,
indeed, PE under the longitudinal pumping, as was
pointed out earlier. Note that the very elliptic (close
to linear) precession is beyond the scope of the cur-
rent theory, since the assumption m, < my,my (m;
being the dynamical (high-frequency) components of
the magnetization) used when deriving the expres-
sions for tensor magnetic permeability is no longer
valid in this case.

In order to define the limits of current theory’s ap-
plicability, the investigation of the longitudinal and
transversal high-frequency components of the mag-
netization vector, assuming |M| = const, was done,
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Fig. 2. Normalized microwave threshold field as a function of
the elliptic cylinder aspect ratio
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Fig. 4. Parametric excitation threshold vs. the polarization
axis ratio of excited magnetostatic oscillations
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resulting in the following formula:

2
Mmin_ 4<O‘)+120‘. (7)
Mmax mzo Mz0

Expression (7) defines the polarization ellipse as-
pect ratio Mumin/Mmax, for which m, reaches a value
equal to amy, 0 < o < 1, for the given polarization
ellipse normalized major semiaxis mgo = m,/My.
The parameter & = m,/m, determines the small-
ness of the longitudinal component m, relative to
the transversal component my. If o < 1, the stan-
dard expressions for tensor magnetic permeability are
entirely valid. Otherwise, those expressions are no
longer applicable, and all the theoretical results pre-
sented here are doubtful. Formula (7) allows one to
estimate the range of muyin/Mmax, for which our the-
oretical model remains correct. For example, for fixed
mg /Mo = 0.1, v is equal 0.05 for mupin/Mmax = 0.41,
and @ = 0.1 for Mmmin/Mmax = 0.24. Thus, the
safe interval is roughly 0.5 < Mpin/Mmax < 1. For
smaller m,, /My we will always get lesser values of the
lower boundary of Mmyin/Mmax. Therefore, it would
be safe to assume that, for relatively small m, /M,
(which is typical of the parametric excitation pro-
cesses under the parallel pumping), the curve in
Fig. 4 is trustworthy for mmin/Mmax above approx-
imately 0.5.

4. Conclusions

Analytical calculations by the theory of parametric
excitation of magnetostatic surface oscillations in lon-
gitudinally magnetized elliptic cylinders under the
longitudinal pumping have been conducted. The fi-
nal expressions are obtained in the simple convenient
form suitable for the further analysis.

The parametric excitation threshold for various
mode numbers and cylinder aspect ratios has been
derived and analyzed. It is shown that the paramet-
ric excitation threshold for SMSO in a thin ferrite
film is of the same order of magnitude with that
calculated within the classical theory for plane spin
waves (SW). The interpretation of the experimen-
tal results and the thorough analysis of both pos-
sible mechanisms of parametric excitation are car-
ried out. Indeed, we have the relation hSMSO /pSW =
= (AHPMSO/AHPY) (a + )™ /(a — ). For exam-
ple, for the pumping field frequency w, = 10 GHz,
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the parametric SMSO excited at w,,/2 in an YIG res-
onator biased with Hy = 1000 Oe will have low k
and AHPMSO ~ 0.25 Oe [13]. At the same time, the
plane spin waves with equal frequency would have
k ~ 10° cm™! and much larger AHFW =~ 0.7 Oe
due to the additional contribution from the dipolar
3-magnon confluence process [14]. In this situation,
the SMSO main mode (n = 1) in a resonator with
aspect ratio a/b > 2 will have a lower parametric
excitation threshold than plane spin waves.

The analytical expression for the ratio of axes of
the high-frequency magnetization polarization ellipse
is obtained, and the correspondence between the
polarization state and the PE threshold is investi-
gated. The expression directly connecting the ratio
of axes and the PE threshold is found and graphi-
cally illustrated, and the bounds of its applicability
are indicated.

Earlier 9], it was shown that it the nonexchange
limit SMSO spectrum of a long YIG longitudinally
biased resonator with rectangular cross-section can
be calculated with the use of the geometric approx-
imation of the resonator cross-section with inscribed
ellipse. Thus, the presented theory, though being de-
rived for an elliptic resonator, can be potentially ap-
plied to the widely used film ferrite resonators with
rectangular shape.
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M.O. IIonos

ITAPAMETPUYHE 3BY/I>KEHH
ITAPAJIEJIBHOIO HAKAYKOIO I[TOBEPXHEBUX
MATHITOCTATMIHYHUNX KOJINBAHb

B ITO3JO0B?>KHBO HAMATHIYEHOMY
EJINITMYHOMY HUJIIHAPI

Peszwowme

Po3pobsieHo aHaJIITUYHY TEOPil0 MapaMeTPUYHOrO 30y/1KeH-
He TAPAJICIHLHOI0 HAKAYKOIO MMOBEPXHEBUX MATHITOCTATHIHUX
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KOJINBaAHb HECKIHYEHHO JOBIOrO €JINTHUYHOrO PepOMarHiTHOIO
OUJIiHIpa, HaMarHi4eHOro B3J0BXK OCi, 3 ypaxyBaHHSAM I'DaHU-
YHAX yMOB Ha IOBepxHi ¢depomarmerura. ITokazamo morkiun-
BiCTh mapaMeTpUYHOro 30y 2KEHHs ITapyd BUPOJKEHUX MO 3
MPOTUJIEKHUMHU HAIPsIMKaMU IIONIUPEHHSI, 3 YaCTOTAMH, IO
JOPIiBHIOIOTH IIOJIOBHHI 9aCTOTH HaKa4KU, Ta OTPUMAHO BHUPA3H
7151 TOpOTra IIbOro Ipoliecy. 3HaeHo, 10 IOPOoroBa aMILIITyAa
[10JIsT HAKa4KU CUJIBHO 3aJIEXKUTh BiJ HOMepa MO Ta BigHO-
IIEHHsI BEJIMKOI Ta MAaJol IIBOCI eJiNTHUYHOrO IUIiHApa i mpu
BEJINKOMY 3HAYEHHI I[bOT'O BiJHOIIIEHHS IIPSIMYE 3BEPXY 10 BEJIM-
9UHY, [0 PO3PaxX0OBaHa Ha OCHOBI MOJEJI INIOCKUX XBUJIb. Byio
OTPHUMAaHO, IPOAHAIIZ0BAHO Ta rpadivHO IPOITIOCTPOBAHO IPO-
CTe aHAJIITUYHE CITiBBITHOIIIEHHS MiXK €JIIITUIHICTIO TTOJISIPU3a-
il BUCOKOYACTOTHOI HaMarHideHoCT] 30y/I?KEHUX TOBEPXHEBUX
MAarHiTOCTATUYHUX KOJIMBAHb Ta MIOPOTOM IX MapaMeTPUIHOIO
30y 12KEHHS.
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