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We investigate the fermion spectrum within the Bose–Fermi–Hubbard model used for the de-
scription of boson-fermion mixtures of ultra-cold atoms in optical lattices. We used the method
based on the Hubbard operator approach for an on-site basis. The equation for fermion Green’s
function in the Bose–Fermi–Hubbard model is built; Green’s functions of higher orders are
decoupled in the Hubbard-I approximation (the case of the strong on-site interaction). The
corresponding spectral densities are calculated. In the case of hard-core bosons, the condition
of appearance of additional bands in the fermion spectrum is investigated. It is shown that
these bands exist only in the state with a Bose–Einstein condensate and appear because of the
mixing of states with different numbers of bosons. These additional bands can be interpreted
as a manifestation of composite excitations (when the appearance of a fermion on the site is
accompanied by the simultaneous creation (or annihilation) of a boson).

K e yw o r d s: Bose–Fermi–Hubbard model, optical lattices, Green’s function, Bose–Einstein
condensate, energy spectrum.

1. Introduction

The ultra-cold boson-fermion mixtures in optical lat-
tices are the object of an intense theoretical inves-
tigation during last years both experimentally and
theoretically. As in the case of a pure system of Bose-
atoms, the transitions between the normal phase
(phase of the so-called Mott insulator (MI)) with the
integer occupation (at 𝑇 = 0) of the local particle
positions and the phase with a Bose–Einstein (BE)
condensate (superfluid (SF) phase) take place in the
mixtures. Among the important problems, one should
mention, on the one hand, the influence of Fermi-
atoms on the BE-condensation, and, on the other
hand, the manifestation of the latter in the pecu-
liarities and a reconstruction of the fermion energy
spectrum.
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The experimental verification of the superfluid–
Mott insulator (SF–MI) transition in ultracold atomic
gases was done by Greiner at al. [1]. There was sup-
posed that the atomic gas in the Mott insulator phase
can be considered as a new state of matter with
unique properties.

Later, Ospelkaus et al. [2] observed a localized
phase of ultracold bosonic quantum gases in a 3-di-
mensional optical lattice induced by a small contri-
bution of fermionic atoms acting as impurities in a
Fermi–Bose quantum gas mixture. They studied the
dependence of this transition on the fermionic 40K
impurity concentration by a comparison to the cor-
responding superfluid–Mott insulator transition in a
pure bosonic 87Rb gas and found a significant shift in
the transition parameters.

In theoretical investigations, the mixture of Bo-
se–Fermi atoms in optical lattices was studied
within the Bose–Fermi–Hubbard model (BFHM) [3–
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9]. According to the model, the key role in the MI-
SF phase transitions belongs to the interplay between
the tendency to a localization at the lattice sites and
the short-range interaction between particles, as well
as the intersite particle hopping. The general Bose–
Fermi–Hubbard Hamiltonian for a one-dimensional
optical lattice with a superimposed harmonic trap-
ping potential was derived in [3]. The conditions of
stability of the mixture and a mean-field criterion
for the onset of a bosonic superfluid transition were
studied. In addition, the existence of a disordered
phase for mixtures loaded in very deep lattices was
predicted.

Buchler et al. showed [4] that a two-dimensional
atomic mixture of bosons and fermions cooled into
their quantum degenerate states and subjected to an
optical lattice develops a supersolid phase character-
ized by the simultaneous presence of a nontrivial crys-
talline order and a phase order. This transition is in
competition with the phase separation.

Lewenstein et al. discussed [5] the phase diagram
at low temperatures and in the limit of strong atom-
atom interactions. They predicted the existence of
quantum phases that involve the pairing of fermions
with one or more bosons or, alternatively, bosonic
holes. These resulting composite fermions may form,
depending on parameters of the system, a normal
Fermi liquid, a density wave, a superfluid liquid, or
an insulator with fermionic domains.

The Fermi–Bose version of the Falicov–Kimball
model on a periodic lattice was considered to describe
Fermi–Bose mixtures consisting of light fermions and
heavy bosons that are loaded into optical lattices
(ignoring the trapping potential) [6]. It was studied
(within the dynamical mean-field theory (DMFT))
how the occupancy of bosons, single-particle many-
body density of states for fermions, momentum dis-
tribution, and average kinetic energy evolve with
the temperature. Within a similar approach, it was
shown in [7] that a mixture of strongly interacting
bosons and spinless fermions with on-site repulsion in
a three-dimensional optical lattice is unstable against
the phase separation for a weak repulsion among the
bosons.

The case of hard-core bosons was considered, and
the pseudospin formalism was used to describe the
phase transitions at finite temperatures in the Bose-
–Fermi-–Hubbard model in the self-consistent ran-
dom phase approximation [8] and the mean-field ap-

proximation for a lattice with two nonequivalent sub-
lattices [9]. It was shown in those works that the
transitions between the uniform and charge-ordered
phases can be of the second or first order, depending
on parameters of the system. It is possible also the
existence of the supersolid phase.

The investigation of the fermion spectrum of
BFHM and its transformation, when the Bose–
Einstein condensate (the SF-phase) appears, is an in-
teresting problem. Earlier [10], the thermodynamics
of the model was investigated in the mean-field ap-
proximation (MFA); the influence of the fermion sub-
system was studied, and phase diagrams illustrating
the MI-SF phase transition were built. Here, we are
going beyond the MFA and will calculate the fermion
band spectrum, as well as single-particle density of
states, by using the Green’s function technique and
considering the strong on-site interactions.

2. Hamiltonian of the Model
and its Transformation

The mixtures of ultracold bosons and spin-polarized
fermions in optical lattices are well described by the
Bose–Fermi–Hubbard Hamiltonian [8–10] in terms of
the operators of creation and annihilation of bosons
(𝑏+, 𝑏) and fermions (𝑎+, 𝑎):

𝐻 =
∑︁
<𝑖,𝑗>

𝑡𝑖𝑗𝑏
+
𝑖 𝑏𝑗 +

∑︁
<𝑖,𝑗>

𝑡′𝑖𝑗𝑎
+
𝑖 𝑎𝑗 +

+
𝑈

2

∑︁
𝑖

𝑛𝑏𝑖 (𝑛
𝑏
𝑖 − 1) + 𝑈 ′

∑︁
𝑖

𝑛𝑏𝑖𝑛
𝑓
𝑖 −

−𝜇
∑︁
𝑖

𝑛𝑏𝑖 − 𝜇
∑︁
𝑖

𝑛𝑓𝑖 . (1)

The first (second) term describes the nearest neigh-
bor boson (fermion) hopping between the nearest lat-
tice sites (nearest potential minima in an optical lat-
tice) with the 𝑡(𝑡′) parameter denoting the tunnel-
ing amplitude of bosons (fermions). The third and
fourth terms describe the on-site boson-boson and
boson-fermion interactions, respectively. The last two
terms involve the chemical potentials of bosons 𝜇 and
fermions 𝜇′, which are introduced, when the grand
canonical ensemble is used.

The type of a lattice is not get specified. In the nu-
merical calculations (see below), we use the semiellip-
tic density of states that corresponds approximately
to a simple cubic lattice.
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We use the approach of spinless fermions. In the
mixtures with ultracold fermions in optical lattices,
such a representation can be used in the situation
where a strong magnetic field is applied. The fermion
spins are oriented in one direction in this case.

Here, the single-site basis |𝑛B, 𝑛F⟩ is denoted as
|𝑛⟩ = |𝑛, 0⟩, |̃︀𝑛⟩ = |𝑛, 1⟩; 𝑛B(𝑛F) is the boson
(fermion) occupation number.

After introducing the Hubbard operators 𝑋𝑚𝑛
𝑖 =

|𝑛, 𝑖⟩⟨𝑚, 𝑖|, we have (see [10])

�̂� =
∑︁
𝑖,𝑛

𝜆𝑛𝑋
𝑛𝑛
𝑖 +

∑︁
𝑖,̃︀𝑛 𝜆̃︀𝑛𝑋̃︀𝑛̃︀𝑛

𝑖 +
∑︁
<𝑖,𝑗>

𝑡′𝑖𝑗𝑎
+
𝑖 𝑎𝑗 +

+
∑︁
<𝑖,𝑗>

𝑡𝑖𝑗𝑏
+
𝑖 𝑏𝑗 , (2)

where

𝜆𝑛 =
𝑈

2
𝑛(𝑛− 1)− 𝑛𝜇,

𝜆̃︀𝑛 =
𝑈

2
̃︀𝑛(̃︀𝑛− 1)− 𝜇̃︀𝑛− 𝜇′ + 𝑈 ′̃︀𝑛 (3)

and
𝑏𝑖 =

∑︁
𝑛

√
𝑛+ 1𝑋

𝑛,(𝑛+1)
𝑖 +

∑︁
̃︀𝑛

√̃︀𝑛+ 1𝑋
̃︀𝑛,(𝑛+1)
𝑖 ,

𝑎𝑖 =
∑︁
𝑛

𝑋𝑛,̃︀𝑛
𝑖 .

(4)

Here, 𝜆𝑛(̃︀𝑛) are the energies of single-site states
with 𝑛 bosons and zero (one) fermion on a lattice
site.

To investigate the fermion energy spectrum of the
boson-fermion mixture described by Hamiltonian (2),
the calculation of two-time temperature Green’s func-
tion ⟨⟨𝑎|𝑎+⟩⟩𝜔,𝑞 constructed on the annihilation and
creation operators will be performed. Its poles will
give a single-particle spectrum, while the imaginary
part (after the analytical continuation 𝜔 → 𝜔 − 𝑖𝜀)
will determine a density of fermion states. In our
case, this means that we have to find Green’s func-
tion built on the Hubbard operators ⟨⟨𝑋𝑛̃︀𝑛|𝑋̃︀𝑟𝑟⟩⟩. A
similar representation was used before in [11], where
the electron energy spectrum of the pseudospin-
electron model was calculated within the frame-
work of the dynamical mean-field theory (DMFT),
and the alloy-analogy approximation. The effect of
the pseudospin-electron interaction, local asymmetry
field, and tunneling-like level splitting on the exis-
tence and the number of electron subbands was in-
vestigated.

Let us use the equation of motion

~𝜔⟨⟨𝐴|𝐵⟩⟩ = ~
2𝜋

[𝐴,𝐵] + ⟨⟨[𝐴,𝐻]|𝐵⟩⟩. (5)

We need now to find the following commutators:[︃
𝑋𝑚,̃︀𝑚

𝑝 ,
∑︁
𝑖,𝑛

𝜆𝑛𝑋
𝑛𝑛
𝑖 +

∑︁
𝑖,̃︀𝑛 𝜆̃︀𝑛𝑋̃︀𝑛̃︀𝑛

𝑖

]︃
=

= (𝜆̃︀𝑚−𝜆𝑚)𝑋𝑚,̃︀𝑚
𝑝 = (𝑈 ′ ̃︀𝑚−𝜇′)𝑋𝑚,̃︀𝑚

𝑝 , (6)[︃
𝑋𝑚,̃︀𝑚

𝑝 ,
∑︁
<𝑖,𝑗>

𝑡𝑖𝑗𝑏
+
𝑖 𝑏𝑗 +

∑︁
<𝑖,𝑗>

𝑡′𝑖𝑗𝑎
+
𝑖 𝑎𝑗

]︃
=

=
∑︁
𝑗

𝑡𝑝𝑗

(︁
−
√
𝑚+ 1𝑋𝑚+1,̃︀𝑚

𝑝 +
√̃︀𝑚𝑋𝑚,̃︀𝑚−1

𝑝

)︁
𝑏𝑗 +

+
∑︁
𝑖

𝑡𝑖𝑝𝑏
+
𝑖

(︁
−
√
𝑚𝑋𝑚−1,̃︀𝑚

𝑝 +
√̃︀𝑚+ 1𝑋𝑚,̃︀𝑚+1

𝑝

)︁
+

+
∑︁
𝑗

𝑡′𝑝𝑗

(︁
𝑋𝑚𝑚

𝑝 +𝑋 ̃︀𝑚̃︀𝑚
𝑝

)︁
𝑎𝑗 . (7)

In what follows, we will use the decouplings (see
[10]), which are equivalent to the mean-field approx-
imation in the case of bosons and to the Hubbard-I
approximation for fermions. Such an approximation,
as is known from the theory of strongly correlated
electron systems [12], goes beyond the mean-field ap-
proach separating the contributions from various con-
figurations of the local state occupation (due to em-
ploying the Hubbard basis, the on-site interaction 𝑈 ′

is taken in the zero approximation into account). In
(7), we replace

𝑏𝑗 → ⟨𝑏𝑗⟩ ≡ 𝜙, 𝑏+𝑖 → ⟨𝑏+𝑗 ⟩ ≡ 𝜙* = 𝜙,

(𝑋𝑚𝑚
𝑝 +𝑋 ̃︀𝑚̃︀𝑚

𝑝 ) → ⟨𝑋𝑚𝑚 +𝑋 ̃︀𝑚̃︀𝑚⟩,
(8)

taking into account that our system can be in the
state with the uniform Bose–Einstein condensate
(BEC) characterized by the order parameter 𝜙.

Then[︃
𝑋𝑚,̃︀𝑚

𝑝 ,
∑︁
<𝑖,𝑗>

𝑡𝑖𝑗𝑏
+
𝑖 𝑏𝑗 +

∑︁
<𝑖,𝑗>

𝑡′𝑖𝑗𝑎
+
𝑖 𝑎𝑗

]︃
=

= 𝑡0𝜙
(︁
−
√
𝑚+ 1𝑋𝑚+1,̃︀𝑚

𝑝 +
√̃︀𝑚𝑋𝑚,̃︀𝑚−1

𝑝

)︁
+

+ 𝑡0𝜙
*
𝑖

(︁
−
√
𝑚𝑋𝑚−1,̃︀𝑚

𝑝 +
√̃︀𝑚+ 1𝑋𝑚,̃︀𝑚+1

𝑝

)︁
+

+
∑︁
𝑗

𝑡′𝑝𝑗⟨𝑋𝑚𝑚 +𝑋 ̃︀𝑚̃︀𝑚⟩𝑎𝑗 , (9)
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Fig. 1. Ground-state diagram for 0 < 𝑈 ′ < 𝑈 . The regions
which correspond to the unperturbed ground state |𝑚⟩ or |̃︀𝑚⟩
are indicated by numbers

where 𝑡0 =
∑︀

𝑖,𝑗 𝑡𝑖𝑗 ≡ 𝑡q=0. Due to the transla-
tional invariance, 𝑡𝑖𝑗 = 𝑡(R𝑖 −R𝑗); because of that,
at the transition to the wave vector representation,
the Fourier transform reads

𝑡q =
∑︁
𝑗

𝑒𝑖q(R𝑖−R𝑗)𝑡𝑖𝑗 . (10)

Finally, we get an equation for Green’s function
⟨⟨𝑋𝑚̃︀𝑚|𝑋̃︀𝑛𝑛⟩⟩. In the case of closely related levels
𝜆𝑚, 𝜆̃︀𝑚 and 𝜆̃︀𝑚−1, this equation can be simplified and
written in the form

~𝜔⟨⟨𝑋𝑚̃︀𝑚
𝑝 |𝑋̃︀𝑛𝑛

𝑟 ⟩⟩ = ~
2𝜋
𝛿𝑝𝑟𝛿𝑚𝑛𝛿̃︀𝑚̃︀𝑛⟨𝑋𝑚𝑚 +𝑋 ̃︀𝑚̃︀𝑚⟩+

+(𝑈 ′ ̃︀𝑚− 𝜇′)⟨⟨𝑋𝑚̃︀𝑚
𝑝 |𝑋̃︀𝑛𝑛

𝑟 ⟩⟩+

+ 𝑡0𝜙
√̃︀𝑚⟨⟨𝑋𝑚̃︀𝑚−1

𝑝 |𝑋̃︀𝑛𝑛
𝑟 ⟩⟩+

+
∑︁
𝑗

𝑡′𝑝𝑗⟨𝑋𝑚𝑚 +𝑋 ̃︀𝑚̃︀𝑚⟩⟨⟨𝑎𝑗 |𝑋̃︀𝑛𝑛
𝑟 ⟩⟩. (11)

One can see that, in order to obtain a closed sys-
tem of equations, we need to find Green’s function
⟨⟨𝑋𝑚̃︀𝑚−1

𝑝 |𝑋̃︀𝑛𝑛
𝑟 ⟩⟩. To calculate it, we use the similar

steps and approximations done before for the function
⟨⟨𝑋𝑚̃︀𝑚

𝑝 |𝑋̃︀𝑛𝑛
𝑟 ⟩⟩. Finally, we have

~𝜔⟨⟨𝑋𝑚̃︀𝑚−1
𝑝 |𝑋̃︀𝑛𝑛

𝑟 ⟩⟩ =

=
~
2𝜋
𝛿𝑝𝑟

(︁
𝛿𝑚𝑛⟨𝑋̃︀𝑛̃︀𝑚−1⟩+ 𝛿̃︀𝑚−1,̃︀𝑛⟨𝑋𝑚𝑛⟩

)︁
+

+(𝜆̃︀𝑚−1 − 𝜆𝑚)⟨⟨𝑋𝑚̃︀𝑚−1
𝑝 |𝑋̃︀𝑛𝑛

𝑟 ⟩⟩+

+ 𝑡0𝜙
*
√̃︀𝑚⟨⟨𝑋𝑚̃︀𝑚

𝑝 |𝑋̃︀𝑛𝑛
𝑟 ⟩⟩+

∑︁
𝑗

𝑡′𝑝𝑗
𝜙*
√̃︀𝑚 ⟨⟨𝑎𝑗 |𝑋̃︀𝑛𝑛

𝑟 ⟩⟩.

(12)

By passing, similarly to (10), to the Fourier trans-
forms of hopping parameters and Green’s functions,
we obtain the final system of equations

(~𝜔 − 𝑈 ′𝑚+ 𝜇′)𝐺𝑚̃︀𝑚,̃︀𝑛𝑛(𝜔, 𝑞) =
=

~
2𝜋
𝛿𝑚𝑛𝛿̃︀𝑚̃︀𝑛⟨𝑋𝑚𝑚 +𝑋 ̃︀𝑚̃︀𝑚⟩+

+ 𝑡0𝜙
√̃︀𝑚𝐺𝑚̃︀𝑚−1,̃︀𝑛𝑛(𝜔, 𝑞)+

+ 𝑡′𝑞⟨𝑋𝑚𝑚 +𝑋 ̃︀𝑚̃︀𝑚⟩⟨⟨𝑎|𝑋̃︀𝑛𝑛⟩⟩𝜔,𝑞, (13)

(~𝜔−𝜆̃︀𝑚−1+𝜆𝑚)𝐺𝑚̃︀𝑚−1,̃︀𝑛𝑛(𝜔, 𝑞) =
=

~
2𝜋

(︁
𝛿𝑚𝑛⟨𝑋̃︀𝑛̃︀𝑚−1⟩+ 𝛿̃︀𝑚−1,̃︀𝑛⟨𝑋𝑚𝑛⟩

)︁
+

+ 𝑡0𝜙
√̃︀𝑚𝐺𝑚̃︀𝑚,̃︀𝑛𝑛(𝜔, 𝑞)+

+
𝑡′𝑞𝜙

*
√̃︀𝑚 ⟨⟨𝑎|𝑋̃︀𝑛𝑛⟩⟩𝜔,𝑞. (14)

3. Four-State Approximation

Let us simplify the set of equations (13) and (14), by
using an approach where a finite number of single-site
states |𝑛B, 𝑛F⟩ is taken into account. In our earlier
paper [10], we investigated the ground-state diagrams
for the Bose–Fermi–Hubbard model without hopping.

In Fig. 1, we show one of them, by assuming
0 < 𝑈 ′ < 𝑈 .

Supposing that 𝑈 → ∞ (the hard-core boson
limit), we restrict ourselves to the case where only
four states can be considered:
|0⟩ – no bosons or fermions on the site,
|̃︀0⟩ – no bosons, but one fermion on the site,
|1⟩ – one boson and no fermions on the site,
|̃︀1⟩ – one boson and one fermion on the site.
This approximation is also valid, when 𝑈 (energy

of the boson on-site repulsion) is much greater than
𝑈 ′ (on-site fermion interaction), see Fig. 1.

A situation where the on-site repulsion of bosons 𝑈
is considerable is realized in optical lattices in the case
of deep potential wells (what is reached by a growth of
the intensity of laser beams). On the other hand, the
𝑈 ′ parameter can be changed within a wide enough
range adjusting the experimental conditions [15].

Then we will have four energy levels

𝜆0 = 0, 𝜆̃︀0 = −𝜇′, 𝜆1 = −𝜇, 𝜆̃︀1 = −𝜇− 𝜇′ + 𝑈 ′ (15)

446 ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 5



Fermion Spectrum of Bose–Fermi–Hubbard Model

and, for Bose- and Fermi-operators,

𝑎𝑖 = 𝑋0,̃︀0
𝑖 +𝑋1,̃︀1

𝑖 , 𝑏𝑖 = 𝑋0,1
𝑖 +𝑋

̃︀0,̃︀1
𝑖 . (16)

The decouplings 𝑏𝑖 → 𝜙, 𝑏+𝑖 → 𝜙 in the equations
of motion for Green’s functions are equivalent to the
choice of the single-site part of the full Hamiltonian
in the mean-field form 𝐻𝑖 =

∑︀
𝑝𝑟𝐻𝑝𝑟𝑋

𝑝𝑟
𝑖 , where

||𝐻𝑝𝑟|| =

⎛⎜⎜⎜⎜⎝
|0⟩ |1⟩ |̃︀0⟩ |̃︀1⟩
0 𝑡0𝜙 0 0 |0⟩
𝑡0𝜙 −𝜇 0 0 |1⟩
0 0 −𝜇′ 𝑡0𝜙 |̃︀0⟩
0 0 𝑡0𝜙 −𝜇− 𝜇′ + 𝑈 ′ |̃︀1⟩.

⎞⎟⎟⎟⎟⎠. (17)

Our next step is the diagonalization of matrix
(17). For this purpose, we use the transformation

�̂�𝑇 * �̂� * �̂� = ̃̂︀𝐻, (18)

where �̂� =

(︂
𝑈1 0̂

0̂ 𝑈2

)︂
,

�̂�1=

(︂
cos𝜓 − sin𝜓

sin𝜓 cos𝜓

)︂
, and �̂�2=

(︂
cos ̃︀𝜓 − sin ̃︀𝜓
sin ̃︀𝜓 cos ̃︀𝜓

)︂
.

Here,
sin 2𝜓 =

𝑡0𝜙√︀
𝜇2/4 + 𝑡20𝜙

2
,

sin 2 ̃︀𝜓 =
𝑡0𝜙√︀

(𝑈 ′ − 𝜇)2/4 + 𝑡20𝜙
2
.

(19)

Then we will get the diagonal single-site part
(which is as well a mean-field one) of the Hamilto-
nian,

�̂�0 =
∑︁
𝑝′

𝜀𝑝′𝑋𝑝′𝑝′
, (20)

where 𝑝′ = 0′, 1′, ̃︀0′, ̃︀1′ are indices denoting the states
of the new basis,

𝜀0′,1′ = −𝜇
2
±
√︂
𝜇2

4
+ 𝑡20𝜙

2,

𝜀̃︀0′,̃︀1′ = −𝜇′ − 𝜇

2
+
𝑈 ′

2
±
√︂

(𝑈 ′ − 𝜇)2

4
+ 𝑡20𝜙

2.

(21)

In the new basis, the Fermi- and Bose-operators
take the form

𝑎𝑖 = cos ( ̃︀𝜓 − 𝜓)
(︁
𝑋0′ ̃︀0′

𝑖 +𝑋1′ ̃︀1′
𝑖

)︁
+

+ sin ( ̃︀𝜓 − 𝜓)
(︁
𝑋1′ ̃︀0′

𝑖 −𝑋0′ ̃︀1′
𝑖

)︁
,

𝑏𝑖 =
1

2
sin(2𝜓)

(︁
𝑋0′0′

𝑖 −𝑋1′1′

𝑖

)︁
+

+
1

2
sin(2 ̃︀𝜓)(︁𝑋 ̃︀0′ ̃︀0′

𝑖 −𝑋 ̃︀1′ ̃︀1′
𝑖

)︁
+

+ cos2 𝜓𝑋0′1′

𝑖 −sin2 𝜓𝑋1′0′

𝑖 +

+ cos2 ̃︀𝜓𝑋 ̃︀0′ ̃︀1′
𝑖 − sin2 ̃︀𝜓𝑋 ̃︀1′ ̃︀0′

𝑖 . (22)

Writing down the equations similar to (13) and
(14), we can easily get the following expression for
Green’s function built on Fermi operators:

⟨⟨𝑎|𝑎+⟩⟩ = 1

2𝜋

1

𝑔−1
0 (𝜔)− 𝑡′𝑞

. (23)

Here,

𝑔0(𝜔) =

= cos2( ̃︀𝜓−𝜓)[︃⟨𝑋0′0′ +𝑋
̃︀0′ ̃︀0′⟩

~𝜔 − 𝜀̃︀0′ + 𝜀0′
+

⟨𝑋1′1′ +𝑋
̃︀1′ ̃︀1′⟩

~𝜔 − 𝜀̃︀1′ + 𝜀1′

]︃
+

+ sin2( ̃︀𝜓−𝜓)[︃⟨𝑋1′1′ +𝑋
̃︀0′ ̃︀0′⟩

~𝜔 − 𝜀̃︀0′ + 𝜀1′
+

⟨𝑋0′0′ +𝑋
̃︀1′ ̃︀1′⟩

~𝜔 − 𝜀̃︀1′ + 𝜀0′

]︃
(24)

is the single-site Green’s function.

4. Fermion Spectrum at 𝑇 = 0

Now, we will analyze the ground state of our system
in the presence of BEC. This means that we need
to analyze the behavior of single-site energy levels of
the system given by formulae (21). In the case 𝑇 =
0, only the states with the lowest energy values will
contribute to expression (24) for 𝑔0(𝜔) .

In this connection, we have to consider an equation
for the order parameter with regard for the possibil-
ity of different ground states. In the ground state |̃︀1′⟩
(when ⟨𝑋̃︀1′̃︀1′⟩ = 1, and the other averages are equal
to zero), the order parameter 𝜙 ≡ ⟨𝑏⟩ from (22) sat-
isfies the equation

𝜙 = −1

2
sin (2 ̃︀𝜓) = |𝑡0|𝜙√︁

(𝑈 ′−𝜇)2

4 + 𝑡20𝜙
2

. (25)

The solution 𝜙 = 0 corresponds to the normal
(Mott insulator) phase; 𝜙 ̸= 0 describes the phase
with BEC. For this phase, Eq. (25) yields

𝜙 =
1

2

√︃
1− (𝑈 ′ − 𝜇)2

𝑡20
. (26)
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Fig. 2. On-site energies 𝜀𝑝′ for 𝜇′ = 0.5, 𝑡0 = −0.8 (upper
graph) and 𝜇′ = 1.2, 𝑡0 = −0.2 (lower graph)

Fig. 3. Energy transitions 𝜀𝑝′ − 𝜀𝑞′ for 𝜇′ = 0.5, 𝑡0 = −0.8

(upper graph) and 𝜇′ = 1.2, 𝑡0 = −0.2 (lower graph)

In the same way, when the ground state is |1′⟩, we
have

𝜙 =
1

2

√︃
1− 𝜇2

𝑡20
. (27)

When the boson chemical potential 𝜇 is changed
(see Fig. 2), two cases are possible: with or without
a change of the ground state. On the first graph, the
situation is shown, when we have the ground states

|̃︀1′⟩ at 𝜇 < 𝜇′ and |1′⟩ at 𝜇 > 𝜇′. On the second graph,
the case is presented, when only the ground state |̃︀1′⟩
is realized (here, the states |̃︀1′⟩ and |1′⟩ belong to the
transformed basis).

Let 𝑇 = 0. If the ground state is |̃︀1′⟩, then we have
only ⟨𝑋 ̃︀1′ ̃︀1′⟩ = 1. For other states, we have ⟨𝑋𝑝′𝑝′⟩ =
= 0. This means that, in this case, Eq. (24) yields

𝑔0(𝜔) = cos2( ̃︀𝜓 − 𝜓)
⟨𝑋1′1′ +𝑋

̃︀1′ ̃︀1′⟩
~𝜔 − 𝜀̃︀1′ + 𝜀1′

+

+ sin2( ̃︀𝜓 − 𝜓)
⟨𝑋0′0′ +𝑋

̃︀1′ ̃︀1′⟩
~𝜔 − 𝜀̃︀1′ + 𝜀0′

≡

≡ cos2( ̃︀𝜓 − 𝜓)

~𝜔 − 𝜀̃︀1′ + 𝜀1′
+

sin2( ̃︀𝜓 − 𝜓)

~𝜔 − 𝜀̃︀1′ + 𝜀0′
. (28)

Here, only the energy transitions involving the
ground state |̃︀1′⟩ contribute (see Fig. 3).

Then we obtain the following expression for fermion
Green’s function:

⟨⟨𝑎|𝑎+⟩⟩ = 1

2𝜋

1

𝑔−1
0 (𝜔)− 𝑡𝑘

=

=
1

2𝜋

(~𝜔−Δ̃︀1′0′) cos2( ̃︀𝜓−𝜓)+(~𝜔−Δ̃︀1′1′) sin2( ̃︀𝜓−𝜓)
det

.

(29)
Here,

det = (~𝜔 −Δ̃︀1′0′)(~𝜔 −Δ̃︀1′1′)+
+ 𝑡𝑞(~𝜔 −Δ̃︀1′0′) cos2( ̃︀𝜓 − 𝜓)+

+ 𝑡𝑞(~𝜔 −Δ̃︀1′1′) sin2( ̃︀𝜓 − 𝜓), (30)

and Δ𝑚′𝑛′ = 𝜀𝑚′ − 𝜀𝑛′ .
This expression can be rewritten as the decompo-

sition into simple fractions:

⟨⟨𝑎|𝑎+⟩⟩ = 1

2𝜋

[︁ 𝐴1

~𝜔 −𝑋1
+

𝐴2

~𝜔 −𝑋2

]︁
. (31)

Here, 𝑋1 an 𝑋2 are solutions of the quadratic (in
the variable ~𝜔) equation that determines the poles
of function (30) (functions 𝜀1,2(𝑞) = 𝑋1,2 describe
the dispersion laws for the fermion band spectrum),
and 𝐴1 and 𝐴2 are constants in the fraction decom-
position.

Finally, the density of fermion states is as follows:

𝜌(~𝜔) =
1

~𝑁
∑︁
𝑞

−2 Im(𝐺𝑞(𝜔 + 𝑖𝜖))𝜖→0 =
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=

𝑊∫︁
−𝑊

𝑑𝑥𝜌0(𝑥)
(︁
𝐴1(𝑥)𝛿(𝑥−𝑋1)+

+𝐴2(𝑥)𝛿(𝑥−𝑋2)
)︁
. (32)

Here, 𝜌0(𝑥) = 1
𝑁

∑︀
𝑞 𝛿(𝑥−𝑡𝑞) is the unperturbed den-

sity of states (DOS).
The expressions similar to (29),(31), and (32) can

be obtained in the case with the ground state |1′⟩.

Fig. 4. Density of fermion states for various 𝜇, when 𝜇′ = 1.2,
𝑡0 = −0.2

Fig. 5. Fermion energy bands (upper graph) and the order
parameter (lower graph) for 𝜇′ = 1.2, 𝑡0 = −0.2

5. Results

We illustrate the results of numerical calculations,
by using the following values of the model parame-
ters. The constant of the boson-fermion on-site inter-
action 𝑈 ′ is taken as the energy unit 𝑈 ′ = 1. Other
energy quantities are given in relation to 𝑈 ′: the bo-
son hopping constant is 𝑡0 = −0.2 and −0.8; the
half-width of the unperturbed fermion band described
by the semielliptic DOS 𝜌0(𝜔) = 1

2𝑊

√
𝑊 2 − 𝜔2 is

Fig. 6. Density of fermion states for various 𝜇, when 𝜇′ =

= −0.1, 𝑡0 = −0.2

Fig. 7. Fermion energy bands (upper graph) and the order
parameter (lower graph) for 𝜇′ = −0.1, 𝑡0 = −0.2
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Fig. 8. Density of fermion states for various 𝜇, when 𝜇′ = 0.5,
𝑡0 = −0.8

Fig. 9. Fermion energy bands (upper graph) and the order
parameter (lower graph) for 𝜇′ = 0.5, 𝑡0 = −0.8

𝑊 ≡ 𝑡′0 = 0.2 (a case of narrow band). It should
be mentioned that a change of the model parameters
values does not influence significantly the structure
of the fermion spectrum. In real systems, they de-
pend on the conditions of experiments and can be
varied [16].

Accordingly to the ground state diagram (see
Fig. 1), we studied three cases with different values
of fermion chemical potential:
𝜇′ = −0.1 (the |0⟩ → |1⟩ transition (at the change

of 𝜇) in terms of unperturbed single-site states);
𝜇′ = 0.5 (the transition with the change of the

ground state from |̃︀1⟩ to |1⟩, ibid.);
𝜇′ = 1.2 (the |̃︀0⟩ → |̃︀1⟩ transition ibid.).
The results of calculations of the density of states

𝜌(~𝜔) according to (32) for various values of bosonic
chemical potential 𝜇 are presented in Figs. 4, 6,
and 8.

The fermion energy bands (as regions, where
𝜌(~𝜔) ̸= 0) and the order parameter 𝜙 as functions
of 𝜇 are given in Figs. 5, 7, and 9.

From these results, one can see that, in addi-
tion to a shift of the fermion bands that depends
on the chemical potential of bosons (and, conse-
quently, on the boson concentration), the appearance
of new fermion subbands additionally to the tradi-
tional Hubbard-like ones in the SF phase (the phase
with BE-condensate, where 𝜙 ̸= 0) takes place. We
think that this is due to the mixing of states with dif-
ferent numbers of bosons and the possibility of new
fermion transitions, which are accompanied by the
creation or annihilation of bosons. Such excitations
are called “composite fermions” and were earlier de-
scribed in [13, 14].

6. Conclusions

In a pure boson system described by the Bose–Hub-
bard model, the SF phase exists at 𝑇 = 0 on the
intervals of 𝜇 values, which have the widths propor-
tional to 𝑡0 and are centered at the points 𝜇 = 𝑛𝑈 . In
the hard-core boson limit (𝑈 → ∞), only one such
region remains with the center at the 𝜇 = 0 point.
It separates two regions that correspond to the nor-
mal (MI) phases with ⟨𝑛B⟩ = 0 and ⟨𝑛B⟩ = 1, re-
spectively. In the presence of fermions, the region of
existence of the SF phase in the case 𝜇′ < 0 re-
mains the same. However, when 𝜇′ > 𝑈 ′, such a re-
gion is centered at the 𝜇 = 𝑈 ′ point. Here, the BE-
condensation takes place in the lattice with ⟨𝑛F⟩ = 1,
while ⟨𝑛F⟩ = 0 in the previous case. The more compli-
cated situation is observed in the intermediate range
of the 𝜇′ values. The borders of the SF region shift
with a change of the relation between 𝑡0 and 𝑈 ′ pa-
rameters.
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The unperturbed fermion band is a single band;
its width is proportional to the hopping parameter
𝑡′. The interaction between Bose- and Fermi-particles
described by BFHM leads to changes in the spec-
trum of fermions. At 𝑇 = 0, two factors influence
the form of the spectrum: (i) a change of the ground
state, which is possible for 0 < 𝜇′ < 𝑈 ′ and takes
place at the certain value of chemical potential 𝜇 of
bosons; (ii) the presence of the BE-condensate (in the
SF phase).

In the normal (NO) phase, a change of the ground
state leads to a shift of the fermion band. The reason
for this effect is the following. The transitions that
form the band happen actually between the states
|𝑛, 0⟩ and |𝑛, 1⟩ with the same number of bosons; the
latter can be different. The band shift (at 𝑛 = 1 re-
garding to the 𝑛 = 0 case) is of the order of the
interaction constant 𝑈 ′ (the appearance of a fermion
on the site, where a boson is already present, causes
the energy increase by 𝑈 ′).

Let us the case of the SF phase with a BE-conden-
sate. In addition to the above-mentioned shift of the
fermion bands that depends on boson chemical poten-
tial (boson concentration, as a result), the splitting
of the spectrum and the appearance of new fermion
subbands in the SF-phase (the phase with BE-con-
densate) take place. The effect occurs in the region
of boson chemical potential 𝜇 values, where the or-
der parameter 𝜙 differs from zero. Its physical back-
ground consists in the mixing of states with different
numbers of bosons and the possibility of new fermion
transitions, which are accompanied by the creation
or annihilation of bosons. Such excitations are called
“composite fermions” [13, 14]. We see their manifes-
tation in the fermion spectrum. The presented re-
sults are restricted to the 𝑇 = 0 limit. At finite
temperatures, the new subbands will appear (four
subbands in the case of the 4-state model). A sim-
ilar effect of the fermion spectrum splitting was ob-
tained previously for the pseudospin-electron model
[11], where the calculations were performed within
the DMFT approach. The more complete analysis
of a reconstruction of the energy spectrum in the
case 𝑇 ̸= 0, especially in the intermediate region
0 < 𝜇′ < 𝑈 ′, will be a subject of our subsequent
consideration.
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В.О.Краснов

ФЕРМIОННИЙ СПЕКТР
МОДЕЛI БОЗЕ–ФЕРМI–ХАББАРДА
У ФАЗI З БОЗЕ-КОНДЕНСАТОМ

Р е з ю м е

Дослiджено фермiонний спектр моделi Бозе–Фермi–Хаб-
барда. Ця модель використовується для опису бозон-фермi-
онних сумiшей ультрахолодних атомiв в оптичних ґратках.
Застосовано пiдхiд операторiв Хаббарда на одновузлово-
му базисi. Побудовано рiвняння для фермiонних функцiй
Грiна; розчеплення функцiй Грiна вищих порядкiв прове-
дено в дусi наближення Хаббард-I (випадок сильної одно-
вузлової взаємодiї). Розраховано вiдповiднi спектральнi гу-
стини. Для випадку жорстких бозонiв дослiджено умови
появи додаткових зон в фермiонному спектрi. Показано,
що цi зони iснують тiльки за наявностi бозе-конденсату та
з’являються внаслiдок перемiшування станiв з рiзним чи-
слом бозонiв. Iснування таких зон можна iнтерпретувати
як прояв композитних збуджень (коли поява фермiона на
вузлi ґратки супроводжується одночасною появою (або зни-
кненням) бозона).
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