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Within a microscopic two-cluster model, we discuss the influence of the Pauli exclusion princi-
ple on the scattering of 6He on 𝛼-particle. The structure of the Pauli-forbidden and the Pauli-
allowed states is analyzed in detail. The influence of the Pauli-allowed states with eigenvalues
other than unity on the kinetic energy of the relative motion of 6He and 𝛼-particle results
in the effective interaction between these nuclei. This effect can be simulated to some extent
with finite values of orthogonalizing pseudopotential strength. We estimate the strength and
the range of such interaction within a microscopic model and provide a guidance for choosing
the parameters of the orthogonalizing pseudopotential.
K e yw o r d s: microscopic cluster model, Pauli exclusion principle, resonating group method.

1. Introduction

Mainly, different cluster models fall into two groups –
macroscopic and microscopic. In macroscopic models,
clusters are considered to be structureless particles,
and cluster-cluster interactions are approximated by
some local potentials, which are fitted to reproduce
relevant data on the cluster-cluster systems. As for
the Pauli exclusion principle, it is usually simulated
either with an additional repulsive potential between
clusters or with an orthogonalizing pseudopotential
(OPP) containing the operators of projection onto the
forbidden states. In fact, the elimination of the Pauli-
forbidden states with the OPP technique is achieved
by the infinite strength of the pseudopotential.

However, as is evident from microscopic studies,
the elimination of the Pauli-forbidden states in the
wave function does not exhaust all exchange ef-
fects. In particular, in [1] and [2], it has been shown
that the essential part of such effects is directly re-
lated to the eigenvalues of the antisymmetrization op-
erator. Such eigenvalues are not exactly identical to 1
for all non-forbidden states and characterize the prob-
ability of the formation of the corresponding Pauli-
allowed basis states in the wave function of the clus-
ter system. The involvement of the eigenvalues of the
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antisymmetrization operator in the Schrödinger equa-
tion leads to changes in the relative kinetic energy,
while the clusters approach each other. Consequently,
the clusters are affected by an effective repulsion or
attraction induced by the Pauli principle to the inter-
cluster kinetic energy operator [1]. Such an effective
interaction substantially affects the dynamics of the
cluster-cluster interaction and can, on occasion, pro-
duce the resonance behavior in the scattering phase-
shift or even a bound state in a compound nuclear
system [2].

Whereas the eigenvalues of the antisymmetrization
operator in nucleon-nucleon systems can take only the
value 0 or 1, the eigenvalues of Pauli-allowed states in
two-cluster systems tend to unity only in the limit of
a large distance between clusters. Because of the ex-
change of nucleons belonging to different clusters, at
small intracluster distances the eigenvalues of the an-
tisymmetrization operator are not equal to unity. The
eigenvalues, which are less than unity, correspond to
the partly forbidden states and result in the effective
repulsion of clusters. Alternatively, the eigenvalues,
which exceed unity, correspond to the superallowed
states and result in the effective attraction of clus-
ters [1].

The evidence of the effective repulsion resulting
from partly forbidden states was also observed in a
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macroscopic calculation of the nucleon-nucleus scat-
tering within the multichannel algebraic scattering
method [3]. Namely, the authors noticed that the
use of some finite values (of the order of a few to
a few tens of MeV) of pseudopotential strength for
some Pauli-allowed states results in a better agree-
ment with experimental data. In Refs. [3,4], the finite
values of pseudopotential strength have been taken as
phenomenological parameters. To link the latter pa-
rameters to the eigenvalues of the antisymmetrization
operator is a challenging task.

In this paper, we consider 10Be nucleus, which has
recently become the object of numerous experimental
and theoretical investigations [5–9]. Since the thresh-
old of the 10Be decay into alpha-particle and 6He is
located only 1.2 MeV above the second 0+ state of
10Be, we can treat 10Be in a vicinity of this threshold
as the 6He + 4He cluster system. We have noted that,
in the systems containing clusters with an open 𝑝-
shell, the range of an effective cluster-cluster potential
generated by the Pauli principle can be rather large
[1, 10]. Furthermore, such systems are multichannel
systems, where both effective attraction and repulsion
could emerge. Finally, the analysis of the 6He + 4He
cluster system allows an understanding of the role and
the structure of the Pauli-forbidden states in multi-
channel systems, where the orbital momenta of rel-
ative motion of the clusters are not the integrals of
motion.

The paper is organized as follows. In Section 2,
we formulate our approach and explain the nature
of the effective interaction between clusters due to a
modification of the kinetic energy operator of rela-
tive motion of clusters by the Pauli exclusion prin-
ciple. Section 3 introduces the norm kernel of the
6He + 𝛼 system, which provides a complete basis of
the eigenfunctions and the eigenvalues of the antisym-
metrization operator of the system under study. In
Section 4, we discuss the structure of the Pauli-
forbidden states and give recommendations on how
these states can be related to the scattering channels
characterized by the orbital momentum of 6He nu-
cleus and the momentum of relative motion of 6He
and 𝛼-particle. In Section 5, we present the effective
6He + 𝛼 interaction generated by partly forbidden
and superallowed states and analyze the impact of
this interaction on the phase shifts of the elastic scat-
tering of 6He nucleus on 𝛼-particle. Conclusions are
given in Section 6.

2. Formulation of the Approach

The most complete description of nucleon systems
comprised of light nuclei is given by microscopic mod-
els capable of taking the Pauli exclusion principle
into account. Approaches based on the ideas of the
resonating-group method (RGM) [11] meet this re-
quirement. The most straightforward way to consider
the Pauli exclusion principle is to build a complete
basis of allowed states of a harmonic oscillator and
their eigenvalues, which makes it possible to express
the wave functions of a nuclear system in the form
of a linear superposition of allowed states and to re-
duce the problem of their determination to solving a
set of linear algebraic equations for expansion coeffi-
cients. It is also useful, in order to check a number of
statements concerning the elements of the 𝑆-matrix,
to have a complete basis of forbidden states, whose
eigenvalues equal zero by definition.

Following RGM, it will be supposed hereafter that
the considered nuclear systems consist of two clus-
ters. An RGM wave function is built in the form of
an antisymmetrized product of cluster internal wave
functions and a wave function of their relative mo-
tion. The internal wave functions of the clusters are
fixed 1, and the wave function of relative motion of
the clusters, which depends only on the Jacobi vec-
tor of the considered two-cluster system, is found
by solving an integro-differential equation. The lat-
ter is obtained by the substitution of the RGM wave
function into the Schrödinger equation followed by
the integration with respect to single-particle coordi-
nates. The integro-differential equation can be trans-
formed into a set of linear equations by expanding the
wave function of the cluster relative motion into the
compete basis of the Pauli-allowed harmonic oscilla-
tor states, as the algebraic version of RGM (AVRGM)
suggests [12].

First and foremost, the AVRGM calls for the con-
struction of the complete basis of Pauli-allowed har-
monic oscillator states and their classification. This
is accomplished by solving the eigenvalue and eigen-
function problem for the norm kernel 𝐼, i.e., the over-
lap integral of the two Slater determinants composed
of the single-particle orbitals. Here, the integration
is performed over single-particle variables to give the
expression, which depends only on the distance be-

1 We assume the intrinsic cluster wave functions to be the
simplest functions of a translation-invariant shell model.
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tween clusters, provided that the clusters are closed-
shell nuclei. The method of construction of the norm
kernels of two-cluster systems in the Fock–Bargmann
space, as well as the detailed analysis of the fun-
damental properties of the norm kernels, are given
in [13].

The norm kernel can be represented in the form of a
sum of degenerate orthogonal kernels, with a certain
number of quanta 𝑛 corresponding to each of them:

𝐼 =

∞∑︁
𝑛=𝑛min

∑︁
(𝜆,𝜇)

∑︁
𝛼

Λ𝑛,(𝜆,𝜇)𝛼

∑︁
𝐿,𝑀

𝜓𝐿,𝑀,𝛼𝐿

𝑛,(𝜆,𝜇)𝛼
𝜓𝐿,𝑀,𝛼𝐿

𝑛,(𝜆,𝜇)𝛼
.

For a complete description of the eigenfunctions
𝜓𝐿,𝑀,𝛼𝐿

𝑛,(𝜆,𝜇)𝛼
and the eigenvalues Λ𝑛,(𝜆,𝜇)𝛼 of the norm

kernel, it is necessary to define, along with the num-
ber of oscillator quanta 𝑛, the indices (𝜆, 𝜇) of their
SU(3) symmetry, the additional quantum number
𝛼(𝜆,𝜇), if there are several differing (𝜆, 𝜇) multiplets,
the total orbital momentum 𝐿 and its projection 𝑀 ,
and one more additional quantum number 𝛼𝐿, if the
multiplet (𝜆, 𝜇) has several states with the same val-
ues of 𝐿. Hereinafter, we shall omit the indices 𝛼, 𝛼𝐿,
and 𝑀 , because they are redundant in the problem
considered.

In the discrete representation, the Schrödinger
equation is reduced to a set of linear equations for
the expansion coefficients of the wave functions of dis-
crete states with the energy 𝐸𝜅 = −𝜅2/2 < 0, and of
continuum states with the energy 𝐸 > 0 :

Ψ𝜅 (𝐸)(r) =
∑︁
𝑛

𝐶𝜅 (𝐸)
𝑛 Ψ𝑛(r),∑︁

�̃�

⟨𝑛|�̂�|�̃�⟩√
Λ𝑛Λ�̃�

𝐶�̃� − 𝐸𝐶𝑛 = 0.

To understand the results of action of the antisym-
metrization operator, first, let us discuss a set of the
algebraic equations where only the operator of kinetic
energy of the relative motion of clusters (in the c.o.m.
frame) is retained:∑︁
�̃�

⟨𝑛|𝑇 |�̃�⟩√
Λ𝑛Λ�̃�

𝐶�̃� − 𝐸𝐶𝑛 = 0. (1)

In this section, we consider the simplest case of a
two-cluster system composed of two closed shell or
(0s)-shell clusters. In this case, the problem is single-
channel, and the orbital momentum 𝑙 (of relative mo-
tion of clusters) is a good quantum number, and the

basis functions differ only by the number of oscillator
quanta 𝑛 = 2𝑘.

The matrix of the kinetic energy is tridiagonal in
the harmonic-oscillator representation:

⟨𝑙, 2𝑘 + 2|𝑇 |𝑙, 2𝑘⟩ =

= −

√︃
Λ2𝑘

Λ2𝑘+2

1

4

√︀
(2𝑘 − 𝑙 + 2)(2𝑘 + 𝑙 + 3),

⟨𝑙, 2𝑘 − 2|𝑇 |𝑙, 2𝑘⟩ =

= −
√︂

Λ2𝑘−2

Λ2𝑘

1

4

√︀
(2𝑘 − 𝑙)(2𝑘 + 𝑙 + 1),

⟨𝑙, 2𝑘|𝑇 |𝑙, 2𝑘⟩ = 1

2

(︂
2𝑘 +

3

2

)︂
.

The equations of set (1) for the collision of clusters in
the state with angular momentum 𝑙 can be written in
the form of the finite-difference equations

−1

2

{︂(︂
1 +

Λ𝑛−2

Λ𝑛

)︂(︂
𝑛+

3

2
− (2𝑙 + 1)2

8𝑛

)︂
+1−Λ𝑛−2

Λ𝑛

}︂
×

× 1

4
(𝐶𝑛+2 − 2𝐶𝑛 + 𝐶𝑛−2)−

1

4
(𝐶𝑛+2 − 𝐶𝑛−2)×

× 1

2

{︂
1 +

Λ𝑛−2

Λ𝑛
+

(︂
1− Λ𝑛−2

Λ𝑛

)︂(︂
𝑛+

3

2
− (2𝑙 + 1)2

8𝑛

)︂}︂
+

+

{︂(︂
1+

Λ𝑛−2

Λ𝑛

)︂
(2𝑙 + 1)2

32𝑛
+
1

4

(︂
1−Λ𝑛−2

Λ𝑛

)︂(︂
𝑛+

1

2

)︂}︂
𝐶𝑛 =

=
𝑚𝑟20
~2

𝐸𝐶𝑛. (2)

The equation is transformed into the Bessel differen-
tial equation in the limit 𝑛≫ 1, when the eigenvalues
Λ𝑛 can be set to unity:(︂
𝑑2

𝑑𝑦2
+

1

𝑦

𝑑

𝑑𝑦
− (2𝑙 + 1)2

4

1

𝑦2
+
𝑚𝑟20
~2

2𝐸

)︂
𝐶(𝑦) = 0;

𝑦 =
√
2𝑛+ 3.

The diagonal matrix ||𝑈Pauli
𝑛,�̃� 𝛿𝑛,�̃�|| entering Eq. (2),

𝑈Pauli
𝑛,𝑛 =

1

4

(︂
1− Λ𝑛−2

Λ𝑛

)︂(︂
𝑛+

1

2

)︂
, (3)

can be considered as the matrix of the operator
of effective cluster-cluster interaction generated due
to the Pauli exclusion principle for the kinetic en-
ergy. Obviously, this interaction vanishes for Λ𝑛 = 1
and appears as a result of the exchange of nucle-
ons belonging to different clusters. In the case of

408 ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 5



Scattering of 6He on 𝛼-particle

the scatterring of particles, which do not have inter-
nal structure, Eq. (2) reduces to the finite-difference
Bessel equation. Neglecting the Pauli principle in
two-cluster systems also gives the finite-difference
Bessel equation without any additional interaction.

The absolute value of its intensity decreases if the
difference Λ𝑛−2 − Λ𝑛 tends to zero. If the latter re-
mains negative, as 𝑛 increases (the eigenvalues mono-
tonically tend to unity from above), then the effective
Pauli potential is attractive. If, under the same alter-
ation of 𝑛, the difference in eigenvalues stays positive
(the eigenvalues monotonically tend to unity from be-
low), then the effective potential of antisymmetriza-
tion is repulsive. Evidently, the radius of this inter-
action depends on how rapidly the eigenvalues tend
to unity, as 𝑛 increases. The main properties of such
effective potentials have been detailed in [2].

In this paper, we do not consider the potential
between the clusters generated by the bare nucleon-
nucleon forces. This is because the basic features of
the antisymmetrization effects on the nucleus-nucleus
interaction may be learned by studying specifically
the exchange effects on the kinetic-energy opera-
tor. This supports the statement that the range of
the influence of the Pauli principle on the kinetic en-
ergy appears to be significantly larger than that of the
cluster-cluster interaction generated by the nucleon-
nucleon potential (see [1]).

3. Norm Kernel of 6He + 𝛼

In this section, we consider the norm kernel of the
6He + 𝛼 system. As we already mentioned, we assume
that the intrinsic wave functions of both clusters are
described by the lowest functions of a translation-
invariant shell model. Within this approximation, the
𝛼-cluster has a closed shell and can be only in its 0+

ground state, while 6He has two neutrons in the 𝑝-
shell and can be either in the 0+ ground state or in the
2+ excited state, which is a quite narrow resonance
state located at 𝐸 = 1.8 MeV above the threshold for
the 6He breakup into 𝛼+ 𝑛+ 𝑛.

The norm kernel of the 6He + 𝛼 system is written
as

𝐼 =
∑︁
𝑛

{Λ(𝑛+2,0)⟨(𝑛+ 2, 0)|(𝑛+ 2, 0)⟩+

+Λ(𝑛,1)⟨(𝑛, 1)|(𝑛, 1)⟩+Λ(𝑛−2,2)⟨(𝑛− 2, 2)|(𝑛−2, 2)⟩},

The values of Λ(𝑛+2, 0) are all zeros at 𝑛 < 6. The
eigenvalues Λ(𝑛,1) equal to zero, if 𝑛 < 5, and, fi-

nally, Λ(𝑛−2, 2) vanishes for 𝑛 < 4. In other words, the
states belonging to the SU(3) irreducible representa-
tion (𝑛 − 2, 2) become allowed if 𝑛 ≥ 4, the minimal
number of quanta for the (𝜆, 𝜇) = (𝑛, 1) states is 5,
and finally, the states with (𝜆, 𝜇) = (𝑛+ 2, 0) are al-
lowed only if 𝑛 ≥ 6 (Table). These eigenvalues have
been obtained in [13]. Explicit expressions for the
SU(3) invariants ⟨(𝑛+ 2, 0)|(𝑛+ 2, 0)⟩, ⟨(𝑛, 1)|(𝑛, 1)⟩
and ⟨(𝑛 − 2, 2)|(𝑛 − 2, 2)⟩ have been also given in
[13]. The SU(3) invariants for the 6He + 𝛼 system
coincide with those for the 6He + 𝑝 system.

As the data of Table suggest, two SU(3)-branches
of positive parity and one SU(3)-branch of negative
parity are characterized by the eigenvalues, which ex-
ceed unity. Hence, the states belonging to (2𝑘+2, 0),
(2𝑘− 2, 2), and (2𝑘+1, 1) SU(3)-branches can be as-
signed to the superallowed states, while states (2𝑘, 1),
(2𝑘 + 3, 0), and (2𝑘 − 1, 2) are partly forbidden. As
follows from Eq. (3), we should expect the effective
attraction of 6He and 𝛼-particle in the former case
and the effective repulsion in the latter case.

Working with the SU(3) basis, one faces a problem
of formulation of asymptotic conditions for the wave
function expansion coefficients. Therefore, the intro-
duction of functions of the angular-momentum cou-
pled basis Φ(ℒ, 𝑙, 𝐿)

𝑛 , where ℒ and 𝑙 are partial angular
momenta of 6He cluster and the relative motion of
the clusters, respectively, appears to be useful. Fur-
thermore, the authors simulating the Pauli principle
with the OPP also use the partial angular momenta
of clusters and their relative motion to label different
reaction channels.

Eigenvalues Λ(𝜆,𝜇) of the norm kernel of 6He + 𝛼

States with 𝑛 = 2𝑘 States with 𝑛 = 2𝑘 + 1
𝑘

(𝑛+ 2, 0) (𝑛, 1) (𝑛− 2, 2) (𝑛+ 2, 0) (𝑛, 1) (𝑛− 2, 2)

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 1.2056 0 1.0549 0.4521
3 0.9419 0.2721 1.1587 0.1831 1.2192 0.7650
4 1.2922 0.5698 1.0834 0.4045 1.1795 0.9011
5 1.3264 0.7645 1.0408 0.5983 1.1160 0.9581
6 1.2566 0.8760 1.0194 0.7448 1.0676 0.9821
7 1.1743 0.9363 1.0090 0.8454 1.0371 0.9923
8 1.1090 0.9678 1.0046 0.9097 1.0196 0.9967
9 1.0645 0.9840 1.0019 0.9489 1.0101 0.9985

10 1.0367 0.9921 1.0009 0.9718 1.0051 0.9994
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It is important to note that the norm kernel has
a diagonal form only in the SU(3) classification of
the eigenvalues Λ(𝜆,𝜇) and the eigenfunctions Ψ(𝜆,𝜇).
The SU(3)-basis and angular-momentum coupled ba-
sis functions are related by the matrix of a uni-
tary transformation. Any unitary transformation of
the basis functions Ψ(𝜆,𝜇) will break the diagonal
form of the kernel 𝐼, since the eigenvalues Λ(𝜆,𝜇)

differ from unity in a certain region of oscillator
quanta. Angular-momentum coupled basis functions
are not the eigenfunctions of the antisymmetrization
operator at a small number of quanta, and the orbital
momentum of relative motion of clusters cannot serve
as a good quantum number for a system composed of
nonspherical clusters.

The basis states Φ
(ℒ, 𝑙, 𝐿)
𝑛 (u, r) of the angular-

momentum coupled basis is a convolution of oscillator
functions, one of which describes the internal struc-
ture of a nonspherical cluster 6He, while another one
is the wave function of relative motion of 6He and 𝛼-
particle. For an even number of quanta 𝑛 = 2𝑘, the
functions Φ(ℒ, 𝑙, 𝐿)

𝑛 (u, r) are determined by the expres-
sion

Φ
(ℒ, 𝑙, 𝐿)
𝑘 (u, r) = 𝜑ℒ1−ℒ/2

(︂
𝑢

𝑟0

)︂
𝜑𝑙𝑘−𝑙/2

(︂
𝑟

𝑟0

)︂
×

×{𝑌ℒ(�̂�)⊗ 𝑌𝑙(𝑟)}𝐿𝑀 ;

𝜑𝑙𝜈(𝑟) = (−1)𝜈

√︃
2Γ(𝜈 + 1)

Γ(𝜈 + 𝑙 + 3/2)
×

× 𝑟𝑙𝐿𝑙+1/2
𝜈 (𝑟2) exp{−𝑟2/2}.

For an odd number of quanta 𝑛 = 2𝑘+1, these func-
tions are defined as

Φ
(ℒ, 𝑙, 𝐿)
𝑘 (u, r) = 𝜑ℒ1−ℒ/2

(︂
𝑢

𝑟0

)︂
𝜑𝑙𝑘+(1−𝑙)/2

(︂
𝑟

𝑟0

)︂
×

×{𝑌ℒ(�̂�)⊗ 𝑌𝑙(𝑟)}𝐿𝑀 .

Here, 𝑟0 is an oscillator length, which is chosen to be
equal to 1.37 fm in our calculation to reproduce the
root-mean-square radius of alpha-particle.

The vector r denotes the relative distance between
𝛼-particle and 6He cluster, while the vector u is re-
quired to describe the orientation of an anisotropic
6He cluster in space. The latter vector indicates the
distance from the 𝛼-core to the pair of valence neu-
trons in 6He.

4. Pauli-Forbidden States

4.1. Positive parity

All states of positive parity correspond to even num-
bers quanta 𝑛 = 2𝑘. There are six Pauli-forbidden
states belonging to the 𝑆𝑈(3) representations (2,0),
(4,0), (0,2), (6,0), (2,1), and (4,1). Four of these states
contain 𝐿 = 0 as the lowest possible orbital momen-
tum:

Ψ𝐿=0
(2,0) = Φ

(0,0,0)
𝑘=0 ;

Ψ𝐿=0
(4,0) =

√︂
5

9
Φ

(0,0,0)
𝑘=1 +

√︂
4

9
Φ

(2,2,0)
𝑘=1 ;

Ψ𝐿=0
(0,2) =

√︂
4

9
Φ

(0,0,0)
𝑘=1 −

√︂
5

9
Φ

(2,2,0)
𝑘=1 ;

Ψ𝐿=0
(6,0) =

√︂
7

15
Φ

(0,0,0)
𝑘=2 +

√︂
8

15
Φ

(2,2,0)
𝑘=2 ,

while the last two representations contain 𝐿 = 1:

Ψ𝐿=1
(2,1) = Φ

(2,2,1)
𝑘=1 ; Ψ𝐿=1

(4,1) = Φ
(2,2,1)
𝑘=2 .

As will be observed, the Pauli principle mixes the
states with different partial momenta of the 6He clus-
ter ℒ and the relative motion of the clusters 𝑙. Hence,
strictly speaking, we cannot associate any of the
Pauli-forbidden states with a certain function of the
angular-momentum coupled basis Φ

(ℒ, 𝑙, 𝐿)
𝑛 . However,

the Pauli-forbidden states of the 6He + 𝛼 system with
𝐿𝜋 = 1+ contain only the component ℒ = 𝑙 = 2, and
the first Pauli-forbidden state Ψ𝐿=0

(2,0) involves solely
the component ℒ = 𝑙 = 0. Therefore, we can state
with assurance that there are two Pauli-forbidden
states in the ℒ = 𝑙 = 2 channel, provided that
𝐿𝜋 = 1+, and at least one Pauli-forbidden state in
the ℒ = 𝑙 = 0 channel in the case 𝐿𝜋 = 0+.

As to the remaining three Pauli-forbidden states
corresponding to the 𝐿𝜋 = 0+, they are the super-
positions of the two components ℒ = 𝑙 = 2 and
ℒ = 𝑙 = 0. Analyzing the weights of these two com-
ponents in the Pauli-forbidden states, we can assume
that the forbidden state Ψ𝐿=0

(4,0) can be associated with
the channel ℒ = 𝑙 = 0, while the forbidden states
Ψ𝐿=0

(0,2) and Ψ𝐿=0
(6,0) can be attributed to the ℒ = 𝑙 = 2

channel. Summarizing, we have two forbidden states
for 𝐿𝜋 = 1+ and four forbidden states for 𝐿𝜋 = 0+.
In the former case, both of the forbidden states be-
long to the ℒ = 𝑙 = 2 channel, because the total
orbital momentum 𝐿 = 1 cannot be realized with
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ℒ = 𝑙 = 0. Among four forbidden states character-
ized by 𝐿𝜋 = 0+, two forbidden states belong to the
ℒ = 𝑙 = 0 channels, while two others should reveal
themselves in the ℒ = 𝑙 = 2 channel.

The behavior of the phase shifts for the elas-
tic 6He + 𝛼 scattering in the 𝐿𝜋 = 0+ state of
the compound nucleus 10Be confirms the existence
of two forbidden states in the channel 6He(0+) +
𝛼→6He(0+)+𝛼 and two forbidden states in the chan-
nel 6He(2+) + 𝛼→6He(2+) + 𝛼.

Figure 1 presents the phase shifts for the elastic
6He + 𝛼 scattering provided that all eigenvalues of
the Pauli-allowed states are equal to unity and that
𝐿𝜋 = 0+. Hence, these phase shifts are created only
by the Pauli-forbidden states. As Fig. 1 suggests, the
amplitudes of both phase shifts 𝛿𝑙=0(𝐸) and 𝛿𝑙=2(𝐸)
equal 2𝜋. The dependence of the scattering phases on
the energy, when the latter varies from zero to infin-
ity, is regulated by the generalized Levinson’s theo-
rem. According to this theorem, the phase variation
amplitude is proportional to the number of bound
states and forbidden states of the system. Since there
are no bound states in this calculation, we can con-
clude that two forbidden states show up indeed in
either of the channels.

4.2. Negative parity

There are six Pauli-forbidden SU(3) irreducible repre-
sentations for the states of negative parity 𝑛 = 2𝑘+1,
and all these SU(3) representations contain 𝐿 = 1 as
the lowest possible orbital momentum:

Ψ𝐿=1
(3,0) =

√︂
5

9
Φ

(0,1,1)
𝑘=0 +

√︂
4

9
Φ

(2,1,1)
𝑘=0 ;

Ψ𝐿=1
(1,1) =

√︂
4

9
Φ

(0,1,1)
𝑘=0 −

√︂
5

9
Φ

(2,1,1)
𝑘=0 ;

Ψ𝐿=1
(5,0) =

√︂
7

15
Φ

(0,1,1)
𝑘=1 +

2

5

√︂
7

3
Φ

(2,1,1)
𝑘=1 +

2

5
Φ

(2,3,1)
𝑘=1 ;

Ψ𝐿=1
(3,1) =

2

3
√
5
Φ

(0,1,1)
𝑘=1 − 11

15
Φ

(2,1,1)
𝑘=1 +

2

5

√︂
7

3
Φ

(2,3,1)
𝑘=1 ;

Ψ𝐿=1
(1,2) =

2

3
Φ

(0,1,1)
𝑘=1 − 2

3
√
5
Φ

(2,1,1)
𝑘=1 +

√︂
7

15
Φ

(2,3,1)
𝑘=1 ;

Ψ𝐿=1
(7,0) =

√︂
3

7
Φ

(0,1,1)
𝑘=2 + 2

√︂
3

35
Φ

(2,1,1)
𝑘=2 + 2

√︂
2

35
Φ

(2,3,1)
𝑘=2 .

The basis function Φ(0,1,1) dominates in three for-
bidden states: Ψ(3,0), Ψ(5,0) and Ψ(7,0). The func-
tion Φ(2,1,1) prevails in the forbidden states Ψ(1,1)

Fig. 1. Phase shifts 𝛿𝑙(𝐸) for the 6He + 𝛼 system that are gen-
erated by the kinetic-energy operator, provided that all eigen-
values of the Pauli-allowed states Λ𝑛 = 1. The values of the
orbital angular momentum 𝑙 of the relative motion are indi-
cated on the curves

and Ψ(3,1), while the component Φ(2,3,1) has maxi-
mum weight only in the Ψ(1,2) state. Consequently,
one would associate three forbidden states with the
ℒ = 0, 𝑙 = 1 channel, two forbidden states with the
ℒ = 2, 𝑙 = 1 channel and a single forbidden state
with the ℒ = 2, 𝑙 = 3 channel.

5. Pauli-Allowed States

Although the eigenvalues of the antisymmetrization
operator do not depend on the total orbital mo-
mentum 𝐿, the structure of the Pauli-allowed states
does. Namely, the weights of different partial mo-
menta differ for different values of 𝐿.Moreover, SU(3)
irreducible representations do not all contain a given
value of total orbital momentum 𝐿. Hence, the in-
formation on the partial composition of the Pauli-
allowed states can be useful for the estimation of pa-
rameters of OPP.

5.1. Positive parity

First, let us consider the terms of the norm kernel
containing the basis states with orbital momentum
𝐿 = 0 and positive parity. They belong to two 𝑆𝑈(3)
representations, (2𝑘+2, 0) and (2𝑘−2, 2). All of them
have 𝑛 = 2𝑘.

Each of the states with 𝐿 = 0 is a super-
position of the basis functions Φ

(ℒ=0, 𝑙=0, 𝐿=0)
𝑘 and

Φ
(ℒ=2, 𝑙=2, 𝐿=0)
𝑘

Ψ𝐿=0
(2𝑘+2,0) =

√︃
2𝑘 + 3

3(2𝑘 + 1)
Φ

(0,0,0)
𝑘 +

√︃
4𝑘

3(2𝑘 + 1)
Φ

(2,2,0)
𝑘 ;
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Ψ𝐿=0
(2𝑘−2,2) =

√︃
4𝑘

3(2𝑘 + 1)
Φ

(0,0,0)
𝑘 −

√︃
2𝑘 + 3

3(2𝑘 + 1)
Φ

(2,2,0)
𝑘 .

If 𝐿 = 1, there is only one Pauli-allowed state,
which can be written both in the SU(3)-basis and
the angular-momentum coupled basis:

Ψ𝐿=1
(2𝑘,1) = Φ

(2,2,1)
𝑘 .

This means that we have a two-channel problem for
the states with 𝐿 = 0 and a single-channel problem
for the states with 𝐿 = 1.

The component ℒ = 𝑙 = 0 has maximum weight
in the Ψ(2𝑘−2,2) Pauli-allowed state, while ℒ = 𝑙 = 2
channel dominates in the Ψ(2𝑘+2,0) state.

5.2. Negative parity

All states of negative parity correspond to odd num-
bers of quanta 𝑛 = 2𝑘 + 1. The lowest value of
total orbital momentum 𝐿 with negative parity is
𝐿 = 1. Each Pauli-allowed basis function with or-
bital momentum 𝐿 = 1 is a superposition of three
angular-momentum coupled basis states:

Ψ𝐿=1
(2𝑘+3,0) =

√︃
2𝑘 + 5

3(2𝑘 + 3)
Φ

(0,1,1)
𝑘 +

+2

√︃
2𝑘 + 5

15(2𝑘 + 3)
Φ

(2,1,1)
𝑘 + 2

√︃
𝑘

5(2𝑘 + 3)
Φ

(2,3,1)
𝑘 ,

Ψ𝐿=1
(2𝑘+1,1) =

√︃
4

3(2𝑘 + 1)(2𝑘 + 3)
Φ

(0,1,1)
𝑘 −

− (6𝑘 + 5)√︀
15(2𝑘 + 1)(2𝑘 + 3)

Φ
(2,1,1)
𝑘 +

+

√︃
4𝑘(2𝑘 + 5)

5(2𝑘 + 1)(2𝑘 + 3)
Φ

(2,3,1)
𝑘 ,

Ψ𝐿=1
(2𝑘−1,2) = 2

√︃
𝑘

3(2𝑘 + 1)
Φ

(0,1,1)
𝑘 −

− 2

√︃
𝑘

15(2𝑘 + 1)
Φ

(2,1,1)
𝑘 +

√︃
2𝑘 + 5

5(2𝑘 + 1)
Φ

(2,3,1)
𝑘 .

All angular-momentum coupled basis functions
Φ

(ℒ, 𝑙, 𝐿)
𝑘 are presented in the Ψ𝐿=1

(2𝑘+3,0) state on equal
footing. At the same time, the weight of ℒ = 0, 𝑙 = 1
component amounts up to 60% in the Ψ𝐿=1

(2𝑘−1,1) al-
lowed state and practically vanishes in the Ψ𝐿=1

(2𝑘+1,2)

state.

5.3. Pauli potential

The 6He + 𝛼 system is somewhat more complicated,
than a single-channel case considered in this section,
because the dynamics of the 𝛼-cluster is influenced
by the presence of neutrons in the 𝑝-shell of 6He. Due
to this fact, the problem becomes multichannel, and
different SU(3)-branches are coupled by the kinetic-
energy operator. Nevertheless, we can make a rough
estimate of the effective Pauli potential by analyzing
the diagonal part (with respect to SU(3)-indices) of
the Pauli term given in Eq. (3).

In Fig. 2, the dependence of the Pauli potential

𝑈 eff
𝑛 (𝑟𝑛) =

~2

𝑚𝑟20
𝑈Pauli
𝑛,𝑛 , 𝑟𝑛 =

√︂
10

6× 4
𝑟0
√
2𝑛+ 3,

on the distance 𝑟𝑛 between the centers of mass of
the 6He and 𝛼 clusters is shown both for the states
of positive and negative parity. As evident from the
left panel of Fig. 2, the branch (2𝑘, 1) is repulsive, the
branch (2𝑘−2, 2) is attractive, while the branch (2𝑘+
2, 0) has a mixture of repulsion and attraction. The
right panel of Fig. 2 suggests that, for negative parity
states, two branches (2𝑘 + 3, 0) and (2𝑘 − 1, 2) are
repulsive, while some attraction is present only in the
(2𝑘 + 1, 1) branch.

All the Pauli-allowed states, except (2𝑘, 1) state,
are superpositions of the angular-momentum coupled
basis functions. Hence, we can make definite con-
clusions only about the repulsion in the 𝑑-wave of
relative motion of 𝛼-particle scattered on 6He in the
first 2+ state. In other cases, we should consider also
the weights of different partial momenta in the SU(3)-
basis functions.

5.4. Phase shifts of the elastic
6He + 𝛼 scattering, 𝐿𝜋 = 0+

Finally, we calculated the phase shifts of the elastic
6He + 𝛼 scattering for the states of positive parity
and 𝐿 = 0 generated by the exchange terms of the
kinetic energy operator.

The equations for the expansion coefficients in
the SU(3) basis remain coupled even in the limit
of the large number of excitation quanta, whereas
the set of corresponding equations in the angular
momentum coupled basis is unlinked in this asymp-
totic region. In AVRGM, the asymptotic behavior of
the expansion coefficients 𝐶(ℒ, 𝑙,𝐿)

𝐸 (𝑘) in the angular
momentum coupled basis is expressed in terms of
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Fig. 2. Effective 6He + 𝛼 interaction generated by the kinetic energy exchange terms. Indices of SU(3) symmetry are indicated
on the curves

Fig. 3. Phase shifts 𝛿𝑙(𝐸) for the 6He + 𝛼 system that are
generated by the modified kinetic-energy operator. The values
of orbital angular momentum 𝑙 of the relative motion of a clus-
ter are indicated on the curves

the Hankel functions of the first and second kinds
and the scattering 𝑆-matrix elements. As soon as
all the eigenvalues Λ𝑛 approach unity, a unitary
transformation from the basis SU(3) to the angular
momentum coupled basis becomes possible. Hence,
we can define the asymptotic behavior of the co-
efficients of the expansion of the wave function in
the SU(3) basis with the matrix of the unitary
transformation between the two bases [13],[14]. We
would like to note that the coupling between the
SU(3) channels through the kinetic energy opera-
tor, provided that the eigenvalues of the different

Fig. 4. Coefficients 𝐶
(ℒ, 𝑙)
𝐸0

(𝑘) in the expansion of the wave
function for the 𝐿𝜋 = 0+ ground state of 10Be =6 He + 𝛼 nu-
cleus with the energy 𝐸0 ≃ −10 keV in the angular-momentum
coupled basis, provided that only the modified kinetic energy
operator is taken into account. The values of the orbital an-
gular momentum 𝑙 = ℒ of the relative motion of a cluster are
indicated on the curves

SU(3) branches are not identical, immediately re-
sults in the off-diagonal elements of the 𝑆-matrix
and inelastic processes during the collision of two
clusters.

The phase-shifts for the 6He + 𝛼 scattering cal-
culated with regard for the eigenvalues of the Pauli-
allowed states are shown in Fig. 3. Unlike the phase
shifts in Fig. 1, which are produced merely by the
Pauli-forbidden states, the phase shifts in Fig. 3 are
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generated both by the Pauli-forbidden and Pauli-
allowed states.

Since both Pauli-allowed states Ψ𝐿=0
(2𝑘+2,0) and

Ψ𝐿=0
(2𝑘−2,2) are superallowed states, the influence of

the Pauli principle on the kinetic energy of the rel-
ative motion of 6He and 𝛼-particle results in the
attraction. This attraction is strong enough to pro-
duce a bound state with the very small binding en-
ergy 𝐸0 ≃ −10 keV below the 10Be → 6He + 𝛼 de-
cay threshold, even without considering the nucleon-
nucleon interaction between the nucleons of different
clusters. The coefficients of the expansion of the wave
function of this state in the basis of a harmonic oscil-
lator are shown in Fig. 4.

As evident from Fig. 2, the SU(3) branch (2𝑘−2, 2)
is purely attractive, whereas (2𝑘 + 2, 0) branch is re-
pulsive at small distances and attractive at large dis-
tances between clusters. Since the 6He(0+)+ 𝛼 chan-
nel prevails in the Ψ𝐿=0

(2𝑘−2,2) Pauli-allowed state, it is
just this channel that dominates in the ground-state
wave function.

Since the 𝑠-wave has a dominant contribution to
this state, the phase shift 𝛿𝑙=0 at zero energy is
equal to 3𝜋 instead of 2𝜋. As observed in Fig. 3, the
phase shift 𝛿𝑙=2 also exhibit the resonance behav-
ior. Comparing Fig. 3 and Fig. 1, we can conclude
that the overall effective interaction generated by the
superallowed states (2𝑘+2, 0) and (2𝑘−2, 2) is attrac-
tive for the 𝐿𝜋 = 0+ states of the 6He + 𝛼 system.

6. Conclusion

Within a microscopic two-cluster model, we have an-
alyzed the influence of the Pauli principle on the ki-
netic energy of relative motion of 6He nucleus and
𝛼-particle. The eigenvalues and the eigenfunctions
of the antisymmetrization operator have been ex-
amined in detail. We have constructed the Pauli-
forbidden states of the 6He + 𝛼 system in the ex-
plicit form and discussed their structure. Although
the Pauli-forbidden states are generally superposi-
tions of the angular-momentum coupled basis func-
tions, each of the latter functions can be related
to a particular Pauli-forbidden state based on the
partial composition of this state. These are just the
angular-momentum coupled basis functions that en-
ter a given Pauli-forbidden state with the maximum
weight. The behavior of the phase shifts of the elas-
tic scattering of 𝛼-particle on 6He nucleus generated

merely by the Pauli-forbidden states support our con-
clusions.

The above analysis can be useful in projecting out
the Pauli-forbidden states with orthogonalizing pseu-
dopotentials in two-cluster systems involving open-
shell clusters.

The structure of the Pauli-allowed states has been
extensively discussed. The effective 6He − 𝛼 inter-
actions generated due to the effect of the partly-
forbidden and superallowed states on the kinetic en-
ergy of relative motion of clusters have been con-
structed. We have shown that the partly forbidden
states cause the effective repulsion of clusters, while
the superallowed states generate an effective attrac-
tion of clusters. We have considered the scattering of
6He nucleus on 𝛼-particle in the states of positive
parity and zero orbital momentum of the compound
10Be nucleus. This is precisely the case where the ef-
fective attraction produced by the two branches of
the superallowed states is the most prominent. The
strength of this attraction appeared to be high enough
to ensure the formation of a near-threshold state of
10Be nucleus in a vicinity of the 10Be → 6He + 𝛼 de-
cay threshold, even if there was no nucleon-nucleon
interaction between nucleons belonging to different
clusters.

It should be noted that the above-mentioned effec-
tive interactions resulted from a modification of the
kinetic energy of the relative motion of clusters by the
Pauli principle are inherent in all two-cluster mod-
els. The character of this interaction depends only
on the intrinsic cluster wave functions. As soon as
we fixed the latter functions, we can expect some ef-
fective intracluster interaction, whose main features
are determined by the behavior of the eigenvalues of
the antisymmetrization operator of the system under
study.

Summarizing, our results could provide guidance
for choosing the sign and the value of the orthogonal-
izing pseudopotential strength to simulate the effect
of partly-forbidden and superallowed states on the
scattering of light neutron-rich nuclei.
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Ю.А.Лашко, Г.Ф.Фiлiппов, Л.Кантон

РОЗСIЯННЯ 6He НА 𝛼-ЧАСТИНЦI:
ВИБIР ПАРАМЕТРIВ ОРТОГОНАЛIЗУЮЧОГО
ПСЕВДОПОТЕНЦIАЛУ НА ОСНОВI
МIКРОСКОПIЧНОГО ПIДХОДУ

Р е з ю м е

У рамках двокластерної мiкроскопiчної моделi обговорено
вплив принципу Паулi на реакцiю розсiяння ядра 6He на 𝛼-
частинцi. Детально проаналiзовано структуру заборонених
i дозволених принципом Паулi станiв. Вплив дозволених
принципом Паулi станiв з вiдмiнними вiд одиницi власни-
ми значеннями на кiнетичну енергiю вiдносного руху 6He
i 𝛼-частинки приводить до ефективної взаємодiї мiж цими
ядрами. Це явище можна до певної мiри змоделювати за
допомогою ортогоналiзуючого потенцiалу скiнченої iнтен-
сивностi. Ми оцiнили iнтенсивнiсть i радiус такої взаємодiї
на основi мiкроскопiчної моделi, щоб надати рекомендацiї
до вибору параметрiв ортогоналiзуючого потенцiалу.

ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 5 415


