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ON DETERMINING THE RUNNING
COUPLING FROM THE EFFECTIVE ACTION

The conformal anomaly has provided an expression for the effective action of gauge theories
in the presence of a strong background field in terms of the running coupling constant. We
exploit this result to find a novel expansion for the running coupling constant and to compare
it with conventional expansions obtained by directly integrating the differential equation for the

running coupling constant.
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1. Introduction

It has been long known that the introduction of a
renormalization scale u leads to a conformal anomaly.
More explicitly, the trace of the energy-momentum
tensor is no longer zero but rather is proportional
to the renormalization group S-function [1]. From
this result, one can show that the effective action
for a gauge theory can be written in terms of the
running gauge coupling when considered as a func-
tion of a strong background field [2]. At the same
time, the effective action satisfies the renormaliza-
tion group equation, which leads to the explicit sum-
mation of all its leading-log (LL), next-to-leading-log
(NLL), etc. contributions [3]. In this paper, we ex-
ploit these two different expressions for the effective
action to obtain a novel expression for the running
gauge coupling in a gauge theory. It does not ap-
pear to be possible to obtain a similar expansion for
running couplings that are not gauge couplings. We
relate this new expansion to one previously derived
by systematically solving the usual differential equa-
tion for the running coupling using techniques de-
scribed below. This comparison shows that the con-
ventional expansion for the running coupling is, for
the first few terms of perturbation theory, identi-
cal to the novel expression that is derived below. We
know of no way of obtaining our new expansion by di-
rectly solving the differential equation for the running
coupling.
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Of course, it is possible to obtain solutions for the
running coupling with a truncated g function by us-
ing numerical integration techniques in conjunction
with the usual differential equation for the running
coupling.

2. The Running Coupling
and the Effective Action

If the effective Lagrangian L is treated as a function of
{1 (the renormalization scale), F,,, (the constant back-
ground field strength), and A (the gauge coupling),
then we have the renormalization group equation:

dL 0 0 0
H@ = (/Jau + 5(/\)5 + V(A)FW@FW) x
% LA, Fy, p1) = 0. (1)

Since AF),, is not renormalized [4], it follows that
B(A) = =Ay()\) and Eq. (1) becomes

0 o 2_0
g+ 500 (55 - S )| £ =0 )
where & = F),, 'Y,
For strong background fields (i.e., A® > p?),

L= i zn: T A" D = i Sn (At A", (3)
n=0

n=0m=0

where ¢t = 1 1In (A:f ) [5] and

S (V) = D T (X°t)"

m=0
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(n=01is LL, n = 1 is NLL etc.). Equation (2) leads
to the nested equations (n =0,1,2,...)

d - d
_digsn(g)+22b2p+3 |:€d£ + (n —pP— 1) Sn—p = 0;
p=0
(4)

where B(\) = E;O:O bopr3A?P T3 and € = M. (We
note that only b3, b5, b7, by are known explicitly in the
MS scheme in QCD [12], though b;; is also known in
QED [13].) The boundary condition for these equa-
tions is S, (§ = 0) = T,,0. Solutions for n = 0,1,2
are respectively given by

So = —To,o’w, (5&)
To.0b
Sy = Oéo % In |w| + T, (5b)
3
T b 1
= Lo br g <+w> _
w b3
bs\ * 1 1
- <b5> Too <nl7~vl+<+w>) (5c)
3 w
where w = —1 + 2b3¢. (Equation (5) corrects errors

in ref. [3].) For the solutions of Eq. (4) for S,, (n =
= 3...6), see Appendix.

An alternate expression for the effective action that
follows from the conformal anomaly is [2] (again using
MS renormalization)

1A

L="1nep® (©)

where the running coupling \(¢) satisfies

d\(t)

= BA@)

= (A(E = 0) = \o). (7

Equation (6) satisfies (1) provided u = g is fixed. In
ref. [3], it was shown that Egs. (3) and (6) are consis-
tent provided

1
Tho=—=0no-
0="-70n0 ®)

Furthermore, these two equations show that

—1
_ - "

v -2 S st - ®
498

More explicitly, from Egs. (5), (8), (9), we obtain our
principal result:

() = A2 [(1 b2+ A2 (‘;5 In|—1+ 2b3/\3t|) +
3

by 2b3A3t bs\
A (2=t (U5
+ 0<b31+2b3>\3t bs)

In |—1 4 20523¢| + 2b3A3t> ] o
X + ... .

10
—1+ 2b3 A3t (10)

This rather unusual expression for A\2(¢) can be
compared with what can be obtained directly from
Eq. (7). (This is a non-trivial test for the correctness
of using the conformal anomaly to obtain Eq. (10).)
We make this comparison by perturbatively expand-
ing Eq. (10) in powers of A and comparing this with
what is obtained by systematically solving Eq. (7).
For the lowest-order solution, from

dN*(t) 13
= b3\’ (¢ 11
dt 3 ( )7 ( a‘)
we easily find
_ 22
) = — 70 11
A 1 — 2b3 A3t (L1b)
While if we go the next order,
dA(t - -
% = b3 \3(t) + b5 AP (1), (12a)
it follows that
Wev = 23t/ Pjevo, (12b)

where

W= (=1 = pA)/(pX)), Wo = (=1 — pA2)/(pA2).
(12¢)

We thus encounter the Lambert W function [6].
Equation (11b) is identical to the lowest-order con-
tribution to Eq. (10), while Eq. (10) yields no closed
form expression, when b3, b5 are non-zero.
However, Eq.(10) can be related to what is ob-
tained from a perturbative solution to Eq. (7), which
is found in the following systematic way. We begin by
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letting x = A2 and 2bs, 43 = B,(p = 0,1,2...), so that
Eq. (7) becomes [7]

dx

o = 2%(Bo + Prx + Pax® + ...). (13)
If we now rescale t — t/e,x — ex and then make the
expansion ¥ = zg+ex1+€2za+... (x,(t = 0) = x6,,0),
we find that, at successive orders in €,

dz
7; = 605537 (14&)
diCl 2
o Boxg + 261101, (14b)
das 2 2 4
o Bo(x] + 2x0x2) + 3f1x125 + Pazy. (14c¢)
Solving these equations in turn leads to
T
xo = 1_750‘“’ (15&)
Qﬂl In ‘1 — ﬁol‘ﬂ
=g 15b
T B (1= Boxt)? (15b)
etc.

The solutions for z,(n = 2...5) are given in Ap-
pendix.

An alternate approach is to systematically solving
Eq. (7) is to write (in analogy with Eq. (3) [8])

2(po) = () D> Tama™ (W) 0™ (1?/p3),  (16a)

n=0m=0
=Y u(Qz" M (1) (04(0) = o), (16b)
n=0

where 0,(¢) = Y7o Tmanm¢™ and ¢ = x(u) x
x In (4?/pd). If now B(z) = 2237 Bna™ and

d
uzdfﬂgx(uo) =0, (17a)
d
MQdTLﬁC(H) = B (z(p)), (17b)
then we see that
(1+ BoC)ag = —Booo, (18a)
(14 BoC)oy + 28001 = (—Proog — BiCoy), (18b)
(14 BoC)oty + 3Bpo2 =
= (=f200 — B20p) + (2101 — Bi10oy). (18c)
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These equations have the solutions

oo = (14 Bo0)7", (192)
_ (B Inf1+Bo¢|
= <ﬁ0> (1+ Bo¢)?’ v
? Bo Bo) \(1+B0¢)? (14 BoC)?
(51)21(1n1+50§|1n2|1+5of|)
Bo) (1+ BoC)3
(19¢)

etc. These solutions to Eq. (18) are seen to be equiv-
alent to those of Eq. (14).

With the solution to Eq. (7) given by Eq. (15) (or
alternatively Eq.(19)), we find that this is equiva-
lent to the expression for the running coupling given
by Eq.(9), where the running coupling appearing
in Eq. (9) is expanded in powers of A\2. (Recall that
z = A? and B, = 2bap+3.) This holds true to the or-
der that we have computed (A\}?), and we anticipate
that it would be true to all orders in A\Z. The novel
expansion of (9) is distinct from all previous expan-
sions that have been derived in that the dependence
of A%(t) on t is exclusively in the denominator.

The sums Y o~ Sp(A20)A*"® and > o0 0, (¢) X
x 2"+ in Egs. (3) and (16a), (16b) represent leading-
log (LL) contributions (for n = 0), next-to-leading-
log (NLL) contributions (for n = 1), and, in general,
NPLL contribution (for n = p) for L and A\?, respec-
tively. It proves possible to use the renormalization
group equation to perform parts of these sums, as
was done in ref. [9] when considering the effective po-
tential.

We illustrate this by first considering 0, (¢). From
Egs. (16b) and (17a), (17b), we find that

@+%oi

- d
+> 8, {Cdc +(n+1 p)} On_p=0.
p=1

+ (n+ l)ﬁo] on+

(20)

(This generalizes Egs. (18a), (18b), (18¢c).) The gen-
eral form of ¢,,(¢) that follows from Eq. (20) is

n 7 ;

J
Op = g E 0”47[/
n LI i+’

i=0 j=0

(21)
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where U = 1+ (¢ and L = InU. Substitution of
Eq. (21) into Eq. (20) leads to the recursion relation

Bo [( +1)oijq + (n—i)op;] +

n

+> [(j + Dol +iol T —
p=1

G DT+ =ikl <0 )
If we set i =n + 1 in Eq. (22), then

n _ n n—1 n—1
Onj+1 = P1 [j T 1%n—1, — U71,—1,j+1:|7 (23)

where p, = —f,/80. If we set j =n — 1 in Eq. (23),
then

J'ﬁn_plan ]1_77, 1_(p1)n7 (24)
as, by Eq. (19a), 09 o = 1. Restricting o7 in Eq. (21)
to oy, ,,, we find from Eq. (16b) that
L z ()
n+1 P\ 25
nz;)pl Un+1 ( ) U— ple( ) ( )

or, more explicitly (reversing the roles of p and po),
x(p) =
(o)

1=Boa(po) In (%)‘F% In (1—5015 (10) In (%)) T (Mo)’
(26)

which is consistent with Eq. (10).

If j = n—2 in Eq.(23), an explicit expression
for o,y can be found following the approach of
ref. [5]; this further modifies the expression for x(u)
in Eq. (26).

In a similar fashion, one can use Eq. (4) to see that

9= s (27)
i=0 j=0
in analogy with Eq. (22), we find that
n—1
£ o [(j FUSI (- DS+
1
EJ + 1S5+ (m—p—19)8; " =0, (28)
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where x2p+3 = bopts/bs(p = 1,2...). For i = n and
j=mn-—1, Eq.(28) reduces to

n—2) ,._
St e, =0 (29)
As S0y = 1 (by Egs. (5a), (8)), we see by Eq.(29)

that ST, = —x5/4,5,, = 0(n > 2). If we only con-
sider the contributions to S, coming from Sy, it
follows from Eq. (9) that

—1

- A2 1
N(t) = — 20 | gy — M) a2|

4 |4 4 (30)

which is identical to Eq. (26).
Further results that follow from Eq.(28) are, in
turn,

1
S30=—70¢r =x3) (from Eq. (5¢)), (31a)
51= —X54X7 (from Eq. (5¢) and Eq. (28) with
n=1=3 and j=0), (31b)
Sio =0 (from Eq.(5b) and Eq. (28)), (31c)
1 n
1= anj T (n>2) (from Eq. (28) with
i=n,j=n—2), (31d)
n _ Xs X7
nn—2 4
X5 !
_ >
4<2+3+ = 2) (n > 4)
(from Eq. (28) with ¢ =n,j =n —3), (31e)
53—1@—1 =0 (n>1)
(from Eq. (28) with i =j=n—1), (32)
X5 X7
So=Y T
(from Eq. (28) with n=2,i =1, =0), (33a)
Sg,l == O
(from Eq. (28) with n=3,i=2,j =1), (33b)
Sn-in-2=0 (n>3), (33c)
n 1 n— n
n-ln-3 = 1 (xx5 72 =x§) (n>3) (34)
(from Eq. (28) withi = n,j =n — 3).
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These contributions to L in Eq. (3) can now be eas-
ily summed. (For the contribution of Eq.(31), see
Appendix). The final result for L/® coming from

Egs. (31)—(34) is the following (with A =1 — X"TW)
4L
3 -v xsLA? — x5 In AN +
M x X7
+ 0~ x7) = 5 LA+ (s — XPA -
272
X7Xx5L” | g X5 4
— 2 N - 22 (1 —-A+InA)X
w3 A w/\( +In M)A+
3
X5X7 — X5WY\ 6
T P 35
* ( w?A ) ’ (35)

where there are contributions from7a211 terms of order
NPLL. From (6), it follows that A" (t) = —(\3®)/
/(4L) with L given by Eq. (35).

3. Discussion

By exploiting the conformal anomaly, the effective
action for a constant external gauge field can be ex-
pressed in terms of the running coupling. We have
used this result to find an alternative expression for
the running coupling that is perturbatively equivalent
to the usual solutions to Eq. (7).

We have also shown how portions of all NP LL con-
tributions to L coming from Eqs. (29), (31)—(34) can
be summed to give Eq. (35). This leads, in turn, to
an expansion of Xz(t) that incorporates the portions
of the NPLL contributions for all p. Having contri-
butions to A(t) coming from all order of perturbation
theory is not possible if one were to systematically
integrate Eq. (7) directly.

In [10], a different approach was used to integrate
Eq. (7). In this reference, one takes

ti/ dA B

B b3)\3+b5)\5 -

11 oy (b B o

e [v Lt (b3 )] e

which is obtained by expanding the denominator of
the integral. This is now solved iteratively to yield

1 bs 1 1

2 5

= — = (———
+4b§ 12 n( 2b3t> *

© 2bst
A systematic approach to using (36) to expand \? in
powers of t~! and #nt is given in [11]; the techniques
used resemble those that lead to (35) above. However,

(37)
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the renormalization group equation is not employed
directly in ref. [11] as it is here; one is systematically
solving (7) directly rather than using (2).

In addition to having all-orders contributions to
A(t) coming from Eq. (9), we also have an unusual an-
alytic dependence on ¢, as all dependence on ¢ occurs
in the denominator. Thus, we can gain additional in-
sights into the asymptotic behaviour of A(¢); this is
currently being considered.

I thank A. Patrushev who assisted in these calcula-
tions and Roger Macleod for a helpful suggestion.

APPENDIX

The solutions for zn(n = 2...5) in Eq. (14) are as follows:

1
ﬁng {:pz3 (B% (w —In?w+

+ In(w) 4+ 1) — Bofa2(w + 1)) ]7
i [5353 (w? —1) + B3 (w+1)% +

9 =
(38a)

1
T 2w
+21n3w—51n2w—4(w+ 1)1nw) —

—2B0B2B1 (w(w + 1) — (2w + 3) ln(w))}7
TR

— B3 (w — 5)(w +1)?) — 68082687 (— (2w” + 5w + 3) x

X 1nw+(wa)(w+1)2+3(w+2)ln2w)+

+ 8% (-6 (w2 +5w+4)lnw+ (w+ 122w —17)—

—6Intw + 26In® w + 9(2w + 1) In® w) + 536351 x

(38b)

T4 =

x (4w? + 3w? — 6 (w? — 2) Inw + 1) } (38c)

x5 = — ® [ﬁ? (6 (3w? + 26w + 23) In® w+

1
1285w
+(w+1)30@w—17)+12In° w — 77In* w+

+ (22 — 48w) In® w — 2(w + 1)? (4w — 11) Inw) +

+363 (BoBs (w' — 1) — 2626 (—w? +w+2)") +

+ 828387 ((9w? — 22w + 23) (w + 1) +

+6 (3w2 - 10) In?w — 2 (8w3 + 15w? — 7) lnw) -

— 6308283 ((w + 1)? (2w? — 8w — 3) + (6w? + 26w + 27) x
X 1n2w+( 4w3+2w2+30w+24)1nw—

—4(2w + 5) In® w) + 8361 (26084 (—3w* — 2w +

+2 (2w +5) Inw + 1) + B3 (w + 1) (9w® — 29w? +

+ (=8w? + 44w + 100) Inw — 37w + 1) ) |. (38d)

The solutions for Sy, (n = 3...6) in (4) are as follows:
1
8w?

+x2 ((w+1)?

Ss = - {x9 (w® = 1) = 2x7x5 (w* +w — In(w)) +

—In? w) |, (39a)
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Sy —2x11 (w® + 1) + xox5 x

~ 2403
X (411}3 + 3w? + 61In(w) + 1) + 2x2(w — 2) x
x (w+1)% — 6x7x2 (w—1)(w+1)% +In*w —

—(w+1)In(w)) + x& (w + 1)?*(2w — 1) +
+2In® w — 31n% w — 6(w + 1) In(w)) |, (39b)

S5 =

~ B x13( = 6x7x3 ((w +1)% x

X (2w2 —2w—1)+ (—211)2 +2w +4) In(w) —
—2In® w + (2w 4 5) In? w) — 3 (2x7x9 X

X (w4—w2+2w+2) — X13 (w4—l))+

+ xox2 (9w4 +8uw3 -6 (w2 — 1) In(w) +

+ 12w — 18I w + 11) + x5 (2x11 (—3w? —
—2w® 4+ 61In(w) + 1) + x2(w + 1) x

x (9w® — 5w? — 13w + 241In(w) + 1)) +

+x2 ((w+1)*Bw - 5) = 3In* w+ 1010’ w+
+12(w + 1) In®(w) — 6(w + 1)% In(w)))|, (39¢)

Se

= 210w5 | ~ 10X ((w + 17

X (6w2 — 12w+7) + (6w2 73w79) In?w+
+6In*w— 23w+ 13) In® w — 6(w — 4) x

x (w+1)%In(w)) + xS (B(w + 1) (4w? — 7w — 1) +
+ 30 (w2 +5w+4) In®w+ 12In° w — 65In* w—
—30(2w + 1) In® w — 10(w + 1)%(2w — 7) In(w)) +
+ xoxE (30 (w2 —5) In2 w + 3(w +1)2 (1611)3 —
—17w? + 8w + 1) — 10 (4w® + 3w? + 18w + 19) x
x In(w) + 1201n® w) — 2(6x15 (w5 +1)+ 2x3 x

x (w+1)* (3w? — 9w + 13) + 2x11x7 (—6w® +
+5w? + 15w + 14) — 3x3 (2w° + 5w? — 3)) +
+x3 (x% (3 (24w® — 33w? + 2w + 39) (w + 1)% —

—20 (w® — 9w? — 15w — 5) In(w) —

—60(3w + 4) In® w) + 2x11 (10 (w® + 1) In(w) +
+3 (—6w® — 5w + 10w + 9) — 60In*(w)) | +

+ x5 (3x13 (8w5 + 5w* + 20 In(w) + 3) —
—2x7xo(w + 1) (36w* — 21w® — 14w? + 29w +

+30(w — 4) In(w) — 14)):|. (39d)

We also employ, in evaluating the contributions of Eq. (31€)
to L, the result

ix” l+1+i+ +L —
2 3 4 7 n-2)"

n=4

1 1
:5(x4+z5+x6+...)+§(x5+a:6+...):

1 z? 1 z® x?

=z = == In(1 — z)). 40
21—z 31—z " T, (@tin-2) (40)
502

From this, we see that if n > 4

2 3 4 -2

-1 d” x?

= —— In(1 — . 41
| T e =) (41)
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I[TPO BU3BHAUYEHHA
BIXKYYOI KOHCTAHTU 3B’A3KY
I3 E@PEKTUBHOTI Ii

Pezmowme

3a HasgBHOCTI KOHGMOPMHOI aHOMAaJil oTpuMana GopmyJia JIJist
edeKTUBHOI il rpa/liEeHTHUX TEeOpiii B NMPUCYTHOCTI CHJIBHOIO
donHoBOrO 10151 Yepe3 6ixKydy KOHCTaHTY 3B’s13KYy. Lleit pesyib-
TAT JO3BOJIMB 3HANTH HOBE DPO3KJIaJaHHs JJisd Oi2Kydol KOH-
CTaHTH 3B’sI3KY 1 MOPIBHATH HOro 3 BiJOMHMH PO3KJIATAHHSI-
MM, OTPUMaHUMH [IPSIMUM IHTErpyBaHHAM JuDepeHIiaJIbHOrO
PiBHSIHHS IS I1i€1 KOHCTAHTH.
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