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ON DETERMINING THE RUNNING
COUPLING FROM THE EFFECTIVE ACTIONPACS 11.10.Hi

The conformal anomaly has provided an expression for the effective action of gauge theories
in the presence of a strong background field in terms of the running coupling constant. We
exploit this result to find a novel expansion for the running coupling constant and to compare
it with conventional expansions obtained by directly integrating the differential equation for the
running coupling constant.
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1. Introduction

It has been long known that the introduction of a
renormalization scale 𝜇 leads to a conformal anomaly.
More explicitly, the trace of the energy-momentum
tensor is no longer zero but rather is proportional
to the renormalization group 𝛽-function [1]. From
this result, one can show that the effective action
for a gauge theory can be written in terms of the
running gauge coupling when considered as a func-
tion of a strong background field [2]. At the same
time, the effective action satisfies the renormaliza-
tion group equation, which leads to the explicit sum-
mation of all its leading-log (LL), next-to-leading-log
(NLL), etc. contributions [3]. In this paper, we ex-
ploit these two different expressions for the effective
action to obtain a novel expression for the running
gauge coupling in a gauge theory. It does not ap-
pear to be possible to obtain a similar expansion for
running couplings that are not gauge couplings. We
relate this new expansion to one previously derived
by systematically solving the usual differential equa-
tion for the running coupling using techniques de-
scribed below. This comparison shows that the con-
ventional expansion for the running coupling is, for
the first few terms of perturbation theory, identi-
cal to the novel expression that is derived below. We
know of no way of obtaining our new expansion by di-
rectly solving the differential equation for the running
coupling.
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Of course, it is possible to obtain solutions for the
running coupling with a truncated 𝛽 function by us-
ing numerical integration techniques in conjunction
with the usual differential equation for the running
coupling.

2. The Running Coupling
and the Effective Action

If the effective Lagrangian 𝐿 is treated as a function of
𝜇 (the renormalization scale), 𝐹𝜇𝜈 (the constant back-
ground field strength), and 𝜆 (the gauge coupling),
then we have the renormalization group equation:

𝜇
𝑑𝐿

𝑑𝜇
=

(︂
𝜇

𝜕

𝜕𝜇
+ 𝛽(𝜆)

𝜕

𝜕𝜆
+ 𝛾(𝜆)𝐹𝜇𝜈

𝜕

𝜕𝐹𝜇𝜈

)︂
×

×𝐿(𝜆, 𝐹𝜇𝜈 , 𝜇) = 0. (1)

Since 𝜆𝐹𝜇𝜈 is not renormalized [4], it follows that
𝛽(𝜆) = −𝜆𝛾(𝜆) and Eq. (1) becomes[︂
𝜇

𝜕

𝜕𝜇
+ 𝛽(𝜆)

(︂
𝜕

𝜕𝜆
− 2

𝜆
Φ

𝜕

𝜕Φ

)︂]︂
𝐿 = 0, (2)

where Φ = 𝐹𝜇𝜈𝐹
𝜇𝜈 .

For strong background fields (i.e., 𝜆Φ ≫ 𝜇2),

𝐿 =

∞∑︁
𝑛=0

𝑛∑︁
𝑚=0

𝑇𝑛,𝑚𝜆2𝑛𝑡𝑚Φ =

∞∑︁
𝑛=0

𝑆𝑛

(︀
𝜆2𝑡
)︀
𝜆2𝑛Φ, (3)

where 𝑡 = 1
4 ln

(︁
𝜆2Φ
𝜇4

)︁
[5] and

𝑆𝑛

(︀
𝜆2𝑡
)︀
=

∞∑︁
𝑚=0

𝑇𝑛+𝑚,𝑚

(︀
𝜆2𝑡
)︀𝑚
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(𝑛 = 0 is LL, 𝑛 = 1 is NLL etc.). Equation (2) leads
to the nested equations (𝑛 = 0, 1, 2, ...)

− 𝑑

𝑑𝜉
𝑆𝑛(𝜉)+2

𝑛∑︁
𝜌=0

𝑏2𝜌+3

[︂
𝜉
𝑑

𝑑𝜉
+ (𝑛− 𝜌− 1)

]︂
𝑆𝑛−𝜌 = 0,

(4)

where 𝛽(𝜆) =
∑︀∞

𝜌=0 𝑏2𝜌+3𝜆
2𝜌+3 and 𝜉 = 𝜆2𝑡. (We

note that only 𝑏3, 𝑏5, 𝑏7, 𝑏9 are known explicitly in the
MS scheme in QCD [12], though 𝑏11 is also known in
QED [13].) The boundary condition for these equa-
tions is 𝑆𝑛(𝜉 = 0) = 𝑇𝑛,0. Solutions for 𝑛 = 0, 1, 2
are respectively given by

𝑆0 = −𝑇0,0𝑤, (5a)

𝑆1 =
𝑇0,0𝑏5
𝑏3

ln |𝑤|+ 𝑇1,0, (5b)

𝑆2 = −𝑇2,0

𝑤
+

𝑏7
𝑏3
𝑇0,0

(︂
1 + 𝑤

𝑤

)︂
−

−
(︂
𝑏5
𝑏3

)︂2

𝑇0,0

(︂
ln |𝑤|+ (1 + 𝑤)

𝑤

)︂
, (5c)

where 𝑤 = −1 + 2𝑏3𝜉. (Equation (5) corrects errors
in ref. [3].) For the solutions of Eq. (4) for 𝑆𝑛 (𝑛 =
= 3 ... 6), see Appendix.

An alternate expression for the effective action that
follows from the conformal anomaly is [2] (again using
MS renormalization)

𝐿 = −1

4

𝜆2
0

�̄�2(𝑡)
Φ, (6)

where the running coupling �̄�(𝑡) satisfies

𝑑�̄�(𝑡)

𝑑𝑡
= 𝛽( ¯𝜆(𝑡)) (�̄�(𝑡 = 0) = 𝜆0). (7)

Equation (6) satisfies (1) provided 𝜇 = 𝜇0 is fixed. In
ref. [3], it was shown that Eqs. (3) and (6) are consis-
tent provided

𝑇𝑛,0 = −1

4
𝛿𝑛,0. (8)

Furthermore, these two equations show that

�̄�2(𝑡) =
−𝜆2

0

4

[︃ ∞∑︁
𝑛=0

𝑆𝑛(𝜆
2
0𝑡)𝜆

2𝑛
0

]︃−1

. (9)

More explicitly, from Eqs. (5), (8), (9), we obtain our
principal result:

�̄�2(𝑡) = 𝜆2
0

[︃
(1− 2𝑏3𝜆

2
0𝑡) + 𝜆2

0

(︂
𝑏5
𝑏3

ln
⃒⃒
−1 + 2𝑏3𝜆

2
0𝑡
⃒⃒)︂

+

+𝜆4
0

(︃
𝑏7
𝑏3

2𝑏3𝜆
2
0𝑡

−1 + 2𝑏3𝜆2
0𝑡

−
(︂
𝑏5
𝑏3

)︂2
×

×
ln
⃒⃒
−1 + 2𝑏3𝜆

2
0𝑡
⃒⃒
+ 2𝑏3𝜆

2
0𝑡

−1 + 2𝑏3𝜆2
0𝑡

)︃
+ ...

]︃−1

. (10)

This rather unusual expression for �̄�2(𝑡) can be
compared with what can be obtained directly from
Eq. (7). (This is a non-trivial test for the correctness
of using the conformal anomaly to obtain Eq. (10).)
We make this comparison by perturbatively expand-
ing Eq. (10) in powers of 𝜆2 and comparing this with
what is obtained by systematically solving Eq. (7).
For the lowest-order solution, from

𝑑�̄�2(𝑡)

𝑑𝑡
= 𝑏3�̄�

3(𝑡), (11a)

we easily find

�̄�2(𝑡) =
𝜆2
0

1− 2𝑏3𝜆2
0𝑡
. (11b)

While if we go the next order,

𝑑�̄�(𝑡)

𝑑𝑡
= 𝑏3�̄�

3(𝑡) + 𝑏5�̄�
5(𝑡), (12a)

it follows that

𝑊𝑒𝑤 = 𝑒2𝑏3𝑡/𝜌𝑊0𝑒
𝑤0 , (12b)

where

𝑊 = (−1− 𝜌𝜆
2
)/(𝜌𝜆

2
), 𝑊0 = (−1− 𝜌𝜆2

0)/(𝜌𝜆
2
0).

(12c)

We thus encounter the Lambert 𝑊 function [6].
Equation (11b) is identical to the lowest-order con-

tribution to Eq. (10), while Eq. (10) yields no closed
form expression, when 𝑏3, 𝑏5 are non-zero.

However, Eq. (10) can be related to what is ob-
tained from a perturbative solution to Eq. (7), which
is found in the following systematic way. We begin by
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letting 𝑥 = �̄�2 and 2𝑏2𝜌+3 = 𝛽𝜌(𝜌 = 0, 1, 2...), so that
Eq. (7) becomes [7]

𝑑𝑥

𝑑𝑡
= 𝑥2(𝛽0 + 𝛽1𝑥+ 𝛽2𝑥

2 + ...). (13)

If we now rescale 𝑡 → 𝑡/𝜖, 𝑥 → 𝜖𝑥 and then make the
expansion 𝑥 = 𝑥0+𝜖𝑥1+𝜖2𝑥2+... (𝑥𝑛(𝑡 = 0) = 𝑥𝛿𝑛,0),
we find that, at successive orders in 𝜖,

𝑑𝑥0

𝑑𝑡
= 𝛽0𝑥

2
0, (14a)

𝑑𝑥1

𝑑𝑡
= 𝛽0𝑥

2
0 + 2𝛽1𝑥0𝑥1, (14b)

𝑑𝑥2

𝑑𝑡
= 𝛽0(𝑥

2
1 + 2𝑥0𝑥2) + 3𝛽1𝑥1𝑥

2
0 + 𝛽4𝑥

4
0. (14c)

Solving these equations in turn leads to

𝑥0 =
𝑥

1− 𝛽0𝑥𝑡
, (15a)

𝑥1 = −𝑥2 𝛽1

𝛽0

ln |1− 𝛽0𝑥𝑡|
(1− 𝛽0𝑥𝑡)2

, (15b)

etc.
The solutions for 𝑥𝑛(𝑛 = 2 ... 5) are given in Ap-

pendix.
An alternate approach is to systematically solving

Eq. (7) is to write (in analogy with Eq. (3) [8])

𝑥(𝜇0) = 𝑥(𝜇)

∞∑︁
𝑛=0

𝑛∑︁
𝑚=0

𝜏𝑛,𝑚𝑥𝑛(𝜇) ln𝑚
(︀
𝜇2/𝜇2

0

)︀
, (16a)

≡
∞∑︁

𝑛=0

𝜎𝑛(𝜁)𝑥
𝑛+1(𝜇) (𝜎𝑛(0) = 𝛿𝑛0), (16b)

where 𝜎𝑛(𝜁) =
∑︀∞

𝑚=0 𝜏𝑚+𝑛,𝑚𝜁𝑚 and 𝜁 = 𝑥(𝜇)×
× ln

(︀
𝜇2/𝜇2

0

)︀
. If now 𝛽(𝑥) = 𝑥2

∑︀∞
𝑛=0 𝛽𝑛𝑥

𝑛 and

𝜇2 𝑑

𝑑𝜇2
𝑥(𝜇0) = 0, (17a)

𝜇2 𝑑

𝑑𝜇2
𝑥(𝜇) = 𝛽 (𝑥(𝜇)), (17b)

then we see that

(1 + 𝛽0𝜁)𝜎
′
0 = −𝛽0𝜎0, (18a)

(1 + 𝛽0𝜁)𝜎
′
1 + 2𝛽0𝜎1 = (−𝛽1𝜎0 − 𝛽1𝜁𝜎

′
0), (18b)

(1 + 𝛽0𝜁)𝜎
′
2 + 3𝛽0𝜎2 =

= (−𝛽2𝜎0 − 𝛽2𝜁𝜎
′
0) + (−2𝛽1𝜎1 − 𝛽1𝜁𝜎

′
1). (18c)

These equations have the solutions

𝜎0 = (1 + 𝛽0𝜁)
−1, (19a)

𝜎1 = −
(︂
𝛽1

𝛽0

)︂
ln |1 + 𝛽0𝜁|
(1 + 𝛽0𝜁)2

, (19b)

𝜎2 =

(︃(︂
𝛽1

𝛽0

)︂2

− 𝛽2

𝛽0

)︃(︂
1

(1 + 𝛽0𝜁)2
− 1

(1 + 𝛽0𝜁)3

)︂
−

−
(︂
𝛽1

𝛽0

)︂2
1

(1 + 𝛽0𝜁)3
(︀
ln |1 + 𝛽0𝜁| − ln2 |1 + 𝛽0𝜁|

)︀
(19c)

etc. These solutions to Eq. (18) are seen to be equiv-
alent to those of Eq. (14).

With the solution to Eq. (7) given by Eq. (15) (or
alternatively Eq. (19)), we find that this is equiva-
lent to the expression for the running coupling given
by Eq. (9), where the running coupling appearing
in Eq. (9) is expanded in powers of 𝜆2

0. (Recall that
𝑥 = �̄�2 and 𝛽𝑝 = 2𝑏2𝑝+3.) This holds true to the or-
der that we have computed (𝜆12

0 ), and we anticipate
that it would be true to all orders in 𝜆2

0. The novel
expansion of (9) is distinct from all previous expan-
sions that have been derived in that the dependence
of �̄�2(𝑡) on 𝑡 is exclusively in the denominator.

The sums
∑︀∞

𝑛=0 𝑆𝑛(𝜆
2𝑡)𝜆2𝑛Φ and

∑︀∞
𝑛=0 𝜎𝑛(𝜁)×

×𝑥𝑛+1 in Eqs. (3) and (16a), (16b) represent leading-
log (LL) contributions (for 𝑛 = 0), next-to-leading-
log (NLL) contributions (for 𝑛 = 1), and, in general,
𝑁𝑝𝐿𝐿 contribution (for 𝑛 = 𝑝) for 𝐿 and �̄�2, respec-
tively. It proves possible to use the renormalization
group equation to perform parts of these sums, as
was done in ref. [9] when considering the effective po-
tential.

We illustrate this by first considering 𝜎𝑛(𝜁). From
Eqs. (16b) and (17a), (17b), we find that[︂
(1 + 𝛽0𝜁)

𝑑

𝑑𝜁
+ (𝑛+ 1)𝛽0

]︂
𝜎𝑛 +

+

𝑛∑︁
𝜌=1

𝛽𝜌

[︂
𝜁
𝑑

𝑑𝜁
+ (𝑛+ 1− 𝜌)

]︂
𝜎𝑛−𝜌 = 0. (20)

(This generalizes Eqs. (18a), (18b), (18c).) The gen-
eral form of 𝜎𝑛(𝜁) that follows from Eq. (20) is

𝜎𝑛 =

𝑛∑︁
𝑖=0

𝑖∑︁
𝑗=0

𝜎𝑛
𝑖,𝑗

𝐿𝑗

𝑈 𝑖+1
, (21)
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where 𝑈 = 1 + 𝛽0𝜁 and 𝐿 = ln𝑈 . Substitution of
Eq. (21) into Eq. (20) leads to the recursion relation

𝛽0

[︀
(𝑗 + 1)𝜎𝑛

𝑖,𝑗+1 + (𝑛− 𝑖)𝜎𝑛
𝑖,𝑗

]︀
+

+

𝑛∑︁
𝜌=1

[︂
(𝑗 + 1)𝜎𝑛−𝜌

𝑖,𝑗+1 + 𝑖𝜎𝑛−𝜌
𝑖−1,𝑗 −

− (𝑗 + 1)𝜎𝑛−𝜌
𝑖−1,𝑗+1 + (𝑛− 𝑖+ 𝜌)𝜎𝑛−𝜌

𝑖,𝑗

]︂
= 0. (22)

If we set 𝑖 = 𝑛+ 1 in Eq. (22), then

𝜎𝑛
𝑛,𝑗+1 = 𝜌1

[︂
𝑛

𝑗 + 1
𝜎𝑛−1
𝑛−1,𝑗 − 𝜎𝑛−1

𝑛−1,𝑗+1

]︂
, (23)

where 𝜌𝑛 = −𝛽𝑛/𝛽0. If we set 𝑗 = 𝑛 − 1 in Eq. (23),
then

𝜎𝑛
𝑛,𝑛 = 𝜌1𝜎

𝑛−1
𝑛−1,𝑛−1 = (𝜌1)

𝑛, (24)

as, by Eq. (19a), 𝜎0
0,0 = 1. Restricting 𝜎𝑛

𝑖𝑗 in Eq. (21)
to 𝜎𝑛

𝑛,𝑛, we find from Eq. (16b) that

𝑥(𝜇0) =

∞∑︁
𝑛=0

𝜌𝑛1
𝐿𝑛

𝑈𝑛+1
𝑥𝑛+1(𝜇) =

𝑥(𝜇)

𝑈 − 𝜌1𝐿𝑥(𝜇)
(25)

or, more explicitly (reversing the roles of 𝜇 and 𝜇0),

𝑥(𝜇) =

=
𝑥(𝜇0)

1−𝛽0𝑥(𝜇0) ln
(︁
𝜇2

𝜇2
0

)︁
+𝛽1

𝛽0
ln
(︁
1−𝛽0𝑥(𝜇0) ln

(︁
𝜇2

𝜇2
0

)︁)︁
𝑥(𝜇0)

,

(26)

which is consistent with Eq. (10).
If 𝑗 = 𝑛 − 2 in Eq. (23), an explicit expression

for 𝜎𝑛
𝑛,𝑛−1 can be found following the approach of

ref. [5]; this further modifies the expression for 𝑥(𝜇)
in Eq. (26).

In a similar fashion, one can use Eq. (4) to see that

𝑆𝑛(𝜉) =

𝑛∑︁
𝑖=0

𝑖∑︁
𝑗=0

𝑆𝑛
𝑖𝑗

𝐿𝑗

𝑤𝑖−1
; (27)

in analogy with Eq. (22), we find that

(𝑗 + 1)𝑆𝑛
𝑖,𝑗+1 + (𝑛− 𝑖)𝑆𝑛

𝑖𝑗 +

+

𝑛−1∑︁
𝜌=1

𝜒2𝜌+3

[︂
(𝑗 + 1)𝑆𝑛−𝜌

𝑖−1,𝑗+1 − (𝑖− 2)𝑆𝑛−𝜌
𝑖−1,𝑗 +

+(𝑗 + 1)𝑆𝑛−𝜌
𝑖,𝑗+1 + (𝑛− 𝜌− 𝑖)𝑆𝑛−𝜌

𝑖𝑗

]︂
= 0, (28)

where 𝜒2𝜌+3 = 𝑏2𝜌+3/𝑏3(𝜌 = 1, 2...). For 𝑖 = 𝑛 and
𝑗 = 𝑛− 1, Eq. (28) reduces to

𝑆𝑛
𝑛,𝑛 − 𝜒5

(𝑛− 2)

𝑛
𝑆𝑛−1
𝑛−1,𝑛−1 = 0. (29)

As 𝑆0
0,0 = 1

4 (by Eqs. (5a), (8)), we see by Eq. (29)
that 𝑆1

1,1 = −𝜒5/4, 𝑆
𝑛
𝑛,𝑛 = 0(𝑛 ≥ 2). If we only con-

sider the contributions to 𝑆𝑛 coming from 𝑆𝑛
𝑛,𝑛, it

follows from Eq. (9) that

�̄�2(𝑡) = −𝜆2
0

4

[︂
1

4
𝑤 − 𝜒5

4
(ln𝑤)𝜆2

0

]︂−1

, (30)

which is identical to Eq. (26).
Further results that follow from Eq. (28) are, in

turn,

𝑆2
2,0 = −1

4
(𝜒7 − 𝜒2

5) (from Eq. (5c)), (31a)

𝑆3
3,1 = −𝜒5𝜒7

4
(from Eq. (5c) and Eq. (28) with

𝑛 = 𝑖 = 3 and 𝑗 = 0), (31b)

𝑆1
1,0 = 0 (from Eq. (5b) and Eq. (28)), (31c)

𝑆𝑛
𝑛,𝑛−1 =

1

4

𝜒𝑛
5

𝑛− 1
(𝑛 ≥ 2) (from Eq. (28) with

𝑖 = 𝑛, 𝑗 = 𝑛− 2), (31d)

𝑆𝑛
𝑛,𝑛−2 = −𝜒𝑛−2

5 𝜒7

4
−

− 𝜒𝑛
5

4

(︂
1

2
+

1

3
+ ...+

1

𝑛− 2

)︂
(𝑛 ≥ 4)

(from Eq. (28) with 𝑖 = 𝑛, 𝑗 = 𝑛− 3), (31e)

𝑆𝑛
𝑛−1,𝑛−1 = 0 (𝑛 ≥ 1)

(from Eq. (28) with 𝑖 = 𝑗 = 𝑛− 1), (32)

𝑆2
1,0 =

𝜒2
5

4
− 𝜒7

4

(from Eq. (28) with 𝑛 = 2, 𝑖 = 1, 𝑗 = 0), (33a)

𝑆3
2,1 = 0

(from Eq. (28) with 𝑛 = 3, 𝑖 = 2, 𝑗 = 1), (33b)

𝑆𝑛
𝑛−1,𝑛−2 = 0 (𝑛 ≥ 3), (33c)

𝑆𝑛
𝑛−1,𝑛−3 =

1

4

(︀
𝜒7𝜒

𝑛−2
5 − 𝜒𝑛

5

)︀
(𝑛 ≥ 3)

(from Eq. (28) with𝑖 = 𝑛, 𝑗 = 𝑛− 3).

(34)
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These contributions to 𝐿 in Eq. (3) can now be eas-
ily summed. (For the contribution of Eq. (31), see
Appendix). The final result for 𝐿/Φ coming from
Eqs. (31)–(34) is the following (with Λ = 1− 𝜒5𝐿𝜆2

𝑤 ):

4𝐿

Φ
= 𝑤 − 𝜒5𝐿𝜆

2 − 𝜒5 ln Λ𝜆
2 +

+
(︀
𝜒2
5 − 𝜒7

)︀ 𝜆4

𝑤
− 𝜒5𝜒7

𝑤2
𝐿𝜆6 + (𝜒5 − 𝜒2

7)𝜆
4 −

− 𝜒7𝜒
2
5𝐿

2

𝑤3Λ
𝜆8 − 𝜒2

5

𝑤𝜆
(1− Λ + lnΛ)𝜆4 +

+

(︂
𝜒5𝜒7 − 𝜒3

5𝑤

𝑤2Λ

)︂
𝜆6, (35)

where there are contributions from all terms of order
𝑁𝑝𝐿𝐿. From (6), it follows that 𝜆

2
(𝑡) = −(𝜆2

0Φ)/
/(4𝐿) with 𝐿 given by Eq. (35).

3. Discussion

By exploiting the conformal anomaly, the effective
action for a constant external gauge field can be ex-
pressed in terms of the running coupling. We have
used this result to find an alternative expression for
the running coupling that is perturbatively equivalent
to the usual solutions to Eq. (7).

We have also shown how portions of all 𝑁𝑝𝐿𝐿 con-
tributions to 𝐿 coming from Eqs. (29), (31)–(34) can
be summed to give Eq. (35). This leads, in turn, to
an expansion of 𝜆

2
(𝑡) that incorporates the portions

of the 𝑁𝑝𝐿𝐿 contributions for all 𝑝. Having contri-
butions to 𝜆(𝑡) coming from all order of perturbation
theory is not possible if one were to systematically
integrate Eq. (7) directly.

In [10], a different approach was used to integrate
Eq. (7). In this reference, one takes

𝑡 =

∫︁
𝑑𝜆

𝑏3𝜆3 + 𝑏5𝜆5 + ...
=

= − 1

2𝑏3

[︂
1

𝜆2
+

𝑏5
𝑏3
ℓ𝑛𝜆2 +

(︂
𝑏7
𝑏3

− 𝑏25
𝑏27

)︂
𝜆2 + ...

]︂
, (36)

which is obtained by expanding the denominator of
the integral. This is now solved iteratively to yield

𝜆2 = − 1

2𝑏3𝑡
+

𝑏5
4𝑏33

1

𝑡2
ℓ𝑛

(︂
− 1

2𝑏3𝑡

)︂
+ ... . (37)

A systematic approach to using (36) to expand 𝜆2 in
powers of 𝑡−1 and ℓ𝑛 𝑡 is given in [11]; the techniques
used resemble those that lead to (35) above. However,

the renormalization group equation is not employed
directly in ref. [11] as it is here; one is systematically
solving (7) directly rather than using (2).

In addition to having all-orders contributions to
𝜆(𝑡) coming from Eq. (9), we also have an unusual an-
alytic dependence on 𝑡, as all dependence on 𝑡 occurs
in the denominator. Thus, we can gain additional in-
sights into the asymptotic behaviour of 𝜆(𝑡); this is
currently being considered.

I thank A. Patrushev who assisted in these calcula-
tions and Roger Macleod for a helpful suggestion.

APPENDIX

The solutions for 𝑥𝑛(𝑛 = 2 ... 5) in Eq. (14) are as follows:

𝑥2 =
1

𝛽2
0𝑤

3

[︂
𝑥3

(︀
𝛽2
1

(︀
𝑤 − ln2 𝑤+

+ ln(𝑤) + 1)− 𝛽0𝛽2(𝑤 + 1))

]︂
, (38a)

𝑥3 = −
1

2𝛽3
0𝑤

4
𝑥4

[︂
𝛽2
0𝛽3

(︀
𝑤2 − 1

)︀
+ 𝛽3

1

(︀
(𝑤 + 1)2 +

+2 ln3 𝑤 − 5 ln2 𝑤 − 4(𝑤 + 1) ln𝑤
)︀
−

− 2𝛽0𝛽2𝛽1(𝑤(𝑤 + 1)− (2𝑤 + 3) ln(𝑤))

]︂
, (38b)

𝑥4 =
1

6𝛽4
0𝑤

5
𝑥5

[︂
− 2𝛽2

0

(︀
𝛽0𝛽4

(︀
𝑤3 + 1

)︀
−

−𝛽2
2(𝑤 − 5)(𝑤 + 1)2

)︀
− 6𝛽0𝛽2𝛽

2
1

(︀
−

(︀
2𝑤2 + 5𝑤 + 3

)︀
×

× ln𝑤 + (𝑤 − 3)(𝑤 + 1)2 + 3(𝑤 + 2) ln2 𝑤
)︀
+

+𝛽4
1

(︀
−6

(︀
𝑤2 + 5𝑤 + 4

)︀
ln𝑤 + (𝑤 + 1)2(2𝑤 − 7)−

− 6 ln4 𝑤 + 26 ln3 𝑤 + 9(2𝑤 + 1) ln2 𝑤
)︀
+ 𝛽2

0𝛽3𝛽1 ×

×
(︀
4𝑤3 + 3𝑤2 − 6

(︀
𝑤2 − 2

)︀
ln𝑤 + 1

)︀ ]︂
, (38c)

𝑥5 = −
1

12𝛽5
0𝑤

6
𝑥6

[︂
𝛽5
1

(︀
6
(︀
3𝑤2 + 26𝑤 + 23

)︀
ln2 𝑤+

+(𝑤 + 1)3(3𝑤 − 17) + 12 ln5 𝑤 − 77 ln4 𝑤+

+(22− 48𝑤) ln3 𝑤 − 2(𝑤 + 1)2(4𝑤 − 11) ln𝑤
)︀
+

+3𝛽3
0

(︁
𝛽0𝛽5

(︀
𝑤4 − 1

)︀
− 2𝛽2𝛽3

(︀
−𝑤2 + 𝑤 + 2

)︀2)︁
+

+𝛽2
0𝛽3𝛽

2
1

(︀ (︀
9𝑤2 − 22𝑤 + 23

)︀
(𝑤 + 1)2 +

+6
(︀
3𝑤2 − 10

)︀
ln2 𝑤 − 2

(︀
8𝑤3 + 15𝑤2 − 7

)︀
ln𝑤

)︀
−

− 6𝛽0𝛽2𝛽
3
1

(︀
(𝑤 + 1)2

(︀
2𝑤2 − 8𝑤 − 3

)︀
+

(︀
6𝑤2 + 26𝑤 + 27

)︀
×

× ln2 𝑤 +
(︀
−4𝑤3 + 2𝑤2 + 30𝑤 + 24

)︀
ln𝑤−

− 4(2𝑤 + 5) ln3 𝑤
)︀
+ 𝛽2

0𝛽1

(︀
2𝛽0𝛽4

(︀
−3𝑤4 − 2𝑤3 +

+2
(︀
2𝑤3 + 5

)︀
ln𝑤 + 1

)︀
+ 𝛽2

2(𝑤 + 1)
(︀
9𝑤3 − 29𝑤2 +

+
(︀
−8𝑤2 + 44𝑤 + 100

)︀
ln𝑤 − 37𝑤 + 1

)︀ )︀]︂
. (38d)

The solutions for 𝑆𝑛(𝑛 = 3 ... 6) in (4) are as follows:

𝑆3 = −
1

8𝑤2

[︂
𝜒9

(︀
𝑤2 − 1

)︀
− 2𝜒7𝜒5

(︀
𝑤2 + 𝑤 − ln(𝑤)

)︀
+

+𝜒3
5

(︀
(𝑤 + 1)2 − ln2 𝑤

)︀]︂
, (39a)
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𝑆4 =
1

24𝑤3

[︂
− 2𝜒11

(︀
𝑤3 + 1

)︀
+ 𝜒9𝜒5 ×

×
(︀
4𝑤3 + 3𝑤2 + 6 ln(𝑤) + 1

)︀
+ 2𝜒2

7(𝑤 − 2)×
× (𝑤 + 1)2 − 6𝜒7𝜒

2
5

(︀
(𝑤 − 1)(𝑤 + 1)2 + ln2 𝑤−

− (𝑤 + 1) ln(𝑤)) + 𝜒4
5

(︀
(𝑤 + 1)2(2𝑤 − 1)+

+2 ln3 𝑤 − 3 ln2 𝑤 − 6(𝑤 + 1) ln(𝑤)
)︀]︂
, (39b)

𝑆5 = −
1

48𝑤4

[︂
𝜒13

(︀
− 6𝜒7𝜒

3
5

(︀
(𝑤 + 1)2 ×

×
(︀
2𝑤2 − 2𝑤 − 1

)︀
+

(︀
−2𝑤2 + 2𝑤 + 4

)︀
ln(𝑤)−

− 2 ln3 𝑤 + (2𝑤 + 5) ln2 𝑤
)︀
− 3 (2𝜒7𝜒9 ×

×
(︀
𝑤4 − 𝑤2 + 2𝑤 + 2

)︀
− 𝜒13

(︀
𝑤4 − 1

)︀)︀
+

+𝜒9𝜒
2
5

(︀
9𝑤4 + 8𝑤3 − 6

(︀
𝑤2 − 1

)︀
ln(𝑤)+

+12𝑤 − 18 ln2 𝑤 + 11
)︀
+ 𝜒5

(︀
2𝜒11

(︀
−3𝑤4 −

− 2𝑤3 + 6 ln(𝑤) + 1
)︀
+ 𝜒2

7(𝑤 + 1)×
×

(︀
9𝑤3 − 5𝑤2 − 13𝑤 + 24 ln(𝑤) + 1

)︀)︀
+

+𝜒5
5

(︀
(𝑤 + 1)3(3𝑤 − 5)− 3 ln4 𝑤 + 10 ln3 𝑤+

+12(𝑤 + 1) ln2(𝑤)− 6(𝑤 + 1)2 ln(𝑤)
)︀)︀]︂

, (39c)

𝑆6 =
1

240𝑤5

[︂
− 10𝜒7𝜒

4
5

(︀
(𝑤 + 1)3 ×

×
(︀
6𝑤2 − 12𝑤 + 7

)︀
+

(︀
6𝑤2 − 3𝑤 − 9

)︀
ln2 𝑤+

+6 ln4 𝑤 − 2(3𝑤 + 13) ln3 𝑤 − 6(𝑤 − 4)×
× (𝑤 + 1)2 ln(𝑤)

)︀
+ 𝜒6

5

(︀
3(𝑤 + 1)3

(︀
4𝑤2 − 7𝑤 − 1

)︀
+

+30
(︀
𝑤2 + 5𝑤 + 4

)︀
ln2 𝑤 + 12 ln5 𝑤 − 65 ln4 𝑤−

− 30(2𝑤 + 1) ln3 𝑤 − 10(𝑤 + 1)2(2𝑤 − 7) ln(𝑤)
)︀
+

+𝜒9𝜒
3
5

(︀
30

(︀
𝑤2 − 5

)︀
ln2 𝑤 + 3(𝑤 + 1)2

(︀
16𝑤3 −

− 17𝑤2 + 8𝑤 + 1
)︀
− 10

(︀
4𝑤3 + 3𝑤2 + 18𝑤 + 19

)︀
×

× ln(𝑤) + 120 ln3 𝑤
)︀
− 2

(︀
6𝜒15

(︀
𝑤5 + 1

)︀
+ 2𝜒3

7 ×
× (𝑤 + 1)3

(︀
3𝑤2 − 9𝑤 + 13

)︀
+ 2𝜒11𝜒7

(︀
−6𝑤5 +

+5𝑤3 + 15𝑤 + 14
)︀
− 3𝜒2

9

(︀
2𝑤5 + 5𝑤2 − 3

)︀)︀
+

+𝜒2
5

(︂
𝜒2
7

(︀
3
(︀
24𝑤3 − 33𝑤2 + 2𝑤 + 39

)︀
(𝑤 + 1)2 −

− 20
(︀
𝑤3 − 9𝑤2 − 15𝑤 − 5

)︀
ln(𝑤)−

− 60(3𝑤 + 4) ln2 𝑤
)︀
+ 2𝜒11

(︀
10

(︀
𝑤3 + 1

)︀
ln(𝑤)+

+3
(︀
−6𝑤5 − 5𝑤4 + 10𝑤 + 9

)︀
− 60 ln2(𝑤)

)︀)︂
+

+𝜒5

(︀
3𝜒13

(︀
8𝑤5 + 5𝑤4 + 20 ln(𝑤) + 3

)︀
−

− 2𝜒7𝜒9(𝑤 + 1)
(︀
36𝑤4 − 21𝑤3 − 14𝑤2 + 29𝑤+

+30(𝑤 − 4) ln(𝑤)− 14)
)︀]︂
. (39d)

We also employ, in evaluating the contributions of Eq. (31e)
to 𝐿, the result
∞∑︁

𝑛=4

𝑥𝑛

(︂
1

2
+

1

3
+

1

4
+ ...+

1

𝑛− 2

)︂
=

=
1

2
(𝑥4 + 𝑥5 + 𝑥6 + ...) +

1

3
(𝑥5 + 𝑥6 + ...) =

=
1

2

𝑥4

1− 𝑥
+

1

3

𝑥5

1− 𝑥
+ ... = −

𝑥2

1− 𝑥
(𝑥+ ln(1− 𝑥)). (40)

From this, we see that if 𝑛 ≥ 4(︂
1

2
+

1

3
+

1

4
+ ...+

1

𝑛− 2

)︂
=

=
−1

𝑛!

𝑑𝑛

𝑑𝑥𝑛

⃒⃒⃒⃒
𝑥=0

𝑥2

1− 𝑥
(𝑥+ ln(1− 𝑥)). (41)
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ПРО ВИЗНАЧЕННЯ
БIЖУЧОЇ КОНСТАНТИ ЗВ’ЯЗКУ
IЗ ЕФЕКТИВНОЇ ДIЇ

Р е з ю м е

За наявностi конформной аномалiї отримана формула для
ефективної дiї градiєнтних теорiй в присутностi сильного
фонового поля через бiжучу константу зв’язку. Цей резуль-
тат дозволив знайти нове розкладання для бiжучої кон-
станти зв’язку i порiвняти його з вiдомими розкладання-
ми, отриманими прямим iнтегруванням диференцiального
рiвняння для цiєї константи.
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