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ELECTROMAGNETIC AND GRAVITATIONAL FIELDS

The relativistic theory of Cox’s scalar non-point particle with intrinsic structure in the Proca
approach in external uniform magnetic and electric fields in the Minkowski space is devel-
oped. A generalized Klein—Gordon—Fock equation is derived and is detailed in the presence of
uniform magnetic and electric fields. The extension of this formalism to the arbitrary Rie-
mannian space-time background is given. For a special class of curved metrics allowing for
the existence of nonrelativistic wave equations, a generalized Schréodinger-type quantum me-
chanical equation for Cox’s particle is derived. This generally covariant formalism is suitable
in the presence of external magnetic and electric fields. It is shown that, in the most gen-
eral form, the extended first-order Proca-like system of tensor equations contains non-minimal
interaction terms through the electromagnetic tensor Fop and the Ricci tensor Rag.
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1. Cox’s Wave Equation

In 1982, W. Cox [1] proposed a special wave equation
for a scalar particle with a larger set of tensor com-
ponents than the usual Proca approach includes: he
used the set of a scalar, 4-vector, and antisymmet-
ric and (irreducible) symmetric tensors, thus starting
with the 20-component wave function. Such a more
general theory for a scalar particle has attracted no
significant attention till now. In the present paper,
some further development of this theory will be pre-
sented, both in the Minkowski space and in arbitrary
curved space models. In addition, we will elaborate
some aspects of description of a Cox particle in ex-
ternal magnetic and electric fields.

First, let us consider the system of Cox’s equa-
tions [1] in the Minkowski space. We will use a Proca-
like generalized system obtained after the elimination
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of two second-rank tensors (applying the notation:
Dy = ihdy — £ A, and p = mc; note the presence of
an additional parameter A\ which is associated with
a non-trivial intrinsic structure of the scalar particle)
from the initial system of Cox’s equations

(16l + \F,PY®s = D,®, D®, = pd, (1)
or, shorter,
AS®s = D,®, D°®, = pud. (2)

The first equation in (2) can be multiplied by the
inverse matrix (A~') . So, we obtain

(jxil)pal)oz(p = q)p7 qu)p = ‘UJ(p (3)

From (3), one derives a generalized Klein-Gordon—

Fock equation for the scalar function ®:

(uDP(A™Y),*Dy — pi?] @ = 0. (4)
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Equation (4) can be rewritten in the form
{u(A™1),*DP Do +
+p [ih0? (A1) ,*] Do — p*} @ = 0. (5)

The inverse matrix A~! is of primary importance
for the form of the generalized Klein—-Gordon—Fock
equation (5). We are to find an explicit form of the
matrix A~!. The calculation in this section is valid
only in the Cartesian coordinates of a flat space; a
generalization to the case of any curved space (or
curvilinear coordinates in the flat space) will be given
below. Let us introduce the notation

H —€1 —€z —e€3

. BY _ —e€1 1% —b3 b2
A=(AS) = —ez by p o —b1 P (6)
—e3 —by b1 p
The inverse matrix is defined by the formula
MO(] 7M10 +M20 7M30
i L =Mt My My MY
det A ‘i‘]\4()2 _M12 +M22 _M32 '
_MOS —|—M13 —M23 —|—M33

The determinant of the matrix A and the minors are

det A = pt —pi? (e2 — b2) —(eb)%  M,° = 3+ ub?
Mt =P 4 p (0] — €5 — €3),
My? =1 + p (b3 — €f — €3),

M5® =y + (b5 — ef — €3),

= —pPe; — pu(exbs — esby) — by (eb),
Ml0 = —pler +p (eabs — e3bs) — by (eb),
My? = pey + pu(e3by — e1bs) + ba(eb),
M,°% = p?es — ju(esby — e1bs) + ba(eb),
My? = —pes — ju(e1by — eaby) — bz(eb),
M30 = —pPes + p(e1by — egby) — bz(eb),
M,? = b3 — pu(e1es + biby) — es(eb),
Myt = — b3 — pu(e1ea + bibo) + es(eb),
M,® = p?by + p(eres + bibs) — ex(eb),
M, L= —ﬂ2b2 + u(eres + bibs) + ea(eb),
M,? = 1i*by — i (eaes + babs) — ey (eb),
My?% = — by — pu(ezes + babs) + e (eb).

In the tensor notation, the inverse matrix can be pre-

sented as follows:

(A_l)ozﬁ = . 2 X

©2 (,LLQ _ /\72FPUFUP) )\ <iFaﬁFBXOL)
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2 A 2 A
x{u@ — 2F;gf’) 82—\ (u — 2FP”FU”> X
X F.,P + u)2F,°F % — \3F,°F_°F; f”}. (7)

Let us consider two simple cases in detail. For the
electric field Ay = —Ex, Eq. (4) yields

D3 — (1-T°E?) D — in " TE? -
~T2(ED)? — 42 (1 - I2E?) }<I> =0. (8)

For the magnetic field A = %x x B, we arrive at
(for brevity, we use the parameter A\/u =T)

|(1+17B?) D§ — D +ih “I'B? -
~I2(BD)? - 42 (1+ F2BQ)] o = 0. (9)

2. Calculation of the Inverse Tensor
(A™1)_P in the Case of the Riemannian Space

For simplicity, we will assume the metric tensor to
be diagonal; however, the final results will be pre-
sented in the generally covariant form, so they are
valid for any metric (including non-orthogonal) coor-
dinate system of space—time).

In a diagonal metric, the following property of the
electromagnetic tensor Fi,g holds:

F00:0:>FOO:0,
F22:0:>F22:0,

F11:0:>F11:0,

F33:0:>F33:0
We start from the explicit form of the tensor (F,”):

(e

0 F,' F,2 F,?

5 F° 0 F? F?
(Fa ) = 0 1 307
F° F,' 0 F,
F° F,Y F? 0
0 g11E1 922E2 933E3
_ —gOOE1 0 92233 _93332
—gOOE2 _gllB3 0 93331
—gOOE3 gllB2 _92231 0

Below, we will use the notation
gllEl _ Eﬂ7 922E2 _ EQ, g33E3 — E3’ goo =h
922933B1 :Bl, 93391132 :B27 911922B3 :B3.

)
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Let us compute the convolution of two tensors
(FO)(F") =
—hElEl —(EoB? — E3B2)
~h(E?Bs — E®By) —hE\E' — ByB? — B3B3

—h(E3B, — E'Bj)

—h(E'By — E*By) —hE'E; + B, B?

Next, we compute the convolution of three tensors

(F,")(F,")(F,%) = = (¢"E;E' + BiB") x

0 E! E? E3
y g F, 0 ¢22By; —g%B, N
—gOOE2 —gnt 0 933B1
7900E3 91132 7‘92281 0
S AN o o
+B; E; :goog2 _911900Eg g9 EO _53330051-
_ 003 1002 _ 22,00 0
g gg g—-g

Then we compute the convolution of two tensors in
two pairs of indices

1 . .
3 (F,’F3*) = — (¢"E;E' + B;B") = I(x).
Let us specify the dual electromagnetic tensor

(F*)™# = %eaﬂpa(x)Fpg, 123 () = e(z),

cBpo (z) = elaBpo] (z),
where
1 1
6(3’;) = =
V—detg  /—900911922933
_ /_googngzzgs:%.

Then we find the explicit expressions for components
of the dual tensor:

(FX)Ol = 60123($)F23 = €($)F23 = e(x)Bl,
(Fx)ol = 9006(30)31 = —v—ggllBla
(FX)1O = —gne(x)B1 =+v—g "B,

(F¥)%2 = O (2) Fyy = () Fay = e(2) B,
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—~hE'Es + BiB?> —hFE>,E? — B1B! — B3B3

—(E3B' — E,B3)

—(E\B? — E,BY)
—hE,E? + B'B,

—hE,E® + B'B;
_hE,E® + B2B;

“hE%E; + BoB® —hF3E3 — B,B' — ByB?

(F)o? = gooe(z) By = —/—gg**B?,
= —gaoe(x) By = +/—gg"" B,

= 2(2) Py = e(x) Fiz = €(2) By,

/—\
eS|
X
—
[\v]
[e=]
|

(FX)O?) — gooﬁ(x)Bg = _\/_79933B37
(Fx)so = —gs3e(x)B3 = +v/—=99"° B3,
= @ (2)For = e(2)For = (@) By,
2’:922655 L= — *ggg‘ :
(F7),° (z)E Nl
(FX)SZ = —g33€(w)Ey = +v/—gg"¢**E",
= 10%(2) Foo = €(x) Fo2 = €(x) B2,
(FX)31 = 933€($)E2 = _\/jggoogllEQ’
(FX)13 = —gll€(x)E2 = +\/jggoog33E2,
(F¥)12 = 12033 Foy = () Fos = €(x) B,
(FX)12 = glle(x)E?) = _\/jggoogQZE;}’
(FX>21 = —gQQe(m)E;; = +\/fggOOg11E3.

So, we obtain

T (F,) = 350 {-v=g %

0 gllBl g22B2 g33B3
y 790031 0 900922E3 7900933E2
_ OOBQ _ 500 11E3 O 00 33E1
_QOOBS gOO gllE'Q _ 00 22E1 g gO
g gg gg
0 E? E? E3
x| B0 9T Bs —g B |
—gooEz —91133 . 0 g>”B1|[’
-9k g By —g**Bi 0
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let us consider the expressions for diagonal elements
of this product:

1
_ /=700 11 22 33/ py _ _ .

(00)—\/719 999" (EiB;) 1\/_—g(Esz),
(11) = _\/F(EiBi)7 (22) = —ﬁ(EiBi),
(33) = _ﬁ(EiBi)-
Thus, we arrive at the relation
Loy oy L o o
TENED) = ~ = (EiB) = J(a),

Now, we can obtain the following expansion for the
convolution of three tensors:

F,’Fy°F,% = I(x)F,” + J(z)F}°.

Here, the notation I(z), J(x) for two invariants of the
electromagnetic field is used.

Then we can easily find the explicit form of the
convolution of four tensors

(F,F,XF,%)(F2) = I(«)F,"F," -
1
v—9
At the same time, the last relation defines the min-

imal polynomial of the matrix (F,?). Therefore, the

tensor (A™1) 7 inverse to A,* = ué,* + AF,® should
be constructed in the form

—J(x) (E;B;)d.P = I(x)F,°F, " + J*(z)6,F.

(AN = X6, + X F, P+ X3 F,PF, P+ \,F,*F,°F,".

The identity

A (AT = {uds® + NF, ) x

x {A10,” + Ao F,P + \sF,"F,? + \\F,"F,XF, P} =
= M8,  + Mo F, P+ pXsF, P F, P+ p\yF,PF,XF, " +
+AMLE,? + AN F,“F,” + A\\sF,F,"F,” +
+ANF,“F,PFXF P =5,°

yields the linear non-homogeneous system of equa-
tions for the parameters A1, Ao, A3, Ag:

A 4 A J2z =1,
488

A+ pure =0,

)\)\2 + ,LL/\3 + )\)\4](1‘) = 0, )\)\3 + ,LL/\4 =0.

Its solution is

N = A

1= 12(p2 — N2I) — M J2’

M@= XD)

2= 12(p2 — N2I) — M g2’

A = i

3= (2 (2 — N21) — M2
3

A= — A

p2(p% — N21) — M2

Thus, we arrive at the following explicit represen-
tation of the inverse tensor:

1
A =
( )a p2(u2—)\21)—)\4=]2x

i (12 = X21) 63 = A (42 = N1) F, P +

o 2 o 5
+UNFL O F, P — \F,°F,°F, ﬁ}.

Using F,°F °F;® = IF,? + JF? we find a sim-
pler representation (the symbol x stands for a dual
tensor)

1
A P =
( )a IMQ(HQ_)\QI)_)\4J2X

x {u (42 = NT) 6% — \uPF,° +

FUNPFLOF P A3J(x)F;ﬁ}. (10)

Substituting the above tensor (A1), % into Eq. (5)
for a scalar function, we obtain (note that D, =
=ihV, — £A,)

u[u (42 = N21) 68 — Au2F, P +

+UNETF P )\3JF55} DDyd +

. p(p? — N°1) A?
A af _ FoB
Hibpdet AVa ( det A det A
A3J U2
_ FXaB R Foachrﬁ
det A + det Agpa x

x Dg® — i det A® = 0. (11)

Let us specify the separate terms under the symbol
of covariant derivative. The first term is reduced to
the ordinary derivative of a scalar. The second and
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third terms are the 4-divergences of the antisymmet-
ric tensor, and the fourth term is a 4-divergence of
the symmetric tensor. They are calculated, by using
the known formulas

o) = (el

1
Va(S%) = (
( B \/jg
These results can be significantly simplified in the
case of a purely magnetic or purely electric field.
Magnetic field:

1
Dav _gsaﬂ> B i(aﬁgpa)spa

1
A = —
(A 12— X))

x{u (42 = N21) 68 — MNuPF, P + u)2F,° F, }

I(z) = —(B:B"), J(z)=0,
0 0 g 0 " 0

BY __ 0 0 Bg —g BQ
(Fa ) 0 79113 0 g 3By |’

0 gllB _922131 0
(Fo"F,")

0 0 0 0
|0 —=ByB2— B3B3 BB, B'B;
=lo B1B% —-ByB'- B3B3 B2B;

0 B, B3 ByB3 —B,B'— B,B?

Electric field:

(A, = W2 (% — 31 X

x {,L(;f A28 — MEFP 4+ u\2E.OF, 5},

I=—(¢"EE"), J=0,
0 E! E? EB
00
gy _|—g°E; 0 0 0
(Fa ) _QOOEQ 0 0 ol
—¢®E; 0 0 0
(F,°F,") =
—E'E; 0 0 0
00 0 —E\E' —F\E? —E,FE?
o 0 —E'Ey, —E3E? —E,E3 ]

0 —E'E; —E?E3; —FE3E3—
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3. Non-Relativistic Approximation
of the Generalized Wave Equation

The non-relativistic approximation of any wave equa-
tion can be substantial for its physical interpreta-
tion. Let us solve this task for Cox’s particle (we use
the general approach developed in [3]). We start from
the system of equations in the form

K" (iva — %Aa> o= %@p,
(Na - ;Aac) P = %@. 12

Equations (12) can be rewritten in a form more con-
venient for practical calculations:

C

K,° (z'aa _ %Aa> o= %(I)m

i 0 e mc
V=g— —=A,) ¢*PDs = —0.
(«/—g ozoV 9" ¢ )g P
Considering the space-time models with the met-
ric dS? = c?dt? + gpi(x) dax*dz!, let us perform the
(3 + 1) splitting in (13):

(13)

(i — < _° me
K, (280 ChAO) o+ K, (zak hAk) @ = "E0,
K, (i00 — EAO) @+ K, (10— —A) @ = S0,

;0 e (14)
V- —A P
(5 o o) o+
V=g —A P, = "5,

(V Dk k) T h

Next, let us separate the rest energy by the substitu-

tions
2 2

® = exp (—img t) ®, Py = exp (—im; t) by,
%t

P, — exp (—’Lm; ) P;.

As a result, relation (14) yields

Ko (ih0, + me* — eAg) @ +

+ Ko ¥ (ichoy, — eAp) ® = mc®®y, (15)

0 (zh@t + m02 — GA()) P+
+ Kjk (ichOy — eAy) ® = mc*®;, (16)
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ih 0v—g
V—g Ot

V=g — eAk> gqu)j =mc?®.

(zh@t + ch + — €A0> (I)O —|—

ich 0
—_— 17
+(Fom "
Using (16), we now exclude the vector (non-dynamic)
variable ®;:

KOO (ih@t +mc? — eAO) P+

-|-Kok (ichdy — eAp) ® = mc?* @y,

kj
X [Kjo (ih0y +mc® — eAg) +

+K; !(ichdy, — eAl)] ® = mc*®. (19)

We introduce the notation

zh(?t — GA() = Dt, zch@k — (:’Ak = CDk;,
ich 0 o

— Vg —ed, = .

\/jg 3xk g €A c Dk

Then Egs. (18) and (19) can be written as follows:

(20)

KOO (Dt + mcz) d + KOkCDk(I) = m02<1>0, (21)

ih 0v—g kj
V—g Ot

1
x (Kjo (D¢ + me?) + Klel) ® = mc*®.
C

9

Do+ Dy =— X
m

(Dt +me? +
(22)

Following the method described in [3], we introduce
the small component ¢ and the large component U:
O = (V+¢)/2, o= (¥ —p)/2. Substituting these
relations in (21), (22), we obtain

v v
K,"D, +SO+(K0071+1)mc2¥+
v v —
+ K, Dy, ;_SD = mc? 5 ('0, (23)
ih O—g\ V¥ —¢p o g¢gM

D ? —
(H—mc +\/Tg ot B +ka><

1 LG L4
X (KjO(Dt+mc2)+Kle;‘2“0:mc2;‘P (24)

C
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From whence, neglecting the small component ¢ in
comparison with the big one ¥, we have

(De+ (5,0 = 1) (D2 +me?) +

v
+ Kochk> 5= —mc?p, (25)
/] o gkj

th 0v/—g
D, + il
< t + = ot 2+Dk

1 v
X (CKJ-O (Dt + ch) + Klel> 5 = mc2gp. (26)

— X
m

We assume that the energies of nonrelativistic par-
ticles are much smaller than the rest energy, i.e., we
apply the approximation (D; + mc?) ~ mc?. As a
result, the first and second equations are simplified:

(Dy + (K,° — 1) me® + Ky *eDy,) g = —mcyp, (27)

ih Oy/—g\ ¥ o gM
D — —
<t+\/jg +ka><

ot 2
X (mCKjO +Klel)

|

(28)

= mc2p.

With the help of (27), we can eliminate the small
component ¢ from Eq. (28). So, we obtain

ih 0y—g 1
D _
( o=y ot 2

_o (7gkj) KlD KO i
=Dk om [ J 1 +me j] :

~—

[(K,°— 1)m02+Kochk]) U=

(29)

With the substitution ¥ = (—g)~'/* ¥, Eq. (29)
takes a simpler form

1 o .
Dy = o— D (—9™) (K;'Dy + meK,;°) ¥ —

- ((Ko" = 1) me* + K eDy) w.

5 (30)

This is the non-relativistic Schrédinger equation for
Cox’s particle.

Let us specify the case where only a magnetic field
is present. Then the Schrédinger equation (30) be-
comes much simpler:

1 o .
DU = 5 Dr (-g™) K,'Dv.

(31)
Let us detail the operator K; 'Dy:
K,\'D;=K,'D, + K,?>Dy +

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 6
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1
W+ N2BBi

x [;fDl + p (BoD? — B3D?) + )\QBl(BiDi)},

+K,?Ds =

K,'Dy = K,'Dy + K, 2Dy +

L

,uz + >\2BZBZ

x [#2Ds + pA (BsD' ~ B D*) + \*B*(BD) |,

+K23D3 =

K;'Dy = K;'Dy + K32Dy +

L

,uz + >\2BZBZ

x [#2Ds + pA (BID? = BD') + N*B* (B:Dy) |

+K33D3 =

Thus, we have (we use the notation I' = \/p)

\ 1
=K,'Dj= ————

D=t P= e

x [Dl +T (B2D? — B3D?) + FQBI(BiDi)}a

Do= KDy = — %

T I BB (32)
x {Dg +T(BsD' — B,D?) + F2BQ(BD)],
Dy=Ky'Dj= — 1

M B W YN 2T

x| Ds +T (BiD? = BoD') + T2 B*(B;Dy)|.

Therefore, Eq. (31) can be written in a compact form
as follows:
1 o . *

DV = —— Dy g™ (x) D; V.

o (33)

In the case of the Cartesian coordinates of the flat
space, the metric tensor is trivial, and the equation
is simplified to the form

D —I'B x D + I'’B(BD)
1+1I2B?

D,V = ﬁD ( ) . (34)

If the magnetic field in the flat space is uniform,
Eq. (34) can be simplified still more

1 1
DWW =———

T om1rreBe "
x (D> —TD(B x D) + I'*(BD)? V. (35)

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 6

Due to the identity D(B x D) = +i<£2B?, Eq. (35)
can be represented as follows:

11
D = T
h
x (D2 — B2 + F2(BD)2) . (36)
C

Note that the presence of the term i(eh/c)I'B?
means that the parameter I' must be purely imagi-
nary. The explicit form of (36) also implies that there
is a steady shift of all levels by the value determined
by the amplitude of the magnetic field and the pa-
rameter ¢I".

Now, we consider the case of a uniform electric
field. The operator K 'D; + pK; 0 is

1
l 0 _
Ky Dot nbs™ = o *
x [ Dy + T3(EE) Dy + T2E(B'D,) + uT'Ey) |
1
Ko Dy pk, = ——
e B T o
x [Dg L T2(E,E)Dy + T2Eo(ED;) + MFEQ)],
1
KDy pk,0 = ——
s DLt = e *

x [Dg Y T2(EE) Dy + T2E4(ED;) + urEg)].
Thus,

(K;'Dy+ pK,;°) = ﬁ x

x| Dj + T*(E;E')D; + T2E;(E'Dy) + uT'E .
So, we have the representation

(KOO -1) me? + KojCDj =

_ IQEZE'L/J/ + FEij
1+ 2B

Thus, we obtain
\ _ T2EE'+ TED; 1
—c _ =
¢ 2(1+I2E,E7) 2m
1+T2E,F¢

lo)k (—gkj) X

X Dj—|—

£ (39)

this is the Schrédinger equation for Cox’s particle in
the electric field.
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4. Non-Minimal Coupling
to the Curvature of Space—Time
in the System of Cox’s Equations

We turn to the initial complete Cox’s system of equa-
tions [1], which includes the symmetric and antisym-
metric tensors:

MDPos — pud =0,
A Dp® + )\ZDQ(I)[ag] — )\gDa@(ag) —uds =0,
A5 (Da®p — D®a) — p®lag) =0,

N 1
A3 <l)a@5+Dﬁ@a—2gaﬁDp(I);) _,U(I)(aﬁ) =0,

(40)

where the auxiliary numerical parameters A1, Ao, and
A3 subject to the additional constraints

)\2)\; - )\3/\?; = 0, )\1>\T - g/\3/\§ = 1; (41)

symbol D, denotes the derivative, which takes the
presence of external electromagnetic and gravita-
tional fields into account:

Do = ihVa — SA,, p= Me.
C

With the help of the third and fourth equations in
(40), let us exclude the tensor components

p=t (A5(Da®p — Dp®a)) = Plag),

L 1 , (42)
poA3 (Da®s + Dg®,, — §gaﬁD o, = (I)(aﬂ)-

In two other ones, we have
MDP®s — pd =0, (43)

AN Ds® + A2 D {/\3 (Do®p — Dﬁ%)} -

—A3Dou N (Dacbﬁ + Dg®, — ;gaﬁpﬂcbp) -
—pu®g = 0.

Equation (44) can be presented as

N Dg® — 17t (Mo A3 + A3A\5) DYDg®,, +

+ %M—lAg)A;DﬂDPq)p — u®s = 0. (45)
In view of (41), one can use the identity

(A2A3 + A3A3) = 2A3A3.
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Hence,

N;Dg® — =1 2X3\5 D, D@ +

+ %/1,_1)\3)\§D5Da¢‘a — udg = 0. (46)
We use the identity

DoDg®* = DgDy®* + (DoyDg — DgD,) * =

= DpDad” + 2 (%%Faﬁ ~ Rap) 0. (47)

Then Eq. (46) can be converted to the following one:
NI Dp® — 1 2X3\] [DﬂDacpa +

+ 12 (—i%Fa[g - Raﬁ) @a] +

1
§u_1A3A’§DﬁDa(I>°‘ —uds =0

or

+

N[Dp® + i 20 Aj 2 (i Fp + Rag) B -

C

3 — * [e%
— 5k "N A\;Dg (Do @) — udps = 0. (48)

With regard for Eq. (43),

I
Do = o
A

we obtain

AN Dp® + 1225 A5 2 (z'hiFaﬁ + Rag) 1 @°
C

- gAg)\;Dﬁq> — pAPg =0. (49)
With the use of the second condition in (41)
AMAT — g/\g)\g =1,

Eq. (49) can be simplified to the form

Dg® + p~ 1223 5h% x

x (i%Faﬁ + Raﬁ) ALY — By = 0. (50)
One should remember the additional equation (43)
MDPdy — pd =0. (51)
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The parameter A\; can be included in the designa-
tion of the vector components \i®3 — P3. So, we
arrive at the extended Proca equations

DP®g — pu® =0,

D — by — it (@258 (S Foe + iR @“(52)
L — p ﬁ*lﬁc( 33)<% Ba 1 ﬁa) =0.

These equations should be compared with those, from

which we started in Section 1:

DP®g —pu® =0, Dg® — puds — A\F,®* =0; (53)

they partly correlate if (note that A is an imaginary

number)

h2£

A= —
Me he

(2iA3A3). (54)

Obviously, system (52) is more general than (53),
it involves the non-minimal interaction of Cox’s
scalar particle with the external geometric back-
ground through the Ricci tensor.

Equations (52) can be rewritten as

DP®g — p® =0,

ke o (55)
Dﬁfb—A Fga—FZ?nga O — udsz = 0.

In the absence of an electromagnetic field, Egs. (55)
are simplified (parameter i)\ is a real-valued one)

DP®s = pud,

. (56)
Ds® = (A R (0) + g ) @

This is a purely geometric modification of the theory
of a scalar particle in Cox’s approach.

5. Calculation of the Tensor
(A™1)_P with the Ricci Tensor Included

We write Eq. (56) in the form (A* = —\; temporarily,
the coefficient % will be a part of the designation of
the Ricci tensor)

DP®y = 1u®,
(57)
[Wsaﬁ +A(FP + z‘Raﬁ)]@B ~ D,®.
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With the use of the notation

AL =psP + N (F,” +iR,1), (58)

Eq. (57) can be written as

®,=(A"1),"Da®, D'®,=pud. (59)

This yields a generalized scalar equation

[DP (A—l)p“ (2) Dy — p]®(z) = 0. (60)
Since the characteristic equation

G' = go+ 91G + 92G* + g3G° (61)

for the matrix F,” +iR_? = G, allows us to express
the fourth power of the matrix G through I, G, G2,
and G2, we can look for the inverse matrix in the form

(A71),% =20+ MG+ XG” + X362 (62)
From the equation AA~! = I, we obtain
I=(p+AG) (Mo + MG + XG® + X3G?) =
= pAo + A1 G + praG? + X3 G +
+ MG + M G? + AMG? +
+ M3 (g0 + 91G + 92G* + g3G®).
So, we have a linear system of equations
I puAo 4+ Asgo =1,
G: ,U,)\l + )\)\o + )\)\391 = 0,
) (63)
G*: /J)\Q + )\)\1 + )\)\392 = 0,
G UA3 + A + Ad3g93 =0
or, in the matrix form,
l;\ 00 ﬁgo i\\o 1
p 0 g1 110
0 A Ag Xo| =0 (64)
00 X pu+Ags/ |23 0
Its solution is
N (1 + 12 Ags — pA%g2 + X3g1)
Ot — 1Bhgs + 12XN2g: — pA3g1 + Ngo”
v — (1) = pXPg3 + Ng2)
Pt — iBAgs + 1P N2gs — pNg1 + Ngo
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— (A2 4+ Ng3)
—pt = pPAgs + pPA2g2 — pAPgr + Mg’
/\3
—pt — pu3Ags + pu2A2gs — pA3g1 + Mgo

Ay =

A3 =

We introduce the new notation

go =P4, 91 =0DP3, G2=DPpP2, 93 =DP1,

(65)
G* = p1G® + p2G? + p3G + pa.
Then )
- 13+ 2Apr — pA?pa + A3ps
O ph B Apr — 12N2ps + u\Pps — Apy
M= — 1A — i, N*p1 + Npo
pt 4 p3Apr — p2N2pa + pA3ps — Nipy” (66)
\y — pA? + Npy
2T WA AL — 12N + pXPps — Nipy
)3
A3z =

pt + A1 — pEN%pa + pA3ps — Nipy
We recall that
(A% =X+ MG + AG? 4 A3GP.

Degrees of the matrix G can be associated with the
following invariants (see Chap. IV in [5]):

Sp(G) = g1 + g2 + g3 + ga = s1,
s1 =G (z),

Sp(G?) = g1 + 65 + 93 + 91 = s,
52 = G (2)G, (),

Sp(G®) = g7 + g5 + g3 + 9§ = s,
83 =G, (7)G,7 (2)G," (),
Sp(G*) = g1 + 95 + 93 + 91 = 54,
s1= G, ()G, (2)G,7 (2)G, (x).

p

Here, the quantities g1, ..., g4 stand for four eigenval-
ues of the matrix G.

The invariants s; and p; obey the Newton recur-
rence formulas (see [5]):

P1 =81 = Sp(G)7
1 1

p2 = 5(52 —p1s1) = 3 [Sp (G?) *plsP(G)}
1

p3 = 5(33 — p1S2 — P2s1) =
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1 (

=3 [Sp (G®) —p1Sp (G?) *pzSP(G)}
1

pa = 7(sa = pisg —p2sa —pas1) =

= 1[50 (6"~ piSp (6%) ~ mSp (6?) — psp(@)]

From whence, we obtain the following representations
for the invariants p;:

1 1
p1 =Sp(G), p2= §Sp (Gz) - §Sp2(G)7

ps = 5[50 (G%) ~ Sp(G)S (67) -

— 5 (Sp(€?) ~ $p*(C)) Sp(@)] =

2
1 3y 1 2 o3
§Sp (G®) - §Sp (G?) Sp(G) + ESp (@),

- 55 (@)Sp(G)];

finally, we find the expression

pi= 7 |50 (G*) ~ 35p(G)5 (G) -

250 (G7) + Sp3(@)Sp (@2) — 25p'(@) |

In the case where the matrix G is antisymmetric,
we have the equality

G=-G, p =5SpG=0,

G3=-G% Sp(G®) =0,

=0, p=35(c?), (68)
ps=0, pi= 5 (G") + 150° (7).

The characteristic equation (65) takes the form

G* — poG? —py = 0, (69)
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this case is realized in the construction of the charac-
teristic polynomial for the electromagnetic tensor. In
this case, relations (66) become simpler:

NN G 2
U =P Ny — My
A = —2 X+ A py
‘LL4 - H’z AZ p2 - A4p4’ (70)
Ay = A
Pt = PN py = Mpy
3
A3

ot = N py = My

For the additional verification, we consider the sim-
ple case without the electromagnetic tensor, when,
additionally, the space-time is described by the Ricci
tensor of the following simple form (elementary ex-
amples are the de Sitter spaces):

R R
GaB = Zgaﬁa Gg = Zéga
1

SpG =R, Sp(G?) = ZRQ’ (71)
1 1
Sp (GB) = ER?’, Sp (G4) = ER‘I,
that is
_ 1l 1o, 3,
pl_Ra p2_24R 2R — 8R7
_ 11y 11, 1o 1o
Ps =376 T B R GH = Gt
(72)
il a1 11,
Pi=1 15 2™ "Bl ol t

+ﬁiﬁf1m

1 4
6 ’*FR'

The expressions for p; correspond to the following
characteristic equation

G =(GP), ( —f>4:0.

Note that, in the presence of a geometric back-
ground,

he R
1%¢—AG@+i:4%Q¢a—mw:Q

(73)

(74)
DP®g — ud = 0;
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and in the absence of an external electromagnetic
field, the system of equations (74) reads

h
D%M—Ah@,lh@—(McHAcf)@ﬂ (75)
e

In particular, in the case of the de Sitter spaces
(R(x) = R), the effective additive (with a plus or
minus) to the mass of a particle is

h
DPdy = Mcd, 1%@:<MamA;f>@ﬁ (76)

6. Conclusion

Thus, Cox’s theory for a scalar particle with a larger
set of tensor functions (the set of a scalar, 4-vector,
antisymmetric and (irreducible) symmetric tensors) is
generalized against the background of the Minkowski
space and an arbitrary Riemannian space in the pres-
ence of external magnetic and electric fields.

For a special class of curved metrics allowing for the
existence of nonrelativistic wave equations, a general-
ized Schrédinger-type quantum mechanical equation
for Cox’s particle is derived. This generally covariant
formalism is specified in the presence of external mag-
netic and electric fields. It is shown that, in the most
general form, the extended Proca-like first-order sys-
tem of tensor equations contains non-minimal inter-
action terms through the electromagnetic tensor Fiz
and the Ricci tensor Rag.

Thus, the general conclusion can be done: the ef-
fects of the large-scale structure of the Universe de-
pend greatly on the form of the basic equations for
elementary particles, and their modifications will lead
to new physical phenomena due to the non-Euclidean
geometry background.

The construction of the explicit solutions of gener-
alized wave equations in the presence of magnetic and
electric fields for the flat Minkowski space and simple
curved backgrounds, spherical Riemann and hyper-
bolic Lobachevsky, will be given in separate papers —
see [6,7].
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CKAJIFAPHA YACTMHKA KOKCA

3 BHYTPIIIHLOIO CTPYKTYPOIO: 3ATAJILHUN
AHAJII3 V 3OBHIIIHIX EJIEKTPOMAT'HITHIX

I TPABITALIIMHUX ITOJIAX

Pezmowme

Penstusicrebka Teopiss Kokca jij1s cKaJigpHOT HETOYEYHOT Ya-
CTUHKH 3 BHYTPIIIHBOIO CTPYKTYPOIO B mijxoni Ilpoka po3sune-
Ha B IIPUCYTHOCT] 30BHINIHIX OJIHOPiTHUX MarHiTHHUX i €JIEKTpH-
YHUX TOJIB B Ipocropi MinkoBcbkoro. OTpUMaHO y3arajb-
HeHe piBHsHHsT Kieitna—Topaona—®Poka B NPUCYTHOCTI OIHO-
piAHUX Mar”iTHUX i esleKTpu4YHUX OJiB. BukonaHo y3arasb-
HEHHsI HOro popmasizMy Ha BHINAJOK JOBLILHOIO piMaHO-
Ba IpocTopy-4acy. st crenjajbHOro KJjacy METPHK, IO J0-
IIyCKAIOTh iCHYBaHHSI HEPEJATUBICTCHKUX XBUJIBOBUX PiBHSHB,
OTPUMAHO y3arajibHeHe KBAaHTOBO-MEXaHIYHE DIBHSIHHS THUILY
IlIpeninrepa ma uactunku Koxkca. lleit 3arajsbHOKOBapiaH-
THHH HopMasi3M € 3aCTOCOBHUM 33 HASIBHOCTI 30BHINIHIX Ma-
rHiTHUX i eslekTpuyHuX nouiB. [TokasaHo, mo y3arajbHeHa CH-
crema IIpoka TeH30pHUX PIBHAHB MICTUTH YIEHU HEMiHIMAJIb-
HOI B3a€MO/Iii 1uepes TeH30p ejeKTpomaruiTHoro momis Fug i
Tenzop Piudi R,g.
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