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1. Introduction

The hybrid nanosystem composed of a spherical metal nanoparticle (NP) and a spherical semi-
conductor quantum dot (QD) of a direct-band semiconductor with a cubic lattice structure and
a fourfold degenerate valence band I's has been studied. The excitonic emission of the system
s considered as a sum of contributions from point dipoles located at the QD lattice sites. The
description of the QD + NP nanosystem, nonspherical as a whole, is based on using three
spherical coordinate systems and finding the relations between the coefficients of multipole ex-
pansions of electromagnetic (EM) fields in those systems. The origins of two of them are fized
at the centers of NP and QD, and their polar axes are directed along the line connecting the
centers. The orientation of the third coordinate system with the origin in the QD is determined
by the orientation of the QD crystal lattice. It is shown that, unlike the electric scalar potential,
which is induced by the exciton state in the QD and looks like a point-dipole potential, the EM
field of the QD excitonic emission cannot be represented as that of a point dipole emission,
because it contains only dipole, quadrupole, and octupole components. The multiple scattering,
between the NP and the QD, of the EM field emitted by the QD is taken into account. The
dependences of the excitonic emission efficiency on the separation distance between the QD
and the NP surfaces are calculated in a particular case of the CdTe QD and a silver or gold
NP for various QD and NP sizes and temperatures.

Keywords: quantum dot, metal nanoparticle, hybrid nanosystem, electromagnetic field,
emission quantum yield.

ticle (NP). In this case, the QD, by analogy with

In the last years, the hybrid metal-semiconductor
nanostructures (see, e.g., reviews [1,2]), in which the
exciton-plasmon interaction plays a substantial role,
have attracted the increasing interest owing to their
unique properties and a considerable progress in the
technologies of their manufacture. However, in many
cases, the theoretical models used for the description
of those structures are imperfect. This concerns even
such simple, at first sight, case as a semiconductor
quantum dot (QD) in a vicinity of a metal nanopar-
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fluorescent molecules, is considered to be a point-
like dipole (in such an approach, the nonspherical
nanosystem transforms into the spherically symmet-
ric one), and all well-known results obtained for the
case of point dipole are automatically duplicated for
the case with the QD.

In this work, which is a continuation of our previous
work [3], a more rigorous approach is developed. In
its framework, the whole QD is not considered as a
point dipole; instead, this role is played by every ele-
mentary cell in the QD crystal. This approach makes
it possible to account for the valence band structure
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g(0,k) NP

Fig. 1. Schematic diagram of the nanosystem QD + NP

in the crystal and calculate all electromagnetic (EM)
fields and the emission quantum yield in the hybrid
nanosystem QD + NP in the case of nonresonance
excitation, when only the QD is excited directly (in
the case of resonance excitation, the NP is excited di-
rectly as well). In work [3], the expressions for all EM
fields in the system “emitting point dipole in a semi-
conductor QD + metal NP” were obtained. It was
shown that, in order to calculate the EM fields in the
case of QD excitonic emission in general, it is neces-
sary to integrate the contributions made by all point
dipoles in the QD to the EM fields (i.e. the contri-
butions of all elementary cells that compose the QD
crystal). It was also shown that the corresponding
contributions are determined by the envelope exciton
wave function in the QD.

Hence, for the further consideration, we must spec-
ify a QD model and write down the envelope exci-
ton size-quantized wave functions. Such specification
demands that, in addition to two spherical coordi-
nate systems shifted with respect to each other by a
distance D between the QD and NP centers (at the
previous stage, the relations between multipole com-
ponents of the EM fields expressed in those two co-
ordinate systems were established, which enabled the
spherical symmetry of QD and NP to be used sepa-
rately, despite that the whole system QD + NP is not
spherical), a third coordinate system { X, Yer, Zer }
should be introduced, whose axes are defined by
the orientation of the crystal lattice in the QD (see
Fig. 1). The initial exciton size-quantized wave func-
tions in the QD have a standard form just in this
crystal coordinate system. However, the final exciton
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wave functions, which are required for the calculation
of the contribution made by the whole QD volume
to EM fields, should be expressed in the coordinate
system {X,Y, Z} with the axis Z directed along the
line connectlng the NP and QD centers rather than
the own (crystal) coordinate system with the axes
{Xecry Yer, Zer }. The next sections contain a descrip-
tion of all required transformations making it possible
to calculate the powers of the EM radiation emission
and absorption, as well as the emission quantum yield
of the hybrid nanosystem QD + NP.

2. Size-Quantized Exciton
States and Exciton Wave Functions in QD

As a material of the QD, a semiconductor with the
cubic lattice structure and the fourfold degenerate va-
lence band I'g is considered; in particular, it can be
CdTe. In the QD made up of such semiconductor, the
ground exciton size-quantized state (the state of the
so-called dark excitons, which is split off by the spin-
spin electron-hole exchange interaction to the inter-
val of lower energies) is characterized by the quantum
number F = 2 of the total exciton angular momen-
tum. This state is fivefold degenerate with respect to
the quantum numbers F, = £2,+1,0 of the total
momentum projections on the axis Z... The higher-
energy triple degenerate state of bright excitons is
characterized by the quantum number F' = 1 of the
total exciton angular momentum and the quantum
numbers F, = +1,0 of its projections on the axis
Zer [4]-

In the electron-hole representation, according to
the standard momentum sum rule (see, e.g., work [5]),
the wave functions of exciton size-quantized states
Vebh(F FL et v57) look like
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where
=) =) 0

are the electron spin functions (spinors) correspond-
ing to the electron spin projections +1/2 and —1/2
on the Z.-axis, VO(r") = p§(7.)Yo,0(257)S is the
full spatial wave function of an electron in the size-
quantized ground state, p§(7.) the radial part of the
electron envelope wave function, S the on-site elec-
tron wave function (the localized Wannier function
[6]) of the spherically symmetric s-type, r<" the spa-
tial electron variable in the intrinsic crystal coordi-
nate system, the electron coordinates in the coordi-
nate system {X, Y, Z} with the origin at the point O
are expressed by the radius vector T, (ré" = re) e
are the angular variables of the electron, W2 P (r‘;f)
is the wave function of the hole with the quantum
number M of the total angular momentum and the
quantum number M, of the momentum projection
on the axis Z, r{’ the spatial variable of the hole,
Y; m(£2) the normalized scalar spherical harmonics
describing the angular part of the corresponding hole
envelope size-quantized wave function, [ the quantum
number characterizing the hole orbital momentum,
and m the quantum number for its projection on the
corresponding axis (this is Z., in the crystal coordi-
nate system or Z in the {X,Y, Z} one).

Analogously, according to the same standard sum
rule for momenta, the hole size-quantized wave func-
tions WM (rs7) are as follows:
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In expressions (7)-(10), pf(7,) and p}(7,) are the
hole envelope size-quantized radial functions of the
spherical and nonspherical, respectively, parts of the
full hole wave function, the hole coordinates in the
coordinate system {X Y,Z } are expressed using the
radius vector Ty, 15" = 74, |J, J.) are the on-site hole
space-spin wave functions with the quantum number
J = 3/2 of the total angular momentum (the effective
spin) of the hole and the quantum number J, of its
projection on the axis Z,.

According to the standard sum rule for momenta,
the functions |J, J,) can be expressed as

S olw

—Ya1(62))

13/2,3/2) = (X +iY")/V2 1, (11)
3/2,-3/2) =i (X —iY*")/V2, (12)
3/2,1/2) =i [(X +iY") | —2Z 1]/V/6, (13)
3/2,—1/2) = [(X —iY) + 422 |]/v6,  (14)

where 1 and | are the hole spinors corresponding to
the hole spin projections on the axis Z., equal to
+1/2; and X, Y, and Z° are the on-site hole
spatial wave functions of the p-type in the crystal
coordinate system {Xer, Yeor, Zer }-

In the case of the higher-energy triple degenerate
states of bright excitons with F =1 and F, = £1,0,
which are split off owing to the spin-spin electron-hole
exchange interaction, the corresponding exciton size-
quantized wave functions W8 (F, F,; v, 1) are as
follows:

1
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It should be noted that, in the seminal work by Efros
et al. [4], the expressions for the exciton wave func-
tions of dark excitons with F' = 2 and F, = *+1 con-
tain an error. In the case of a spherical QD made up of
a semiconductor of the cubic modification, those ex-
pressions should transform into expressions (3) and
(4). However, this is not the case because, in work
[4], the coefficients in front of the components in
the corresponding wave functions are transposed. As
a consequence, the wave functions of dark excitons
with F, = +1 presented in work [4] are not orthog-
onal to the wave functions of bright excitons with
F, = £1. Accordingly, the matrix elements of opti-
cal dark exciton transitions into/from those states,
which were calculated in work [4] in the dipole ap-
proximation, differ from zero, unlike the zero matrix
elements of the transition into/from the dark exci-
ton states with F, = £2 and F, = 0. Actually, they
must be equal to zero in the dipole approximation as
well. According to the results of our model, the radia-
tion from all dark exciton states is emitted only in the
form of spherical waves with the dipole and octupole
components of the electric type and the quadrupole
components of the magnetic type, and this emission
is related only to the nonspherical part of the hole
envelope wave function.

3. Transformation of Exciton Wave
Functions at a Coordinate System Rotation

For further calculations of the QD + LF nanosystem,
the exciton wave functions has to be written in the
coordinate system {X,Y, Z} with the origin Oy lo-
cated in the QD (Fig. 1). The orientation of the coor-
dinate system {Xe,, Yoy, Zer } with respect to the sys-
tem {X,Y, Z} can be described conventionally, with
the help of Euler angles {W,, 0., @ }. In this work, all
Euler angles are reckoned counterclockwise.

Note first that, in accordance with work [3], while
finding the EM field emitted by the QD, we have to
change from the electron-hole representation of exci-
ton functions, WEN(F, F,;r% 1$"), to the electron-
electron one, \Ile1 NF, F;re,r), as was done in
work [4]. This operation means a simple substitution
of the spatial parts in the hole components of those
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exciton functions by the complex conjugate ones and
a substitution of the hole spinors 1 and | by the trans-
posed electron spinors 17 and |7, respectively. As a
result, in the initial crystal coordinate system, the ex-
citon wave functions WeL=!(F, F,; v, r$") will include
the spinor products ™17 and |7, which are scalars
and equal 1, and spinor products 1}7 and |17 equal
to zero. Therefore, first, only those components will
survive in the expressions for EM fields, which corre-
spond to nonzero spinor products. Second, the prod-
ucts 7 and ||” equal 1 in the coordinate system
{X,Y,Z} as well.

As for the angular envelope functions Y5 ,(£2°7) in
Egs. (7)—(10), according to work [7], they can be ex-
panded in a series of the spherical harmonics Yg)m(fZ)
in the coordinate system {X,Y, Z} as follows:

Y CuYon(B9) (18)

m=—2

Y2 ;1, cr7 (pcr

The expansion coefficients C), ,,, can be found with
the use of the following expressions for the spherical
harmonics Y3, (£2°7):

YQ,:I:Q(“ch) = \/W(xcr + Z‘ycr)za

YZ :I:l ch = FV 15/ 877 xcr =+ Zycr Zery
Yo,0(027) = \/5/(16m) (223, — 22, — v2,),

where .., Yo, and z. are the coordinates of the
unit vector oriented in the direction given by the
angles 0., and . in the crystal coordinate sys-
tem, i.e. T = SinOc COSYer, Yor = SiN G sin pe,
and z¢, = cosf.,. Expressing the coordinates x;, Yer
and, z. of the unit vector in terms of Euler angles
and the coordinates of this vector in the coordinate
system {X,}N/,Z}, i.e.in terms of & = sinfcos @,
y = sin @ sin @, and z = cos, multiplying formula
(18) by Y5 (0, %), and integrating the result over the
angular variables 6 and ¢, we obtain expressions for
the coefficients C), ,, as functions of the Euler an-
gles. They are quoted in Appendix 1.

At last, while calculating the contribution of point
(on-site) emitting dipoles to the total electromagnetic
field of a QD, the matrix elements of on-site dipole
moments are expressed in the form (S|er;|X) =
= pny, (Sler;|Y") = pny, and (Sler;|Z°") = png,
where r; is the electron coordinate in the elementary

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 7
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cell corresponding to that or another crystal site, p
the magnitude of on-site dipole moment (owing to the
cubic crystal symmetry, it is identical for all three
directions), nj, ny, and nj are the unit vectors of
the crystal coordinate system. In the coordinate sys-
tem {X,Y,Z}, those unit vectors at the site with
the coordinate T4 (see Fig. 1) can be expressed in the
form [5]

n,(¥4) = /27/3 x

x fnz Ve, [Fa{ V1, 1(20) = Vi (Q0)}] +
+in¥, Vi, [Fa{Y1,21(24) + Y11 (24) }] +
+V2nZ Vs, [fdyl,o(fzd)]}, (19)

where n%, n¥, and n?, are the components of the vec-
tor n, in the coordinate system {X, Y, Z}. According
to the on-site hole wave functions (11)—(14), the fol-
lowing combinations of those components are relevant
to our calculations:

n{ +inj = exp(Fige) [cos W, Ficosf.sin@.]|, (20)
n{ +inf = exp(Figp.) [Sin ¥, + icos b, cos ![/e] . (21)
nf +inj = +iexp(Fip.)sinb,, (22)
nj =sinf.sin¥., nf = —sinb. cos¥,, (23)
n5 = cosf,. (24)

4. Electromagnetic Fields
of QD Excitonic Emission

While calculating the EM field emitted by the fivefold
degenerate state of dark excitons in a QD character-
ized by the quantum number F' = 2 of the total exci-
ton angular momentum, the following effective wave
function has to be used:

o 1 e -
\Ijex,Z(rarh) = % [aL\IJe; 1(270;rearh) +
+ oL W2 1T, Fr) 4 e U2, — 15 F,, T) +
+dr U2, 25, By) + LU N2, 25 Fe, T2, (25)

where ay,, by, cr,, dy,, and fi, are arbitrary phase fac-
tors. Such a form for the effective wave function is as-
sociated with an identical population probability for
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each of five degenerate states of dark excitons in the
case of an external excitation. The very presence of
arbitrary phase factors stems from the noncoherent
exciton behavior in those states. Accordingly, while
calculating the EM field emitted by the triple degen-
erate state of bright excitons in a QD characterized
by the quantum number F' = 1 of the total exciton
angular momentum, the effective wave function looks
like

- - 1 _ - -
\I]ex,l(r&rh) = ﬁ [aU\I’gL el(1>o;revrh) +
+ bU‘I’gc_el(la L;Fe, fh) + CU‘I’S(_QI(L —1; T, f'h)]v (26)

where a7, by, and ¢y, are also arbitrary phase factors.

According to work [3], the electric field, which is
generated by the emission of all on-site dipoles in the
QD and is associated with the exciton state charac-
terized by the quantum number F' of the total angular
momentum, at the internal QD surface must have the
form

; - i F
Biyn o F) = X (o abl ()
l,m

X [Ve x (ko) Xim(92)] +

iy () hu(kar) X (D)) (27)
where 7 = R», subscript 2 in EfQD,Q means that this is
the field at the internal side of the QD interface (see
Fig. 1), ko = w/c, ¢ is the light velocity, ka = /€3 ko,
abt (1, m) and as% (1, m) are coefficients in the mul-
tif)ole expansions7 of the electric field (of the electric
and magnetic types, respectively) emitted by the ex-
citon state with the quantum number F' of the total
angular momentum, o is the background dielectric
constant of a semiconductor in the radiation emis-
sion frequency interval (in the case of CdTe, g9 = 13
in the interval fiw = 1.5+3.0 eV [8]), X, (£2) are the
normalized vector spherical harmonics [9], and h;(z)
is the spherical Hankel function of the first kind.
The dipole moment of the site with the coordinate

T, can be written as the expansion
(0l€Fi | Wex, r (Fe, )z, = p[01 0 p(Fa, Fa) +
+ ﬂ2‘1’£;2<),F(fda Tq) + na‘l’ii),p(fd’ ta)l, (28)

where |0) = 0(T—T}p,), and the functions \I/éi)’F(f‘d, Tq)
are coefficients at the on-site functions X (j = 1),
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Y (j=2),and Z° (j = 3) in the full wave function
Vex, 7 (Tq,Tq). Hence, this dipole moment is composed
of the dipole moments of three point dipoles located
at the site ¥y and oriented along the unit vectors
of the intrinsic (crystal) coordinate system nj, no,
and ns.

The contribution to the electric field (27) given by
a point dipole with moment p located in a QD at the
point Ty and oriented along n, is expressed by the
formula [3]

oo l
i (5 F
E; (T, Ta;n,) = { m) X
l 1 m=—I1

[V X hl(kzr) Xl,m(“Q)] +
+ag 5 (1, m) hy(koT) Xl,m(“@)}’
where

ag p (L, m) = Amipkokg ji(kaa) no - X7, (£2a),
ag p(l,m) = dmpkako ng - Vi, x ji(kafa) X7, (2a)],

and j;(x) is the spherical Bessel function.
The total electric field (27) emitted by the QD and

the corresponding multipole coefficients Ezé’g(l m)

and d;ljw(l m) can be obtained by integrating con-

tributions (29) of all point (on-site) dipoles over the
QD volume on the basis of the effective wave func-
tions (25) and (26):

U, (Fa, Fa) ¥

EiQD,Q(f§F) = Z

a=1,2,3 QD

x Bl 5(F,Taing) d*Fq. (30)
Taking into account that (see, e.g., work [10])

1
/(1 — 22 P(z) de = 2™ x
21

P+ 5T (A = )1+ 52)T(=5)

1
/m (1 —2®)™/2 P (z) de = 1
0

D) T+ 2)r+m+l

1‘\(1 + U+72n—l)r(3+0-&2-m+l)1'\(1 —m4+ l)’
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where P/ (z) are the associated Legendre polynomi-
als, we obtain that only the multipoles of the mag-
netic type with [ = 2 and the multipoles of the elec-
tric type with [ = 1 and 3 survive after the inte-
gration from an infinite number of multipoles (29) in
the integrand of expression (30). Hence, 1t is possible
(l m) and

d;’ (I, m) in expansion (27) of the electrlc field of the
QD excitonic emission at the internal QD boundary
as functions of the Euler angles. All other fields, in-
cluding ones reflected from the metal NP and the field
in the NP, can be determined, by using the formulas
presented in work [3].

to determine all multipole coefficients as

5. Energies of Exciton
Transitions and Radial Wave
Functions of an Electron and a Hole

To calculate the emission characteristics of the
nanosystem QD + NP, it is necessary to determine
the exciton transition energy F, in the QD (i.e. the
radiation frequency w = E, /A in formula (27)) as a
function of the QD size. Unlike works [4], [11], and
others, where the approximation of infinitely high
barriers for electrons and holes was used (the cor-
responding values of size-quantized energies turn out
substantially overestimated), the calculations in this
work are carried out for a more realistic case of bar-
riers with finite heights, namely, for the case where
a CdTe QD and a metal NP are located in the SiO,
matrix. Generally speaking, this choice is related to
the fact that all SiO, parameters required for calcu-
lations, as well as the discontinuities of the valence
and conduction bands across the CdTe/SiOq inter-
face, are known or could be calculated. In addition,
Si0Og is used in real structures as an intermediate layer
and a coating of CdTe QDs and metal NPs (see, e.g.,
works [12-15]).

The envelope wave functions and the energies of
exciton states in a separate QD are determined from
the Schrédinger equation

[H +Hh+Hexch+U( )+Uh( )

HUL(rg) + Us(ry) + Uen (re, x| %

X Wer p(re, 1y ) = (B p — Bg)Vex p(re, ry)),  (33)
where E, is the energy gap width in the QD bulk

material (in the case of CdTe, E; = 1475 eV at T =
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=300 K [8]), H. and H), are the electron and hole,
respectively, kinetic energy operators in the Luttin-
ger—Kohn multiband model,

Hexen = —(hwst/12) a2, 0(xS" —x§7) (0 - J)

is the operator of electron-hole exchange interaction
[4], hwsT the singlet-triplet splitting in the bulk semi-
conductor (for CdTe, fwwgt = 0.04 meV), aex the
exciton Bohr radius (for CdTe, aex ~ 6.5 nm), o
are the electron Pauli matrices for particles with spin
1/2, and J the hole matrices for particles with spin
3/2. The potential energies Us(re") and Us(rf") de-
scribe the self-action of an electron and a hole, re-
spectively, in the field of image charge forces that
emerge owing to the polarization of the heterointer-
face in the QD. The potential energies U.(rS") and
Un(r§F) describe the energy wells for electrons and
holes, respectively, which are formed as a result of
discontinuities of the conduction and valence bands
at the heterointerface; Uy (r) = 0 if r < Ry, and
Ue(n)(r) = Uc(vy if r > Ry, where Ry is the QD radius;
the valence band discontinuity at the heterointerface
CdTe/SiO5 amounts to U, = 4.7 eV [16], and that of
the conduction band to U, = 2.92 eV (taking into ac-
count that the energy gap width in SiO5 amounts to
9.1 eV). The potential energy Uep(r",rs") describes
the electron-hole Coulomb interaction (both direct
and indirect, i.e. through the corresponding polariza-
tion of the heterointerface). It can be determined by
solving the Poisson equation

Vi [e(r)VeU(r,1")] = 4me®s(r — 1),

where e(r) = &9 if r < Ry and e(r) = & if r > Ry,
€9 is the low-frequency (static) dielectric constant of
a QD material (for CdTe, €y = 10.4 [8]), &3 the
low-frequency dielectric constant of the matrix ma-
terial (for SiO2, €} = 3.9 [8]), and e the electron
charge. The expressions for the potential self-action,
Us(r), and interaction, Uep(r,r’), energies can be
found, e.g., in work [17] in a form convenient for
quantum-mechanical calculations.

The radial electron wave function p§(7.) of the
ground electron state in a QD (7, = r<), which is
the eigenfunction of the kinetic energy operator H,,
has the following form in the finite-barrier case:

pg(fe) = 06{9(R2 - 7:e)j()(kefe) + 9(7:6 - R2) X
X ko(AeTe) [Jo(keR2) /ko(XeR2) ]},
ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 7

(34)

where jo(x) is the spherical Bessel function of the
zeroth order, ko(z) = exp(x)/xz is the modified
spherical Hankel function of the zeroth order, k. =
= \/2me2FE. /R, Ae = /2mc3(U.— E.) /h, Meg is
the effective electron mass in the QD (for CdTe,
Meo = 0.095mg [8]), and m. 3 the effective elec-
tron mass in the surrounding matrix (for SiOs,
Mme,3 = 0.5mg [18]). The size-quantized electron en-
ergy E. is determined from the condition of a non-
trivial solution for boundary conditions in the form
of the continuity of the wave function and its flux
across the QD/matrix interface, and the normaliza-
tion constant C, from the normalization condition
fooo[pS(Fe)P o die = 1.

The radial hole wave functions ph(7,) and ph(7)
of the ground hole state in a QD (7, = r§") have the
following form in the case of finite barrier:

po(Fr) = 0(Ra — 74) [Ajo(knnn) + Bijo(kunts)] +
+0(Fn — R) [Cho(AnnTn) + Dko(Mintn)]
Py (Fn) = 0(Ra — 74) [Aja(knnn) — Bija(kunfn)] +
+0(7p, — Ra) [Ck‘g (AnwTh) — Dk‘g()\lhfh)],

(35)

(36)

where jo(x) is the spherical Bessel function of
the second order, ks(z) = exp(—z)(1/z + 3/2*+
+3/23) is the modified spherical Hankel function
of the second order, kpn, = /2mpn2En/h, kin =
= \/2mun2En /R, A = \/2man 3(Us — ER) /By Aip, =
= \/2mlh_’3(U7j — E})/h, mpp2 and myp, o are the ef-
fective masses of heavy and light, respectively, holes
in the QD (for CdTe, mpp 2 = 0.81mg and myp 2 =
= 0.12mg [8]), and mpp3 and my, 3 the effec-
tive masses of heavy and light holes in the matrix
(for SiOg, mpns = myns = 0.6mg [19]). The size-
quantized hole energy is also determined from the
condition of a nontrivial solution for boundary condi-
tions in the form of the continuity of the wave func-
tion and its flux across the QD/matrix interface, the
constants A, B, C, and D are determined from those
boundary conditions and the normalization one

J UG + 15} 7 = 1.
0

In Fig. 2, the dependences of the exciton transition
energy E, in the CdTe QD on the QD radius Ry are
depicted. They have been obtained neglecting the ex-
change interaction operator H’exch in the Schrodinger
equation (33).
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Fig. 2. Dependences of the main exciton transition energy
E; on the QD radius for the CdTe QD. Curves 1 and 1’ cor-
respond to a finite CdTe/SiO2 barrier, and 2 and 2’ to an
infinitely high one. Curves 1 and 2 were calculated taking the
mixing of heavy and light hole states into account, and curves
1’ and 2’ with only heavy hole state account. Curve 8 is the
empirical dependence of the energy of the first absorption peak
on the CdTe QD radius [20]
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Fig. 3. Dependences of the energies E; p — E; on the

CdTe QD radius. Curve 1 corresponds to the states of dark
excitons with the quantum number F' = 2 of the total an-
gular momentum, curve 2 to states of bright excitons with
F = 1. Curve 3 illustrates the dependence of the total split-
ting A = Ez 1 — Ez 2. The dashed curve 3’ is the dependence
of the total splitting in the case of infinitely high barriers for
electrons and holes. The symbol X marks the value of total
splitting in the CdTe QD with R2 = 2 nm obtained in accor-
dance with the calculations by Efros et al. [4]; and the symbol
M, in accordance with the calculations by Blokland et al. [11]

Figure 3 illustrates the calculated dependences of
the energies of dark and bright excitons (reckoned
from the exciton transition energies FE, shown in
Fig. 2) on the CdTe QD radius.
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6. Energies of Plasmons in a Metal NP

The interaction of the QD excitonic emission with
plasma oscillations in the NP and the excitonic emis-
sion enhancement owing to this interaction become
maximal under conditions close to the resonance be-
tween the excitonic emission energy and the energy of
plasma oscillations. Specific calculations were carried
out for gold and silver NPs, whose dielectric func-
tions in the optical spectral range can be written in
the form [21,22]

T (W, k) = 1+ ep(w) + EZz(L)(wv k), (37)

where the second term on the right-hand side is as-
sociated with interband electron transitions (i.e. with
bound electrons) and the third one,

2
wpl

wlw+i(I+Avp/Ry)] fﬂ%(L)kQ

EIE(L) (w7 k) =

» (38)
with electron transitions in the conduction band
(i.e. with free electrons). The indices T and L denote
the transverse and longitudinal, respectively, compo-
nents of the dielectric constant. In gold or silver, the
Fermi velocity vp ~ 1.4 x 108 ecm/s, B = /3/5vr,
Br = 0, the damping constant in the bulk material
I' = vp/ly, Iy is the mean free path of electrons,
the constant A falls within the interval of 0.1-0.7
depending on the mechanism of electron scattering
by NP walls and other factors [21] (in this work, we
put A = 0.5), wy, = +/4mne?/m* is the plasma
frequency of the corresponding material (for gold,
fwy = 8.56 €V and AI' = 73 meV [23]; for silver,
hwp = 9.1 €V and A" = 18 meV [24)). In the case
of gold, the interband transitions are taken into ac-
count on the basis of a model presented in work [23]
with interband transition energies iw; = 2.65 eV and
hwo = 3.75 e€V. In the case of silver, the generalized
Drude model is used with the background dielectric
constant e, = 1 4 &5 = 3.71 [24]. The frequency
dependences of the real and imaginary parts of the
dielectric constants calculated for massive gold and
silver on the basis of models [23] and [24] agree well
with experimental data [25] in the relevant frequency
interval.

The energy of interface plasmon oscillations in
metal NPs can be determined in the framework of
the scattering problem as poles of the reflection coef-
ficients VEE‘S for the electromagnetic radiation inci-
dent on a NP calculated in our previous work [3]. In
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Figs. 4 and 5, the dependences of the energies of in-
terface plasmons of various orders on the radius of a
gold or silver, respectively, NP in the SiO; matrix
characterized by the high-frequency dielectric con-
stant €3 ~ 2.37+2.45 in the energy interval 1.6-3 eV
[26] are shown.

7. Calculation of Excitonic Emission
Power in the Nanosystem “Semiconductor
QD + Metal NP”

In Section 4, we have calculated the EMFs gener-
ated on the internal side of the QD surface due to
the excitonic emission. All other fields in a QD + NP
nanosystem can be found using formulae of our pre-
vious work [3]. Now, we can calculate the emission
power for both an isolated QD and a nanosystem
QD + NP in whole. According to work [9], the power
emitted by an isolated semiconductor QD and aver-
aged over the period T = 27 /w looks like

781?3 = 87Tk3 Z (a5 m)|” + eslalh, (,m)[],

(39)

where the coefficients dg’g(l,m) and &g’f;[(l,m) of
the multipole expansion of the EM field outside the
QD are connected with the calculated coefficients
ay P, m) and @ as'yr £ (I, m) of EM fields at the internal
QD boundary by means of the EM field transmission
coefficients Vg% (1) and VZSB?,(Z), respectively [3].

As a result, in the case of emission from the higher
bright exciton levels with F' = 1, the following ex-
pression is obtained:

—) _ wlpPkd (e2Y QD /11 (2 72
Paop = 108 \za \/5|VE,23(1)| Iy %

€3
I 13 L. 192 2
(24 s+2122> ValVER @) +
O
3234 E3 QD 2
+ o5 \FWM% 22|, (40)
where
R
Ip— / P ()P (P) o (ko) 72,

0
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Fig. 4. Dependences of the energy of interface plasmons in a
gold NP on the NP radius for various orbital numbers [
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Fig. 5. The same as in Fig. 4, but for silver NPs

Ro
B = [ 65(7)6h (Pialar) .
0

In the case of emission from the lower levels of dark
excitons with F' = 2,

—@2)  wlp|?kd [e2 5/2 9 QD /412

Pop == \5) B 61/22| Vi as ()| +
128 D 2 392 €3 D 2

+ 7\F’V§23 )|+ 5 e Vz\%23(2)’ (41)
From formulas (40) and (41), one can see that the

power emitted by an isolated semiconductor QD does
not depend on the Euler angles, which is evident from
the physical reason. This fact confirms the correct-
ness of the results obtained for the electric fields.

In the presence of a metal NP in a vicinity of the
semiconductor QD, the field in the wave zone is a
sum of the EM field emitted by the QD itself and the
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fields formed as a result of the multiple field scatter-
ing between the QD and the NP. The field emitted
by the QD contains only the multipole components
with [ = 1, 2, and 3. However, in the course of scat-
tering of this field between the QD and the NP, the
other multipole components of higher orders I’ emerge
[3]. The components with larger I’-values correspond
to the less contributions to the total field. Therefore,
we may confine the consideration to a finite number of
multipoles. In the further consideration, for the sake
of brevity, we use the notation of work [3], including
that for the coefficients of reflection and transmission
of the EM field at the heterointerfaces matrix/NP and
matrix/QD.

Let the number k£ denote the maximum order of
multipoles that are taken into account in the scat-
tering. The matrix N™ is formed as a sum of the
powers of matrices for a single scattering of the EM
field by the QD [3]:

(ErS

This is a 2k x 2k-matrix describing the multiple EM
field scattering by the QD. Let us also define the
2k x 2k-matrix M(™ =z, N with regard for the
multiple scattering of an EM field by the metal NP
(the 2k x 2k-matrix Z,, is defined in work [3]). Let us
also introduce the following quantities, in which the
elements of matrices M(™ and N™ are used:

N(m) = l+€m+£3n+“' = (42)

‘ E33 k+ln+Nle)n’ +
+es |VM "5 (D) M(’”) + NP2,

[VES () M), + N T %

x [VEEs() M{T), + N )T+

+ Nz(,:r;)] X

x [V () M + NPT

C(m)

lLn,j =

tes [VM.33(Z) Ml(f:)
(44)

The expressions obtained with the use of those coeffi-

cients for the powers (FEQPBWP)%&% emitted by the
system QD + NP and averaged both over the period
T = 27 /w and the Euler angles (over the orientation
of the crystal lattice in the QD or, equivalently, over
the QD arrangements near the NP) are given in Ap-
pendix 2 (for bright exciton states with the quantum
number F' = 1 of the total angular momentum) and
in Appendix 3 (for dark exciton states with F = 2).
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j(x,t; F) is the

8. Calculation of the Intensity of EM
Field Energy Absorption by a Metal NP

Electrons in the NP absorb the EM field energy. For
the EM field emitted by a QD exciton state with the
quantum number F' of the total angular momentum,

the intensity @151};) of its absorption by the metal NP
(the energy absorbed by the NP per unit time), which
is averaged over the period T' = 27 /w, can be calcu-
lated using the formula

—(F -
W :/[J(r,t;F)]Re~[ETP(r,t;F)}Redgr:

NP
= % /{Im(a?(w
NP

x Im {Ell\ifT)(r; F) - (EYY (r; F))*] + Im(ef (w,0)) x

0))|EY (r; | + Re(e] (w,0)) x

« Re [Ell“};(r; F)- (BN (x; F))*}}di”r, (45)
where
(A, )]re = [A(r) exp(—iwt) + A*(r) exp(ict)]/2,

current density of electrons,
EII\{?(I', t; F) and E?E(r, t; F) are the transverse and
longitudinal, respectively, electric fields in the NP
(the corresponding expressions for these fields in the
form of their multipole expansions can be found
in work [3]), the wave number kr(w) of longitu-
dinal oscillations is determined from the condition
el(w,kr) = 0, and the wave number kr(w) of trans-
verse oscillations is defined by the dispersion equation
k2 = e (w,0) w?/c?. For the record of the further for-
mulas to be compact, the following notation will be

useful:
E NP 2 M [515 (w,0)]
t = |Vesi( )‘

|7 (w, 0)|* (ko R1)?

2}dx,

L+ 1)|ji(kr Ruz)|*+ ‘[yyz( ),

/{

y=krRix

1 (46)
ap = /{jl(kTle) [yjl/(y)]:;:kLle—'_

0
i),y U Br) o (47)

VAR () (VYR (1)
= é?((w),(o)Lkizle)) ’ “8)

0+ 1)

0 = tf = R {ReleT .0 [Bof + i)+
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+Iml[ef (w, 0) + efy(w, k)] [Bjof — BlafTh,  (49)

1
tfw = |Vﬁgl(1)|21m[5§l(w,0)]/‘jl(kTRlsc)|2:E2da:.
0

(50)

In expressions (46)—(47), the primed quantities mean
the derivative with respect to the argument, the sing-
le- and double-primed «;, and §; in expression (49)
mean the real and imaginary, respectively, parts of
those quantities, and Vg%, (1), Vﬁgl(l), and VE}; )
are the coupling amplitudes between the coefficients
in the multipole expansions of the EM field outside
and inside the NP [3]. Introducing the quantities

(m E,L (m) |2 M (m) |2
Xl;n):tl |M/€+l),n| +1 |Ml7n) ) (51)

(m) _ JE,Lj/r(m) (m) \* M q r(m) (m)y\*
Win; =t Mk—i—l,n(Mk-i-l,j) +t M, (th )
(52)

the intensities (@1(\?}%7987% of the absorption of the
EM field energy by the metal NP averaged over the
period T' = 27 /w and the Euler angles can be written
in the form

(1) w[plky 372 5

=P R koR1)3S 53
<NP>M7% Pt ey (hoRi)*Sqa,  (53)
(2) wlp?k 5 372
@, .. - s o

where Sg1 and Sg 2 are the sums in formulas (A2.1)
and (A3.1), respectively, but with the coefficients

XZ(TZ) instead of Bl(?:), and VVl(Zl) instead of Cl(?:).

9. Calculation of Excitonic Emission Rates,
Non-radiative Losses, and Emission Quantum
Yield in the Nanosystem QD + NP

While calculating the emission characteristics of the
hybrid nanosystems QD + NP, the quasiequilibrium
character of the dark and bright exciton level pop-
ulations at finite temperatures has to be taken into
account. The total averaged emission power (Pqp) of
a single semiconductor QD can be written as

=@ =0
Pég + Pé]% exp(—A/kpT)

1+ exp(—A/kpT) ’

(Pop) = (55)
where A(Rz) is the splitting of dark and bright exci-
ton levels (see Section 5). The total averaged emission

power (Pgp4np) of the nanosystems QD + NP is ex-

pressed analogously to formula (55), but with ﬁgl)j
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substituted by <P8])3+Np>g,ﬁ,9m% (Eq. (A2.1)), and
(2 (2 .
P(Q])D by <P((Q1)3+NP>%,0EWE (Eq. (A3.1)). Performing

—(2
(Pgp) by (Qnp), ngg by
—(1)

Qv 301 P by @), i forn
(55), an analogous expression can also be obtained for
the total intensity of absorption of the QD-emitted
EM field energy by the metal NP.

Let the calculation parameters be the rate of non-
radiative losses 2P (the rate of non-radiative recom-
bination) and the quantum yield of excitonic emission
by a single QD, ngp = 2P /(72" + 42P). Typical
values of the former in the case of a CdTe QD are
AQP ~ (2+7) x 107 s7! [27, 28]. Thereby, we also
selected the rate of radiative exciton recombination
in the isolated QD, Y2P = v@Pnop /(1 — ngp). It is
clear that the power (Pgop) emitted by an isolated
semiconductor QD has to be proportional to the rate
of radiative recombination y*P: (Pqp)/hw = A,~SP.
Having determined the coefficient A, from this equal-
ity, we can determine the rate of excitonic emission
by the nanosystem QD + NP in whole, y3PTNP =
= (Pgp+np)/(Arhw), and the rate of non-radiative

: : QD+NP __ D+NP QD+NP
losses in this system, 72 Tor = Y20 TN + Vs FRET

where Y0P = QP (Qxp) /(A hw), and v iy
is a contribution from the direct resonance transmis-
sion of the exciton energy to a plasmon excitation
in the NP without the participation of photons. This
contribution, which decreases, as the distance D be-
tween the QD and the NP increases, as D% in the
dipole approximation, is calculated in the framework
of the model [29].

In Fig. 6, the calculated dependences of the ra-
diative recombination rate Y2P*NT and the rates of
non-radiative losses y@P+NP and 'yr?rl_);rngT on the dis-
tance h = D — Ry — Ry between the surface of a CdTe
QD and the surface of a silver or gold NP (D is the
distance between the NP and QD centers) are de-
picted for QD diameters of 2.5 and 3.5 nm, an NP
diameter of 70 nm, the quantum yield of isolated QD

nop = 10%, and T' = 300 K. The relevant depen-
dence for the rate of non-radiative losses vﬁ]?;ngT in
the case of a silver NP is not shown because of its
small values yﬁ?;é\g; <3x10% st

In Figs. 7 to 10, the dependences of the relative
emission quantum yield m.e = ngQp4+NP/7QD On the
distance between the QD and NP surfaces are shown

for the cases of silver and gold NPs at temperatures of
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Fig. 6.
QD+NP

Dependences of the radiative recombination rate
- (curves 1 and 2) and the rates of non-radiative losses
QPN (curves 17 and 2') and ’yﬁD;_PIjE}?T (curve 2') on the
distance between the surface of CdTe QD 3 (panel a) and
3.5 nm (panel b) in diameter and the surface of a silver (curves
1 and 1’) or gold (curves 2, 2/, and 2”/) NP 70 nm in diameter.
Calculation parameters: fyr(?rD =3x107 71, nQp = 10%, and

T =300 K

Silver NP 7=42K @ |[Silver NP 7=300K b

GoldNP T=300K d
40, 80,120

GoldNP T7=42K ¢

40, 80,120

—
(=)
T
1

Relative quantum yield 77,

ook 1L v v P 1
0 10 20 30 40 O 10 20 30 40 50

Distance between QD and NP surfaces, nm

Fig. 7. Dependences of the relative emission quantum yield
of the nanosystem “semiconductor QD + metal NP” on the
distance between the QD and NP surfaces for QD 2 nm in
diameter: silver NP and T" = 4.2 (a) and 300 K (b); gold
NP and T = 4.2 (¢) and 300 K (d). The NP diameter (in
nanometers) is indicated near the corresponding curve
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Fig. 8. The same as in Fig. 7, but for QD 3 nm in diameter
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Fig. 9. The same as in Fig. 7, but for QD 3.5 nm in diameter

4.2 and 300 K for various QD and NP sizes, provided
the emission quantum yield for the isolated QD equal
ngp = 10%. A substantial increase of the emission
quantum yield in the case of a gold NP and the QD
sizes Dqp = 2Ry 2 3.5 nm is related to the fact
that, at such QD dimensions, the energies of exciton
transitions (see Fig. 2) fall within the energy interval
of interface plasmons in the gold NP (see Fig. 4),
which gives rise to the emergence of a resonance in
the exciton-plasmon interaction.
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Fig. 10. The same as in Fig. 7, but for QD 5 nm in diameter

Similar dependences of the relative emission quan-
tum yield on the distance between the NP and QD
surfaces in the case where the quantum yield for a
single QD is ngp = 50 % demonstrate maximal val-
ues N in the range 1.3-1.5 at larger separation dis-
tances (~16 nm in the case of silver NP and 20-25 nm
in the case of gold NP).

10. Conclusions

A model of excitonic emission by a non-spherical
nanosystem “emitting spherical semiconductor QD +
+ spherical metal NP” has been developed in the
case of a semiconductor with cubic modification and
a fourfold degenerate valence band I's. The multiple
scattering of the electromagnetic field, which is emit-
ted by dark and bright excitons in the QD, between
the QD and the NP is taken into account. The emit-
ted power and the rate of radiative recombination,
as well as the absorption intensity and the rate of
non-radiative energy losses in the system are calcu-
lated. This made it possible to determine the emission
quantum yield and its dependence on the distance
between the NP and the QD, the NP and QD sizes,
the temperature, and other parameters. It is shown
that, unlike the electromagnetic field emitted by a
point dipole in a vicinity of the metal NP, which con-
tains the infinite number of multipole components,
the electromagnetic field emitted by the QD contains
only the dipole and octupole components of the elec-

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 7

tric type and the quadrupole components of the mag-
netic type. As a result, the absorption of the EM
field energy by interface plasmons in the metal NP
in the QD + NP nanosystem is considerably lower
than in the case of a point dipole in a vicinity of the
NP, when the multipole components of higher orders
give the main contribution to the absorption at small
distances between the point dipole and the metal
NP [30-32]. As a consequence, the emission quantum
yield of a QD in a vicinity of the metallic NP is higher
than that of an imaginary point dipole located at the
same distance from the metallic NP surface as that
to the QD center, the emission parameters (including
the frequency) of the dipole being the same as those
of the appropriate QD.
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APPENDIX 1

Ca,0 = —1/3/8 exp(—2ige)sin® 0., C_a0 = C3 o, (Al1.1)
. . . . 1+ cos0e

C2,:|:1 =+ eXp(72l§0€ + “Z/e) S 96#7 (A12)
Cog,+1=-C3 o4,
C2,42 = exp(—2ipe F 2iW.)(1 £ cos b 2/4,

2,42 (—2ip ) )/ (AL3)
C2,32=0C3 o,
gl’o :_71'\0/2/2 exp(—ipe) sin f¢ cos fe, (A1.4)

-1,0 = Y100
C1,41 = exp(—ipe F ¥ )(1 £ cosbe) x
X (£ cosbe —1/2), Co1,41=CF 1, (Al.5)
C1,42 = Fiexp(—ipe F 2iW.) sin e X
X (1 £ cosbe)/2, C1,42 = —Cf 14, (Al.6)
Co,0 = (3cos2 . —1)/2, (A1.7)
Co,+1 = —i1/3/2 exp(FiWe) sin Oc cos b, (A1.8)
Co,+2 = —/3/8 exp(F2i¥.) sin? fe. (A1.9)
APPENDIX 2
—) _ w[plPkG e2y3/2
<PQD+NP>\I/e,9€’¢e = 108 <53> ; Ve X
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Translated from Ukrainian by O.I. Voitenko

10.B. Kprouenxo, /.B. Kopbymasax

EKCUTOHHE BUITPOMIHIOBAHHSA
TIBPUJIHOT HAHOCUCTEMU “COEPUYHA
HATIIBITPOBIJHMKOBA KBAHTOBA
TOYKA + COEPUYHA METAJIEBA
HAHOYACTHUHKA”

Peszwowme

Iocaimxkeno Bunagok cdepuanoi kBautosoi Toukn (KT) mps-
MO30HHOI'O HalliBIIPOBiAHUKa KybiuHOT MomudiKalil 3 40TUpu-
KPaTHO BUPOXKEHOIO BaJICHTHOIO 30HOIO I's B oKoJIi cpepranol
Mmerasesol nanodacTuaku (HY). ExcuronHe BUIPOMiHIOBAHHS
KT posrisinyTo sIK Take, Mo GOPMY€ETHCSI CyMOIO BHECKIB BH-

ISSN 2071-0194. Ukr. J. Phys. 2015. Vol. 60, No. 7

IPOMIHIOIOYHMX TOYKOBUX (By3eiabHHX) aunosis Beepeauni KT.
Onuc HecdepudHOI B IIIIOMY HAHOCHUTEMU 6A3YETHCSI HA BHKO-
puUCTaHH]I TPHOX CHEPUIHUK CHCTEM KOOPAHUHAT i BCTAHOBJICHHI
3B’I3KYy MiXK KoedilieHTaMu MyJIbTUIIOJIBHOIO PO3KJIALy eJjle-
krpomartitHux (EM) nosis y mux cmcremax xoopzuzart. Ilo-
JspHi oci nepiol i gpyroi cucrem 3 nearpamu B HY i KT na-
paBJjieHi B3J0BXK JIiHiT, mo 3’e¢auye 1i nenrpu. OpienTaris Tpe-
TBOI cucreMu KoopauHat 3 1enTpom B KT BusHagaerbcs opies-
Taiero kpucraaiguol rparku B KT. ITokazano, o Ha BigMiHy
Bl CKaJISIPHOTO MOTEHINAJIy €JIEKTPUTIHOrO MOJIs, AKHUH IHAYKY-
erbcsi ekcuToHHUM ctanoM B KT i mae Buruisig norenmjiaay To-
qkoBoro jumosist, EM mose ekcuronnoro BunpoMminoBanasa KT
He MOKe OyTu npeicrasyeHe y Burisal EM mosst Bunmpominio-
BaHHSI TOYKOBOI'O JUIIOJIsI, OCKIJIBKM MICTUTB JIHIIE JUATIOJIbHI,
KBaIPYyIOJIbHI 1 OKkTymosbHI KommoneHTn. BpaxoBano 6Gararo-
kparHe poscitoBands Mixk HY i KT eslekrpomarsiTHOro 1mosis,
mo sunpoMinioe K'T. Po3dpaxoBaHi 3a/1e2KHOCTi KBAHTOBOT'O BH-
XOJly €KCHUTOHHOI'O BUIIDOMIHIOBaHHS BiJ BifcTaHi MiXK IOBepx-
aavu KT i HY npu pizaux posmipax KT i HY i remneparypax
4,21 300 K y Bunagky KT CdTe i cpibuux abo somorux HY.
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