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THE STRUCTURE OF A 180-DEGREE
DOMAIN WALL NEAR THE SURFACE OF FERROICSPACS 77.80.Dj

We consider the influence of a built-in surface field on the 180-degree domain wall profile
in primary ferroics within the Landau–Ginsburg–Devonshire phenomenological approach. The
built-in surface field can be caused by various physical mechanisms for ferroelastic, ferroelectric,
and antiferromagnetic media. For instance, it can be a component of the intrinsic surface stress
tensor for ferroelastics with order parameter as a component of the strain tensor. We predict
the effect of domain wall bending near the surface caused by the built-in field and derived the
corresponding approximate analytical expressions.
K e yw o r d s: ferroics, phenomenological approach, domain wall bending, built-in surface field.

1. Introduction

The polarization structure at domain walls in ferro-
electrics has been of permanent interest for funda-
mental science since the middle of the last century,
starting from the earlier studies of Ising-like walls in
uniaxial ferroelectrics, toward recent works, which fo-
cus attention on the mixed Ising–Bloch–Néel polar-
ization structure of the walls encountered in multi-
axial ferroelectrics and multiferroics (see, e.g., [1–4]
and references therein). It was demonstrated that the
ferroelectric domain switching induced by a scanning
probe microscopy tip exhibits a rich pattern dynam-
ics, including the intermittency, quasiperiodicity, and
chaos. These effects are due to the interplay between
the tip-induced polarization switching and the screen-
ing charge dynamics and can be mapped onto a lo-
gistic map [5]. Using Piezoelectric Force Microscopy
(PFM), McGilly et al. [6] showed the control and ma-
nipulation of domain walls in ferroelectric thin films.

Extra broad domain walls with width about 10–
100 nm were observed at the LiNbO3 surface by
PFM [7]. On addition, the recent experimental re-
sults btained with the use of scanning nonlinear di-
electric microscopy (SNDM) [8],[9] revealed that the
wall width near the surface is several times (up to
five) higher than in the bulk of thin films of LiTaO3.

The effect of surface wall broadening in ferro-
electrics was attributed to the formation of a double
electric layer break at the wall-surface junction [10,
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11]. However, this mechanism is specific to the do-
main walls in ferroelectrics with polarization having
component normal to the surface [12].

In the case of ferroelastics, the surface effect on
elastic twins in a proper ferroelastic was studied in
details by Salje et al. [13–15]. It was found [14] that
the nonzero internal stress exists at a domain wall due
to a coupling between the primary order parameter
(shear strain) and dilatation strains. The relaxation
of stress normal components at the free surface led to
either the wall widening or narrowing near the sur-
face depending on the surface curvature sign. Then
the electronic phenomena and structure of the twin
domain wall – surface junctions in the ferroelastics
have been analyzed, by using the example of CaTiO3.

Rychetsky [16] considered the internal stresses oc-
curring around domain walls and showed that the
stress can cause a deformation of the crystal surface.
The surface distortions have been calculated in the
case of antiphase boundaries in tetragonal crystals.

The goal of the paper is to consider the influence
of a built-in surface field on the antiparallel 180∘-do-
main wall profile in primary ferroics within the Lan-
dau–Ginsburg–Devonshire (LGD) phenomenological
approach [17–19]. The built-in surface field causes the
phase transition smearing in thin films [20, 21] and
stimulates the nucleation of domains during the po-
larization reversal [22]. This field could be related to
either spontaneous symmetry breaking [21, 22] or a
misfit between strains of the film and the substrate
[20] via the surface piezoelectric effect [23, 24].
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Fig. 1. 180∘-domain wall near the sample surface 𝑧 = 0. Order
parameter 𝜂(𝑥, 𝑧) has different signs in different domains. Bulk
domain wall profile is 𝑥 = 𝑥0

For ferroelectrics and ferromagnetics with order
parameter normal to the surface, the depolarization
and demagnetization fields are of importance for the
structure of domain walls, as was shown recently for
ferroelectrics with regard for the incomplete screening
due to the extrapolation length effect [10]. Note that,
for ferromagnetic films, the demagnetization field is
known to cause the Bloch-type domain wall transfor-
mation into a Néel one with decrease in the thick-
ness [25].

2. Theoretical Formalism

To study the influence of the surface effects on the
domain wall itself, we choose the problem geometry
for a ferroelectric or ferromagnetic without depolar-
ization or demagnetization fields, which is possible,
e.g., for in-plain components of the order parameter,
depending only on coordinates normal to the order
parameter (so that the divergence of the order pa-
rameter vector is zero, div(𝜂) = 0, and sources of a
depolarization field is absent). Note that, for antifer-
romagnetics or antiferroelectrics, the inhomogeneity
of order parameters does not produce any conjugated
field, causing a decrease in the order parameter.

The geometry of the problem is presented in Fig. 1.
In this case, the polarization (magnetization) pointed
along the 𝑦-axis do not produce a depolarization (de-
magnetization) field.

In the case of primary ferroics, the LGD expan-
sion of the bulk Gibbs free energy in powers of the
order parameter 𝜂 (components of the polarization,
magnetization, or strain tensor for ferroelectric, fer-
romagnetic, or ferroelastic media, respectively) is as
follows:

𝐺𝑉 =

∫︁
𝑉

𝑑3𝑟

(︃
𝛼

2
𝜂2 +

𝛽

4
𝜂4 +

𝛾

2

(︂
𝜕𝜂

𝜕 𝑧

)︂2
+

+
𝜉

2

(︃(︂
𝜕𝜂

𝜕 𝑦

)︂2
+

(︂
𝜕𝜂

𝜕 𝑥

)︂2)︃)︃
. (1a)

Hereinafter, we neglect the coupling with elastic
stresses (i.e., magnetostriction and electrostriction
terms). The coefficient 𝛼 ∼ (𝑇 − 𝑇C) linearly de-
pends on the temperature 𝑇 , so that it is negative
below Curie temperature 𝑇C. Constants 𝛾 and 𝜉 de-
termine the gradient energy strength. Coefficients of
the energy expansion 𝛽, 𝛾, and 𝜉 are positive and may
weakly depend on the temperature.

In the phenomenological theory framework, the
surface effects should be taken into account by in-
troducing the surface energy depending on the order
parameter as follows:

𝐺𝑆 =

∫︁
𝑆

𝑑2𝑟
(︁𝛼𝑆

2
𝜂2 − 𝜎 𝜂

)︁
. (1b)

The expansion coefficient 𝛼𝑆 is assumed positive (oth-
erwise, higher expansion terms should be considered).
The built-in surface field 𝜎 may be caused by differ-
ent physical mechanisms for ferroelastic, ferroelectric,
and antiferromagnetic media.

For instance, 𝜎 is a component of the intrinsic sur-
face stress tensor for a ferroelastic with order param-
eter as a component of the strain tensor 𝑢𝑖𝑗 . Namely,
in this case, the surface energy can be rewritten as∫︀
𝑆

(︁
𝛼𝑆
𝑖𝑗𝑘𝑙𝑢𝑖𝑗𝑢𝑘𝑙/2 + 𝜉𝑖𝑗𝑢𝑖𝑗

)︁
𝑑2𝑟. Here, the summation

over repeated indices is assumed, and 𝜉𝑖𝑗 is the intrin-
sic surface stress tensor [26–28]. It should be noted
that, for flat surfaces, only the in-plain components of
𝜉𝑖𝑗 would be invariant under in-plain rotations. Thus,
only the in-plain components of the stress could be
induced by the surface stress effect.

For the ferroelectrics with order parameter 𝜂 as
a component of the polarization vector 𝑃𝑖, 𝜎 orig-
inates from the symmetry breaking near the surfa-
ce. For instance, in the case of a polarization nor-
mal to the film surface, vanishing the inversion cen-
ter leads to the appearance of 𝜎 (see, e.g., [20,
21]). In this case, one can write the surface energy
as
∫︀
𝑆
(𝛼𝑆

𝑖𝑗𝑃𝑖𝑃𝑗/2 + 𝑏𝑃𝑙𝑛𝑙 + 𝜇𝑖𝑗𝑘𝑙𝑢𝑖𝑗𝑃𝑘𝑛𝑙)𝑑
2𝑟. Here, 𝑛𝑖

are components of the normal to the surface, the sec-
ond term is responsible for the surface local electric
field oriented perpendicularly to the surface [20, 21].
The latter term is related to the surface flexoelectric
effect [23, 24]. Using the symmetry of the bulk flex-
oelectric effect for cubic materials [29, 30], it is easy
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to estimate that these terms couple in-plain polar-
ization components to shear strains. Although these
shear strains are hardly induced by surface stresses,
they may appear due to a reconstruction of the sur-
face [31] or the influence of an interface material.

It should be noted that, in the case of a ferromag-
netic or superconductor order parameter, the built-in
surface field coupled to the corresponding order pa-
rameter could not be considered, since the surface
could eliminate the symmetry elements correspond-
ing to spatial symmetry but it cannot eliminate the
time-reversal or gauge transformations which change
ferromagnetic and superconducting order parameters
[21]. However, the situation with antiferromagnetic
media is more complex, since the allowed symmetry
groups for an antiferromagnetic may not include the
time-reversal operation, and, thus, these media may
possess the piezomagnetic effect [17], as well as terms
in the surface energy linear in the order parameter.

One can conclude from the above consideration
that, for many different type ferroics media, the ap-
pearance of terms linear in the order parameter in the
surface energy is quite possible. Here, we consider the
impact of these terms on the surface structure of fer-
roic domain walls.

For the second-order phase transitions considered
hereinafter, the LGD equation for the order parame-
ter 𝜂(𝑥, 𝑧) has the form

𝛼𝜂 + 𝛽𝜂3 − 𝛾
𝜕2𝜂

𝜕𝑧2
− 𝜉

(︂
𝜕2𝜂

𝜕𝑥2
+

𝜕2𝜂

𝜕𝑦2

)︂
= 0. (2a)

Further, let us consider the case of semiinfinite sam-
ple with surface 𝑧 = 0. The inhomogeneous boundary
condition for the order parameter is:(︂

𝜂 − 𝜆
𝜕𝜂

𝜕𝑧

)︂
𝑧=0

= 𝜂𝑡(𝑥). (2b)

Here, 𝜆 = 𝛾/𝛼𝑆 is the extrapolation length (see, e.g.,
[32–32]), and the built-in surface order parameter is
directly proportional to the surface field as 𝜂𝑡(𝑥, 𝑦) =
= 𝜎(𝑥, 𝑦)/𝛼𝑆 .

3. Analytical Results and Discussion

The bulk 1D-solution for a 180∘-domain wall is
𝜂0(𝑥) = 𝜂𝑆 tanh ((𝑥− 𝑥0) /2𝐿⊥), where the correla-
tion length 𝐿⊥ =

√︀
−𝜉/2𝛼 and the spontaneous value

𝜂2𝑆 = −𝛼/𝛽. It is no more a solution of system (2) in
the case |𝜆| < ∞.

In the typical case |𝜂𝑡| < 𝜂𝑆 , a linearized solution of
Eqs. (2) can be found as 𝜂 (𝑥, 𝑧) = 𝜂𝑆 tanh

(︁
𝑥−𝑥0

2𝐿⊥

)︁
+

+ 𝑝(𝑥, 𝑧), where the perturbation 𝑝(𝑥, 𝑧) satisfies the
inhomogeneous boundary problem:(︂
−2𝛼+ 3𝛼 sech2

(︂
𝑥− 𝑥0

2𝐿⊥

)︂)︂
𝑝−𝛾 𝜕2𝑝

𝜕 𝑧2
−𝜉 𝜕

2𝑝

𝜕 𝑥2
=0, (3a)(︂

𝑝− 𝜆
𝜕𝑝

𝜕𝑧

)︂
𝑧=0

= 𝜂𝑡(𝑥)− 𝜂𝑆 tanh

(︂
𝑥− 𝑥0

2𝐿⊥

)︂
. (3b)

Here, the hyperbolic function definition sech2(𝑥) =
= 1− tanh2(𝑥) was used.

Looking for a solution of Eqs. (3) in the form
𝑝(𝑥, 𝑧) =

∫︀
𝑘>0

𝑑𝑘𝑞(𝑘, 𝑥) exp (−𝑘𝑧), one obtains the
equations for the spectrum 𝑞(𝑘, 𝑥):(︂
−2𝛼+ 3𝛼 sech2

(︂
𝑥− 𝑥0

2𝐿⊥

)︂
+ 𝛾 𝑘2

)︂
×

× 𝑞(𝑘, 𝑥)− 𝜉
𝑑2

𝑑 𝑥2
𝑞(𝑘, 𝑥) = 0, (4)

and Eq.(4) is a linear inhomogeneous equation with
𝑥-dependent coefficient. The solution of the homoge-
neous equation for 𝑞(𝑘,𝑥) was derived, as proposed in
[35], namely:

𝑞(𝑘, 𝑥) = 𝐴(𝑘)𝑓(𝑘, 𝑥− 𝑥0) +𝐵(𝑘)𝑓(𝑘, 𝑥0 − 𝑥), (5)

𝑓(𝑘, 𝑥) = exp

(︂
𝑖𝜅(𝑘)

𝑥

2𝐿⊥

)︂
×

×
(︂
𝜅2(𝑘)−2+3sech2

(︂
𝑥

2𝐿⊥

)︂
+3𝑖𝜅(𝑘) tanh

(︂
𝑥

2𝐿⊥

)︂)︂
. (6)

Then one obtains the integral equation for 𝐴(𝑘) and
𝐵(𝑘) from the boundary conditions (3b). In the par-
ticular case where 𝜂𝑡 = const, the following approxi-
mate analytical solution was derived (see supplemen-
tary materials):

𝜂(𝑥, 𝑧) ≈ 𝜂𝑆

(︂
1− exp(−𝑧/𝐿𝑧)

1 + 𝜆𝐿𝑧

)︂
×

× tanh

(︂
𝑥− 𝑥0

2𝐿⊥

)︂
+ 𝜂𝑡

exp (−𝑧/𝐿𝑧)

1 + 𝜆/𝐿𝑧
. (7)

By definition, 𝐿⊥ =
√︀

−𝜉/2𝛼, 𝐿𝑧 =
√︀
−𝛾/2𝛼. The

first term in Eq. (7) is the bulk solution, but with the
amplitude depending on the depth due to a diminu-
tion of the order parameter on the surface (extrap-
olation length effect), the second term is due to the
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Fig. 2. (Color online) Domain wall profiles (curves 𝜂(𝑥, 𝑧) =

= 0) (a) for various extrapolation length 𝜆 values (marked near
the curves in 𝐿𝑧 units) and the built-in field 𝜂𝑡 = −0.35𝜂𝑆 ;
(b) for different ratio 𝜂𝑡/𝜂𝑆 values (0, ±0.35, ±0.7) and
𝜆 = 𝐿𝑧 . Depending on the sign, the built-in field tends to re-
polarize the “left” or “right” surface region and, thus, to bend
the domain wall. Bulk (𝑧 ≫ 𝐿𝑧) domain wall profile is 𝑥 = 𝑥0

Fig. 3. (Color online) Schematics of the order parameter
spatial distribution for 𝜂𝑡 = 0.35𝜂𝑆 (panels (a) and (b)) and
𝜂𝑡 = 0.55𝜂𝑆 (panels (c) and (d)). Left column (panels (a) and
(c)) represents map contours of order parameter constant val-
ues marked near curves; the curves of fixed width at the levels
𝜁 = ±0.76 (dashed curves) and ±0.46 (dotted curves) right
column (panels (b) and (d))

built-in surface field. Solution (7) reproduces both the
bulk domain wall far from the surface (𝑧 → ∞) and
the qualitative behavior of the order parameter at the

surface far from the domain wall (and even the quan-
titative one at high values of 𝜆).

The domain wall position corresponding to Eq. (7)
is given by the expression

𝑥(𝑧) ≈ 𝑥0 − 2𝐿⊥ ×

× arctanh

(︂
𝜂𝑡
𝜂𝑆

exp(−𝑧/𝐿𝑧)

1 + 𝜆𝐿𝑧 − exp(−𝑧/𝐿𝑧)

)︂
. (8)

In the case |𝜂𝑡| < 𝜂𝑆𝜆/𝐿𝑧, the wall reaches the sur-
face 𝑧 = 0, while, for |𝜂𝑡| > 𝜂𝑆𝜆/𝐿𝑧, the built-in
surface field induces an ordered surface state instead
of the wall bending. Equations (7)–(8) describe the
effect of 180∘-domain wall bending near the surface
as demonstrated in Fig. 2.

Note that the surface state formation in the field
of a defect was described earlier [36] for ferroelectric
media.

The built-in surface field not only bends the wall,
but also leads to changes in a domain wall struc-
ture as whole. As one can see from Figs. 3, a and
3, c, the structure of the wall becomes asymmetric
near the surface, and, at sufficiently high values of
build-in field, the domain wall could not reach the
surface. Moreover, the domain wall width also under-
goes changes due to the surface field. It should be
noted that the width of a domain wall is usually de-
termined as the distance between the points, where
the order parameter reaches a definite fraction of the
order parameter value far from the wall (hence, the
width determination level).

In our case, the order parameter depends on the 𝑧-
coordinate even far from the wall (and so does the
level). Thus, the width cannot be simply deduced
from the contour maps like Figs. 3, a and 3, c. So, in
order to illustrate the dependence of the wall width
on the surface field, we calculated the curves, at which
the order parameter is equal to a fixed ratio 𝜁 (level)
of the order parameter far from the wall but on the
same depth, 𝜂(𝑥,𝑧) = ±𝜁𝜂(𝑥 → ±∞,𝑧) (see Fig. 3, b
and 3, d).

The levels about 0.46 and 0.76 are chosen because
tanh(0.5) ≈ 0.46 and tanh(1) ≈ 0.76, so that the
width on the level 0.46 is very close to the value 2𝐿⊥
for bulk walls.

It is seen from Figs. 3, b and 3, d that the wall
width at the surface increases with 𝜂𝑡 and formally
reaches infinity, when the near-surface region trans-
forms in the single-domain state.
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It is clear that the smaller the extrapolation length
𝜆 and/or the higher the ratio |𝜂𝑡/𝜂𝑆 |, the stronger
is the bending effect. Under the absence of a built-in
surface field, the domain wall bending or broadening
is absent, as anticipated in the linear approximation.

The calculated domain wall bending is caused by
the nonzero surface field of constant sign. Actually,
the built-in surface field distribution may be ran-
dom (cf. discussion in [22]). Some antisymmetric dis-
tribution of the field like 𝜂𝑡 ∼ 𝜎 ∼ (𝑥 − 𝑥0) should
lead to the pure broadening effect. In addition, the
coordinate-dependent surface field with variable po-
larity could lead to the wall pinning in a weak ex-
ternal field, since the surface field would either pro-
mote the nucleation of new domains [22] or, as shown
above, would lead to the formation of surface domains
in the regions with the opposite value of order para-
meter. Thus, the external field will “push” the walls to
the positions, where 𝜂𝑡 ∼ 𝜎 is close to zero. However,
in a weak external field, the asymmetric surface field
would create a restoring force preventing a further
displacement of the walls.

For typical material parameters, 𝐿𝑧 values are
about several lattice constants for ferroelectrics and
much higher (up to hundred lattice constants) for
magnetics. Scanning probe methods like PFM or
SNDM measure the effective domain wall width in
ferroelectrics, since the probe field penetrates in the
depth of the sample at distances 1–10 nm, and so
could recognize the bended walls as broadened ones.
Thus, the built-in surface field is one of the possi-
ble mechanisms of domain wall broadening near the
ferroic surfaces.

4. Conclusion

We have considered the influence of the built-in sur-
face field on the 180-degree domain wall profile in pri-
mary ferroics within the Landau–Ginsburg–Devon-
shire phenomenological approach and derived the cor-
responding approximate analytical expressions. The
effect of domain wall bending near the surface caused
by the built-in field is predicted. In this case, the hi-
gher the surface energy contribution (i.e., the smal-
ler is the corresponding extrapolation length) and/or
the higher the field, the stronger is the bending ef-
fect. Hence, we can conclude that the built-in sur-
face field is one of the possible mechanisms of domain
wall near surface broadening recently observed in the
ferroics.

E.A.E acknowledges National Academy of Sciences
of Ukraine (Grants 35-02-15 and 07-06-15).

SUPPLEMENTARY MATERIAL

Looking for a solution of Eqs. (3) in the form 𝑝(𝑥, 𝑧) =

=
∫︀
𝑘>0 𝑑𝑘𝑞(𝑘, 𝑥) exp (−𝑘𝑧), one obtains the equations for the

spectrum 𝑞(𝑘, 𝑥):(︂
−2𝛼+ 3𝛼 sech2

(︂
𝑥− 𝑥0

2𝐿⊥

)︂
+ 𝛾 𝑘2

)︂
×

× 𝑞(𝑘, 𝑥)− 𝜉
𝑑2

𝑑 𝑥2
𝑞(𝑘, 𝑥) = 0, (S.1a)∫︁

𝑘>0

𝑑𝑘(1 + 𝜆𝑘)𝑞(𝑘, 𝑥) = 𝜂𝑡(𝑥)− 𝜂𝑆 tanh

(︂
𝑥− 𝑥0

2𝐿⊥

)︂
. (S.1b)

Equation (S.1a) is a linear inhomogeneous equation with 𝑥-de-
pendent coefficient. The solution of the homogeneous equation
for 𝑞(𝑘, 𝑥) was derived, as proposed in [35], namely:

𝑞(𝑘, 𝑥) = 𝐴(𝑘)𝑓(𝑘, 𝑥− 𝑥0) +𝐵(𝑘)𝑓(𝑘, 𝑥0 − 𝑥), (S.2a)

𝑓(𝑘, 𝑥) = exp

(︂
𝑖𝜅(𝑘)

𝑥

2𝐿⊥

)︂(︁
𝜅2(𝑘)− 2+

+3sech2
(︂

𝑥

2𝐿⊥

)︂
+ 3𝑖𝜅(𝑘) tanh

(︂
𝑥

2𝐿⊥

)︂)︂
. (S.2b)

Here, 𝐴(𝑘) and 𝐵(𝑘) are arbitrary functions of 𝑘, the disper-

sion law 𝜅(𝑘) = 2

√︂
𝐿2

⊥
𝜉

𝑘2𝛾 − 1, while 𝑘 >
√︀

𝜉/𝛾 · 𝐿−1
⊥ . Then

one obtains the integral equation for 𝐴(𝑘) and𝐵(𝑘) from the
boundary condition (S.1b) as∫︁
𝑘>0

𝑑𝑘(1 + 𝜆𝑘) (𝐴(𝑘)𝑓(𝑘, 𝑥− 𝑥0)+

+𝐵(𝑘)𝑓(𝑘, 𝑥0 − 𝑥)) = 𝜂𝑡(𝑥)− 𝜂𝑆 tanh

(︂
𝑥− 𝑥0

2𝐿⊥

)︂
. (S.3)

Equation (S.3) should be valid at arbitrary 𝑥. It reduces to
two Fredholm equations of the second order. Only numerical
solutions are available.

Without built-in field, 𝜂𝑡 = 𝜎 = 0, one obtains from
Eq. (S.3) that 𝐴(𝑘) = −𝐵(𝑘) = −𝜂𝑆𝛿 (𝑘 − 𝑘0) / (6𝑖𝜅(𝑘)), 𝛿(𝑘)
is the Dirac-delta function and 𝑘0 =

√
𝜉𝛾 · 𝐿−1

⊥ . Finally, the
linearized solution acquires the simplest form:

𝜂(𝑥, 𝑧) = 𝜂𝑆

(︂
1−

exp (−𝑧/𝐿𝑧)

1 + 𝜆/𝐿𝑧

)︂
tanh

(︂
𝑥− 𝑥0

2𝐿⊥

)︂
. (S.4)

As anticipated, in the absence of a built-in surface field
(𝜂𝑡 = 0), the domain wall bending or broadening is absent
in the linear approximation.
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Є.А.Єлiсєєв

СТРУКТУРА 180-ГРАДУСНОЇ ДОМЕННОЇ
СТIНКИ ПОБЛИЗУ ПОВЕРХНI ФЕРРОIКIВ

Р е з ю м е

Розглянуто вплив вбудованого поверхневого поля на про-
фiль 180 градусної доменної стiнки у власних ферроiках
в рамках феноменологiчного пiдходу Ландау–Гiнзбурга–
Девоншира. Вбудоване поверхневе поле може бути створене
рiзними фiзичними механiзмами в сегнетоеластичних, се-
гнетоелектричних i антиферомагнiтних середовищах. На-
приклад, це може бути компонента тензора поверхневих
напружень для сегнетоеластiков з вiдповiдним параметром
порядку, компонентами тензора деформацiї. Передбачений
ефект вигину доменної стiнки поблизу поверхнi, виклика-
ний вбудованим полем, i отриманi вiдповiднi наближенi ана-
лiтичнi вирази для його опису.
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